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Introduction

m Motivation
® Memory Protection
e prevents one process from corrupting the memory of
another process
e Involves hardware and software
e Methods:
- Segmentation
- Paging
- Protection Keys
m Fine-grained vs. Coarse-grained
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Mondrian Memory Protection

m Pieter Cornelis Mondriaan, Jr. (1872 — 1944) — the first
modern painter
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Linux Kernel Partitioning

m Mondrix isolates each kernel module in its own
domain

m Each module in Disk and Network Device drivers has
its own domain

m Basic Domains in Mondrix
e PD 0 — Memory Supervisor (Bottom)
e PD 1 — Memory Supervisor (Top)
e PD 2 — Kernel
e PD 3 — String Functions

m Domain creation occurs when modules are loaded in
the kernel
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Module Loading / Domain Creation

m insmod program is called by user to load a new
kernel module

m Kernel then calls memory supervisor to set memory
permissions
e Length of program sections
o Start address of every function
o Address of the return instruction
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m Disk Driver
e Device dependent bottom half
e Device independent top half
e Mondrix detects improper programming of device registers

m Network Driver

e Chip-specific portion (coordinates reception and
transmission)

e Board-specific portion (moves data on and off n/w card)
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Other Domain Partitions

m Device Interrupts

e Jumps to interrupt stubs marked executable in the global
group protection domain

m Inlined Functions
e Export permissions on data
e Uninline the function

m Slab Allocator
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Memory Supervisor

m Split into two layers — ‘top’ and ‘bottom’

m Bottom layer’s functionality is to just write the
permissions table in memory

m Top layer functionalities

e Permissions and Memory allocation (uses API calls
perm_alloc and perm_free)

e Thread-local stack permissions
e Permissions policy
e Group Protection domains

- Used in management of inodes

©S5204 Fall 2005 10 Oct. 26, 2005

Permissions Policy

MMP System Structure
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MMP Features in Mondrix(1)

m Memory Protection
e Address space is the kernel virtual address space

e Permissions information stored in permissions table in main
memory

e Protection Lookaside Buffer (PLB) is used as a cache by the
MMP hardware and is similar to the TLB

o Preserves the user/kernel mode distinction (uses high bit of
PD-ID register)

MMP Features (2)
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m Cross Domain Calling

e Provides two way guarantee

e Thread enters a callee’s domain at specified points called Switch
Gates.

e Thread returns from a cross-domain call at specified points called
Return Gates.

o Information about Gates are stored in a separate Gate Table and
is cached with a Gate Lookaside Buffer (GLB)

Address (32b)
[ Switch/Return (1b) [Unused (15b) [Destination PD-ID (16b) |

Format of Gate Table Entries
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Experimental Evaluations

m Functional Evaluation
e Expose a Linux Error!
o Fault Injection experiments (used in Nooks)

m Performance Evaluation
e Used SimICS and Bochs system emulators
e CPU and Memory overheads were less than 15%
e Four benchmarks were chosen
- config-xemacs
- thttpd
- find
- MySQL

Linux Error!
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m free_task_struct() used to free the task structure if
the task structure reference count is zero

m Proc_pid_lookup() and proc_pid_delete_inode() call
free_task_struct()

m During kernel initialization task structure count is zero
causing kernel stack memory to be freed
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Fault Injection Experiments

m Fault Types
o Bit flips
o Low-level software faults
e High-level software faults

m Corruption Detection
e Indirect Corruption
e Direct Corruption

Performance Evaluation - thttpd

- Checksum
- memTest
- File copies
Source: The Rio File Cache: Surviving Operating System Crashes
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Performance Evaluation

m Cross Domain Calling

e Cross domain calls accounted for less than 1% of total
execution time

e Cross domain call stack never grew deeper than 64 entries
m Memory Use

e Sum of Active and Inactive memory in kernel was within 1%
for Mondrix and Linux

m PLB Refill Traffic
o Less than 4% execution time spent in PLB refilling

Related Work
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m Nooks uses conventional hardware to isolate
modules in different addressing contexts.

m Language-based protection
e Use safe languages for OS implementation

m Hardware-based protection
e Use of NX bit

m OS structure-based
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Conclusion

m Provides Fine-grained memory protection

m Backward compatibility for operating systems, ISAs
and programming models

m Additional hardware not on processor’s critical path

m Fits naturally with how modern software is designed
and written

85204 Fall 2005 21 Oct. 26, 2005

Questions/Comments?
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MMP Features (3)

m Stack Permissions

o Registers designate stack frames in the current domain as
readable or writable

e Earlier frames are designated as read only

e Stack write permissions table is used to decide whether a
given stack address is writable by the thread (This is also
cached in the PLB)
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