
1

The Duality of Memory and
Communication in the
Implementation of a
Multiprocessor Operating System

Michael Young, Avadis Tevanian, Richard Rashid, David Golub,
Jeffrey Eppinger, Jonathan Chew, William Bolosky, David Black,

and Robert Baron

ACM Symposium on Operating System Principles, 1987

Presented By Rajesh Sudarsan
October 21, 2005

CS 5204 2

Agenda

Introduction
Key Ideas
Monolithic vs Microkernel
Primitive abstractions
Implementation Details
Issues with External Memory Management
Benefits of Duality
Conclusion

CS 5204 3

Introduction

Mach OS project started in 1985. Continued till
1994.
Successor to Accent OS developed at CMU
MACH NeXTSTEP OPENSTEP
Mac OS X
Mach OS kernel – mainly designed to support
multiprocessors.
Microkernel - a small, efficient kernel providing
basic services such as process control and
communication

CS 5204 4

Design goals

Object oriented interface with small number
of basic system objects
Support for distributed and multiprocessing
Portability to different multiprocessor and
uniprocessor architectures
Compatibility with BSD UNIX
Performance comparable to commercial
UNIX distributions

CS 5204 5

Key ideas

Communication and virtual memory can
play complementary roles in OS kernel

Increased flexibility in memory management
Support for multiprocessors
Improved performance
Easier task migration

Memory represented as abstract objects
called memory objects
Single level store implementation

CS 5204 6

Key ideas (contd.)

Virtual memory implementation using
memory objects
External memory management – Structure
for secondary storage management

2

CS 5204 7

Microkernel vs Monolithic

Monolithic kernel
Kernel interacts directly with the hardware
Kernel can be optimized for a particular
hardware architecture
Kernel is not very portable

Microkernel
Kernel is very small
Most OS services are not part of the kernel
and run at a layer above it
Very easily portable to other systems

CS 5204 8

Examples

Microkernel
Amoeba, Minix, Chorus, Mach, GNU
Hurd, NeXTSTEP, Mac OS X,
Windows NT

Monolithic kernel
Traditional UNIX kernels, such as
BSD, Linux, Solaris, Agnix

CS 5204 9

Architecture

User
application

Memory
module

Process
module

File
module

Microkernel

Hardware

User
mode

Kernel
mode

OS
interface

System
Call

No direct data exchange between modules

*source Distributed systems – Principles and Paradigms, Andrew Tannembaum, Maarten van Steen
CS 5204 10

Primitive abstractions in
Mach OS

Four basic abstractions from Accent
Task, Threads, Ports, Messages
Port set

Fifth abstraction introduced in Mach
Memory Objects

Tasks and Threads – Execution control
primitives
Ports and Messages - Interprocess
communication

CS 5204 11

Interprocess communication

Two components of Mach IPC – ports and
messages
Ports

Communication channel
Provides finite length queue
Protected bounded queue within the kernel

Messages
Fixed length header and variable size
collection of typed data objects

CS 5204 12

IPC (contd.)

One receiver, multiple sender
Tasks allocate ports to perform
communication
Task can deallocate rights to a port

destination port
reply port

size/operation
pure typed data

port rights
out-of-line-data

…
…

Message control

Port
Memory cache object

Format of Mach messages*

*source Operating System Concepts, Sixth Edition by Avi Silberschatz, Peter Baer, Galvin Greg Gagne

3

CS 5204 13

Memory Management

Virtual memory – level of abstraction
between process memory requests and
physical memory
Continuous address space
Demand Paging
Transparent relocation of running programs
in memory
Page and Page frame
VM -> RAM – page global directory, page
table, offset

CS 5204 14

Virtual Memory
Management in microkernel

Each task has its own virtual address space

Restriction – virtual address space must be
aligned with the system page boundaries

Supports read/write sharing of memory
among tasks of common ancestry through
inheritance

API provided for operation on VM

CS 5204 15

External Memory
Management (EMM)

External memory management interface
based on memory object
Memory object – abstract collection of data
bytes with operations defined on them
Memory object represented by a port
Secondary storage objects available using
message passing (data managers)
Mach kernel as cache manager for contents
of memory object

CS 5204 16

External Memory
Management (contd.)

Interface between kernel and data manager
consists of 3 parts:

Calls made by application program to cause
object to be mapped into its address space
Calls made by the kernel on the data
manager
Calls made by the data manager on the
Mach kernel to control use of its memory
object

CS 5204 17

Fault Handling

Pmap Module
Validate Hardware Map

Kernel Context

Check Validity
Check Protection
Page Lookup
Do Copy-on-write
Call pmap module
Resume thread

Kernel Context

Check Validity
Check Protection
Page Lookup
Do Copy-on-write
Call pmap module
Resume thread

Thread

Thread

Thread

…
Thread

Receive Request
Find Data
Send Reply (data)

Thread

Receive Request
Find Data
Send Reply (data)

External Pager TaskVictim Task

CS 5204 18

Minimal Filesystem

Char * file_data;
int i, file_size;
extern float rand();

…..

…..

…..

fs_write_file(“filename”, file_data,
file_size/2);

vm_deallocate(task_self(), file data,
file_size);

return_t fs_read_file(name, data, size)
{

//Allocate memory object (a port) and
accept request
port_allocate(t…);
port_enable(…);

…..

//perform file lookup. Find current file
size

…..
//Map the memory object into client
address space
vm_allocate_with_pager(…);

return (success);

}

fs_read_file(“filename”, &file_data,
file_size);

Call from the application

4

CS 5204 19

Minimal Filesystem (contd.)

void pager_data_request(
memory_object, pager_request, offset,
size, access)

{
//Allocate disk buffer
vm_allocate (…);

//Lookup memory object and read disk
data
disk_read(…);

//Return the data without any lock
pager_data_povided(…);

//Deallocate disk buffer
vm_deallocate(…);

}

void port_death (request_port)

{
//find associated memory object with the
port

lookup_by_request_port(…);

//Release resources
port_deallocate(…);

vm_deallocate(…);

}

File retrieval for the
application

Release filesystem
resources after
application deallocates its
resources

CS 5204 20

Consistent Network Shared
Memory (Initialization)

Shared
Memory
Server

Client A Client B

Mach Kernel
A

Mach Kernel
B

A Request X B Request X

vm
_a

llo
ca

te
_w

ith
_p

ag
er

pager_init(X
, re

quest_A,

name_A)

pager_init(X, request_B,

name_B)

vm
_allocate_w

ith_pagerC
lie

nt
 A

 re
su

m
ed

C
lient B resum

ed

CS 5204 21

Consistent Network Shared
Memory (Read)

Shared
Memory
Server

Client A Client B

Mach Kernel
A

Mach Kernel
B

C
lie

nt
 A

 fa
ul

ts

pager_data_request(X
,

request_
A, offse

t,

page_siz
e,VM_PROT_READ)

C
lient B faults

C
lie

nt
 A

 re
su

m
ed C

lient B resum
ed

pager_data_provid
ed(

request_
A, of

fse
t, p

age_siz
e,

VM_PROT_W
RITE)

pager_data_request(X,

request_B, offset,

page_size,VM_PROT_READ)

pager_data_provided(

request_B, offset, page_size,

VM_PROT_WRITE)

CS 5204 22

Consistent Network Shared
Memory (Write)

Shared
Memory
Server

Client A Client B

Mach Kernel
A

Mach Kernel
B

C
lie

nt
 A

 w
rit

e
fa

ul
ts

pager_data_unlock(
 X,

request_
A, o

ffse
t, p

age_si
ze,

VM_PROT_W
RITE)C

lie
nt

 A
 re

su
m

ed

pager_data_lock(
 re

quest_
A,

offse
t, p

age_siz
e,

VM_PROT_NONE)

pager_flush_request(request_

B, offset, page_size)

CS 5204 23

Implementation Details

Four basic data structures used to
implement EMM

Address Map -Two level map
• Top level – protection and inheritance information,

link to second level
• Second level – Map to memory object structures

Virtual Memory Object structures
Resident Memory Structures
Page replacement queues

CS 5204 24

External Memory
Management Issues

Types of Memory failure – Data manager
doesn’t return data
fails to free flushed data
floods the cache
changes its own data
backs up its own data

Handling Memory failure
Timeout, notification, wait, abort
Default pager
Reserved memory pool

5

CS 5204 25

Benefits of duality

Multiprocessor support for UMA, NUMA, and NORMA
architectures
The programmer has the option to choose between
shared memory and message-based communication

Emulation of operating system environment such as
UNIX achieved on Mach
Generic UNIX system calls can be implemented
outside Mach kernel

Other features supported are transaction and database
facilities, task migration, and AI knowledge bases

CS 5204 26

Conclusion

Significant contribution to the operating
system research
No experimental to support performance
claim
More information could be presented in the
implementation
Drawbacks

Frequent message passing may cause
degradation in performance
Continuous monitoring of external services

CS 5204 27

Current Trend

Pure microkernel architecture not
common
Most OS kernels are hybrid models of
monolithic and microkernel, e.g.,
Windows XP, Windows 2000

CS 5204 28

Questions?

