
CS5204 Fall 2005 1 Oct. 26, 2005

Mondrix: Memory Isolation for Linux using
Mondriaan Memory Protection

Emmett Witchel Junghwan Rhee Krste Asanovic

Sreeram Ramalingam
10/26/2005

CS5204 Fall 2005 2 Oct. 26, 2005

Roadmap

Introduction
Mondria(a)n Memory Protection – Overview
Kernel Partitioning
MMP Structure and Features
Memory Supervisor
Experimental Evaluation
Conclusion and Comments

CS5204 Fall 2005 3 Oct. 26, 2005

Introduction

Motivation
Memory Protection

prevents one process from corrupting the memory of
another process
Involves hardware and software
Methods:
− Segmentation
− Paging
− Protection Keys

Fine-grained vs. Coarse-grained

CS5204 Fall 2005 4 Oct. 26, 2005

Mondrian Memory Protection

Pieter Cornelis Mondriaan, Jr. (1872 – 1944) – the first
modern painter

None
Read-only
Read-write
Execute-read

Memory
Addresses

0xFFF

Protection Domains

• Each column
represents a
protection domain
(PD)

• Each row represents
a range of memory
addresses

• Every thread
associated with only
one PD

• Allows arbitrary sized
memory regions

CS5204 Fall 2005 5 Oct. 26, 2005

Linux Kernel Partitioning

Mondrix isolates each kernel module in its own
domain
Each module in Disk and Network Device drivers has
its own domain
Basic Domains in Mondrix

PD 0 – Memory Supervisor (Bottom)
PD 1 – Memory Supervisor (Top)
PD 2 – Kernel
PD 3 – String Functions

Domain creation occurs when modules are loaded in
the kernel

CS5204 Fall 2005 6 Oct. 26, 2005

Module Loading / Domain Creation

insmod program is called by user to load a new
kernel module

Kernel then calls memory supervisor to set memory
permissions

Length of program sections
Start address of every function
Address of the return instruction

CS5204 Fall 2005 7 Oct. 26, 2005

Domain Creation

PD1 owns entire
address space

PD2 owns its static
code and data

PD1 owns the rest of
the address space

CS5204 Fall 2005 8 Oct. 26, 2005

Device Drivers Partitioning

Disk Driver
Device dependent bottom half
Device independent top half
Mondrix detects improper programming of device registers

Network Driver
Chip-specific portion (coordinates reception and
transmission)
Board-specific portion (moves data on and off n/w card)

CS5204 Fall 2005 9 Oct. 26, 2005

Other Domain Partitions

Device Interrupts
Jumps to interrupt stubs marked executable in the global
group protection domain

Inlined Functions
Export permissions on data
Uninline the function

Slab Allocator

CS5204 Fall 2005 10 Oct. 26, 2005

Memory Supervisor

Split into two layers – ‘top’ and ‘bottom’
Bottom layer’s functionality is to just write the
permissions table in memory
Top layer functionalities

Permissions and Memory allocation (uses API calls
perm_alloc and perm_free)
Thread-local stack permissions
Permissions policy
Group Protection domains
− Used in management of inodes

CS5204 Fall 2005 11 Oct. 26, 2005

Permissions Policy

Call

own? access own? access own? access own? access
y X y A
n B n A<=B ? A :ERROR
y X n Y y X n C
n X y Y n X y ERROR
n D n E n C<=D ?D :ERROR n C>=E?C: ERROR
y X n none n none y E
n X n ERROR
n X y Y pd_free(target); y/n none
y X n none y X n RW
n X y X n ERROR
n F n G n G n F>=G?F : ERROR
y X n X y X n none
n X n ERROR

perm_free(ptr,len);

mprot(ptr,len,A);

mprot_export(ptr,len,C,target);

pd_subdivide(ptr,len,E);

perm_alloc(ptr,len);

Caller Target
Before After

Caller Target

CS5204 Fall 2005 12 Oct. 26, 2005

MMP System Structure

CS5204 Fall 2005 13 Oct. 26, 2005

MMP Features in Mondrix(1)

Memory Protection
Address space is the kernel virtual address space

Permissions information stored in permissions table in main
memory

Protection Lookaside Buffer (PLB) is used as a cache by the
MMP hardware and is similar to the TLB

Preserves the user/kernel mode distinction (uses high bit of
PD-ID register)

CS5204 Fall 2005 14 Oct. 26, 2005

MMP Features (2)

Cross Domain Calling
Provides two way guarantee
Thread enters a callee’s domain at specified points called Switch
Gates.
Thread returns from a cross-domain call at specified points called
Return Gates.
Information about Gates are stored in a separate Gate Table and
is cached with a Gate Lookaside Buffer (GLB)

Format of Gate Table Entries

Unused (15b) Destination PD-ID (16b)Switch/Return (1b)
Address (32b)

CS5204 Fall 2005 15 Oct. 26, 2005

Experimental Evaluations

Functional Evaluation
Expose a Linux Error!
Fault Injection experiments (used in Nooks)

Performance Evaluation
Used SimICS and Bochs system emulators
CPU and Memory overheads were less than 15%
Four benchmarks were chosen
− config-xemacs
− thttpd
− find
− MySQL

CS5204 Fall 2005 16 Oct. 26, 2005

Linux Error!

free_task_struct() used to free the task structure if
the task structure reference count is zero

Proc_pid_lookup() and proc_pid_delete_inode() call
free_task_struct()

During kernel initialization task structure count is zero
causing kernel stack memory to be freed

CS5204 Fall 2005 17 Oct. 26, 2005

Fault Injection Experiments

Fault Types
Bit flips
Low-level software faults
High-level software faults

Corruption Detection
Indirect Corruption
Direct Corruption
− Checksum
− memTest
− File copies

Source: The Rio File Cache: Surviving Operating System Crashes

CS5204 Fall 2005 18 Oct. 26, 2005

Performance Evaluation - thttpd

CS5204 Fall 2005 19 Oct. 26, 2005

Performance Evaluation

Cross Domain Calling
Cross domain calls accounted for less than 1% of total
execution time
Cross domain call stack never grew deeper than 64 entries

Memory Use
Sum of Active and Inactive memory in kernel was within 1%
for Mondrix and Linux

PLB Refill Traffic
Less than 4% execution time spent in PLB refilling

CS5204 Fall 2005 20 Oct. 26, 2005

Related Work

Nooks uses conventional hardware to isolate
modules in different addressing contexts.

Language-based protection
Use safe languages for OS implementation

Hardware-based protection
Use of NX bit

OS structure-based

CS5204 Fall 2005 21 Oct. 26, 2005

Conclusion

Provides Fine-grained memory protection

Backward compatibility for operating systems, ISAs
and programming models

Additional hardware not on processor’s critical path

Fits naturally with how modern software is designed
and written

CS5204 Fall 2005 22 Oct. 26, 2005

Questions/Comments?

CS5204 Fall 2005 23 Oct. 26, 2005

MMP Features (3)

Stack Permissions
Registers designate stack frames in the current domain as
readable or writable

Earlier frames are designated as read only

Stack write permissions table is used to decide whether a
given stack address is writable by the thread (This is also
cached in the PLB)

