Mondrix: Memory Isolation for Linux using
Mondriaan Memory Protection

Emmett Witchel Junghwan Rhee Krste Asanovic

Sreeram Ramalingam
10/26/2005

i

CS5204 Fall 2005 1 Oct. 26, 2005

Roadmap

m Introduction

m Mondria(a)n Memory Protection — Overview
m Kernel Partitioning

® MMP Structure and Features

® Memory Supervisor

m Experimental Evaluation

m Conclusion and Comments

CS5204 Fall 2005 2 Oct. 26, 2005

Introduction

m Motivation
® Memory Protection
e prevents one process from corrupting the memory of
another process
e Involves hardware and software
e Methods:
- Segmentation
- Paging
- Protection Keys
m Fine-grained vs. Coarse-grained

CS5204 Fall 2005 3 Oct. 26, 2005

Mondrian Memory Protection

m Pieter Cornelis Mondriaan, Jr. (1872 — 1944) — the first
modern painter

Each column

represents a OxFFF-
[T

protection domain
(PD) Memory o
Each row represents ~ Addresses one

[Read-only
a range of memory |
addresses I m Read-write
B Execute-read

Every thread
associated with only
one PD

Protection Domains

Allows arbitrary sized
memory regions

CS5204 Fall 2005 4 Oct. 26, 2005

Linux Kernel Partitioning

m Mondrix isolates each kernel module in its own
domain

m Each module in Disk and Network Device drivers has
its own domain

m Basic Domains in Mondrix
e PD 0 — Memory Supervisor (Bottom)
e PD 1 — Memory Supervisor (Top)
e PD 2 — Kernel
e PD 3 — String Functions

m Domain creation occurs when modules are loaded in
the kernel

85204 Fall 2005 5 Oct. 26, 2005

Module Loading / Domain Creation

m insmod program is called by user to load a new
kernel module

m Kernel then calls memory supervisor to set memory
permissions
e Length of program sections
o Start address of every function
o Address of the return instruction

C$5204 Fall 2005 6 Oct. 26, 2005

Domain Creation

PD1 owns the rest of
the address space

PD1 owns entire

Device Drivers Partitioning

idress space AFTER
PD2 owns its static
code and data
Permissions Key A
3 Nene =
Read=only
B Read-wriee
[Execure—read
P Protection PIy1 D2
domains
(€S5204 Fall 2005 7 Oct. 26, 2005

m Disk Driver
e Device dependent bottom half
e Device independent top half
e Mondrix detects improper programming of device registers

m Network Driver

e Chip-specific portion (coordinates reception and
transmission)

e Board-specific portion (moves data on and off n/w card)

€S5204 Fall 2005 8 Oct. 26, 2005

Other Domain Partitions

m Device Interrupts

e Jumps to interrupt stubs marked executable in the global
group protection domain

m Inlined Functions
e Export permissions on data
e Uninline the function

m Slab Allocator

CS5204 Fall 2005 9 Oct. 26, 2005

Memory Supervisor

m Split into two layers — ‘top’ and ‘bottom’

m Bottom layer’s functionality is to just write the
permissions table in memory

m Top layer functionalities

e Permissions and Memory allocation (uses API calls
perm_alloc and perm_free)

e Thread-local stack permissions
e Permissions policy
e Group Protection domains

- Used in management of inodes

©S5204 Fall 2005 10 Oct. 26, 2005

Permissions Policy

MMP System Structure

Before Cal After
Celler Target Caller Target
oan? | access | oan? | aooess oan? aooess onn? ao0ess
X . y A
n B prot(pirjen Al n__[A<B?AERR|
X n Y y X n [9]
n X y Y prot_export(ptr,len,Ctarget); n X ERROR
n D n E n C=DDERRR| n C=E7C ERROR
y X n none . n none y E
o X pd.s lenE); r ERROR
n X y Y pd_freeftarget) yn none
v X n none y X n RW
n X Y X perm aloo(ptr,len); n ERROR
n F n G n G n P>=G?F : ERROR|
X n X " Y X n none
n X i e n ERROR

CS5204 Fall 2005 1 Oct. 26, 2005

Adkdress Regn

Protection
Lookaside:
Buifer

L]

_
Gate { Domain 1D | CPU
Lookaside

¥l

Permissions Table Base

Stack Table Base |

==

MEMORY sack | |
Cross—domain__ | Permissions A
Cansmek r_.;::.' o l .

Stack Permussionsy
Tabke [

| Buftes
A L CDST |

[Gate Table Base ‘

refill

refill

Switch & Return
| Giate Table

C$5204 Fall 2005 12 Oct. 26, 2005

MMP Features in Mondrix(1)

m Memory Protection
e Address space is the kernel virtual address space

e Permissions information stored in permissions table in main
memory

e Protection Lookaside Buffer (PLB) is used as a cache by the
MMP hardware and is similar to the TLB

o Preserves the user/kernel mode distinction (uses high bit of
PD-ID register)

MMP Features (2)

CS5204 Fall 2005 13 Oct. 26, 2005

m Cross Domain Calling

e Provides two way guarantee

e Thread enters a callee’s domain at specified points called Switch
Gates.

e Thread returns from a cross-domain call at specified points called
Return Gates.

o Information about Gates are stored in a separate Gate Table and
is cached with a Gate Lookaside Buffer (GLB)

Address (32b)
[Switch/Return (1b) [Unused (15b) [Destination PD-ID (16b) |

Format of Gate Table Entries

€S5204 Fall 2005 14 Oct. 26, 2005

Experimental Evaluations

m Functional Evaluation
e Expose a Linux Error!
o Fault Injection experiments (used in Nooks)

m Performance Evaluation
e Used SimICS and Bochs system emulators
e CPU and Memory overheads were less than 15%
e Four benchmarks were chosen
- config-xemacs
- thttpd
- find
- MySQL

Linux Error!

85204 Fall 2005 15 Oct. 26, 2005

m free_task_struct() used to free the task structure if
the task structure reference count is zero

m Proc_pid_lookup() and proc_pid_delete_inode() call
free_task_struct()

m During kernel initialization task structure count is zero
causing kernel stack memory to be freed

©S5204 Fall 2005 16 Oct. 26, 2005

Fault Injection Experiments

m Fault Types
o Bit flips
o Low-level software faults
e High-level software faults

m Corruption Detection
e Indirect Corruption
e Direct Corruption

Performance Evaluation - thttpd

- Checksum
- memTest
- File copies
Source: The Rio File Cache: Surviving Operating System Crashes
€S5204 Fall 2005 17 Oct. 26, 2005

o idle(3.1%)
- ather(4.6%)

u: cgi-progs(7.5%)
cgi-script(13.9%)
thttpdi4.2%)
syslogd(3%)

o border between KU
=k other(11.4%)
a4 w kouser_page_fault{15%)
mk mmp_top(2%)
K: mmp_bat{8.5%)

EEE

Percentage of execution time

= . -k axit(3.8%)
k: open_close(3.7%)
=k write(d.4%)
= ko read(2.7%)
TEEMO 46 A0 z o k: fork_exec(B.1%)
Time {cycles) K:mk'al [G'%'.ggau]pf}gé?q["s’as%:

5204 Fall 2005 18 Oct. 26, 2005

Performance Evaluation

m Cross Domain Calling

e Cross domain calls accounted for less than 1% of total
execution time

e Cross domain call stack never grew deeper than 64 entries
m Memory Use

e Sum of Active and Inactive memory in kernel was within 1%
for Mondrix and Linux

m PLB Refill Traffic
o Less than 4% execution time spent in PLB refilling

Related Work

CS5204 Fall 2005 19 Oct. 26, 2005

m Nooks uses conventional hardware to isolate
modules in different addressing contexts.

m Language-based protection
e Use safe languages for OS implementation

m Hardware-based protection
e Use of NX bit

m OS structure-based

CS5204 Fall 2005 20

Oct. 26, 2005

Conclusion

m Provides Fine-grained memory protection

m Backward compatibility for operating systems, ISAs
and programming models

m Additional hardware not on processor’s critical path

m Fits naturally with how modern software is designed
and written

85204 Fall 2005 21 Oct. 26, 2005

Questions/Comments?

CS5204 Fall 2005 2

Oct. 26, 2005

MMP Features (3)

m Stack Permissions

o Registers designate stack frames in the current domain as
readable or writable

e Earlier frames are designated as read only

e Stack write permissions table is used to decide whether a
given stack address is writable by the thread (This is also
cached in the PLB)

CS5204 Fall 2005 23 Oct. 26, 2005

