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Key Points

1. Data races are easy to cause and 
hard to debug.

2. Data races can be prevented by following a
locking discipline.

3. Lockset enforces a locking discipline.

4. Locking discipline violations are located by 
lockset refinement.
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Key Points Cont.

5. Lockset is (mostly) insensitive to the 
scheduler.

6. Lockset will detect races which do not 
manifest in a given execution.

7. Lockset is vulnerable to false alarms.
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Data Race Review

● At least one access is a write,
● Simultaneous access is not prevented.

● Example (variable X is global and shared)
Thread 1 Thread 2
   X = 2.7    X = 3.1
   Z = 2    T = X

Two threads access a shared variable

E
xecution
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Data Race Demonstration Cont.

t1 = new Thread() {
  public void run() {
    while(t1 != null) {
      ...
      shared[0] = shared[0] + 1;
      ...
      }
    ...

t2 = new Thread() {
  public void run() {
    while(t2 != null) {
      ...
      shared[0] = shared[0] + 1;
      ...
      }
    ...

int[] shared = new int[1];
Thread t1, t2;
public DataRace() {
  // Initialize and start threads (shown below)
}
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Data Race Demonstration

● Data races often lead to 
unexpected and even 
nondeterministic behavior

● The outcome may be 
dependent on specific 
execution order
(threads' interleaving)

● Click image to start
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file:///home/johnlinford/Documents/VTwork/Year1/Semester1/cs5204/Eraser/DataRaceApplet/bin/run.sh


Eraser
[Savage, Burrows, et al., 1997]

● On-the-fly tool.
● Lockset algorithm.
● Code annotations to flag

special cases.
● Can be extended to 

handle other locking 
mechanisms (IRQs).

● Used in industry.
● Slows applications by a

factor of 10 – 30.
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The Lockset Algorithm
(Simple Form)

Let locks_held(t) be the set of 
locks held by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each access to v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) := {}, then issue a warning

● Detects races not manifested in one execution.
● Generates false alarms.

Lockset
Refinement
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Lockset Refinement Example

Program locks_held C(v)

Warning!

int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{}

Slide 9 / 22



Simple Lockset is too Strict

● Variables initialized without locks held.

● Read-shared data read without locks held.

● Read-write locking mechanisms
(producer / consumer).

Lockset will produce false-positives for:
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Lockset State Diagram

Virgin

Exclusive

Shared

Shared-Modified

wr

rd, 
2nd thread wr

wr, 2nd thread

rd / wr, 
1st thread

rd

Warnings are issued only in the Shared-Modified state
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Lockset State Example

Program locks_held C(v) State(v)

int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{}

Virgin

Exclusive

Shared
Shared-Modified

T1

T2

T1
Race detected

correctly

Slide 12 / 22



The Lockset Algorithm
(Extended)

Let locks_held(t) be the set of locks 
held in any mode by thread t
Let write_locks_held(t) be the set of
locks held in write mode by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each read of v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) = {}, then issue a warning

On each write of v by thread t,
Set C(v) := C(v) ∩ write_locks_held(t)
If C(v) = {}, then issue a warning

Slide 13 / 22



Unhandled Cases in Eraser

● Memory reuse
● Unrecognized thread API
● Initialization in different thread
● Benign races

if(fptr == NULL) {
lock(fptr_mu);
if(fptr == NULL) {

fptr = open(filename);
}
unlock(fptr_mu);

}

Slide 14 / 22



Unhandled Cases in Eraser 
Cont.

● Race on   and     will be missed if     executes first

int[] shared = new int[1];
Thread t = new Thread() {
  public void run() {
    shared = shared + 1;
    ...
};
...
shared = 512;
t.start();
shared = shared + 256;
...

[Seragiotto, 2005]
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Unhandled Cases in Eraser 
Cont.

Program State(shared)

Data race is not detected!

int[] shared = new int[1];

shared = 512;

t.start();
shared = shared + 256;

Thread t = new Thread() {
  public void run() {
      shared = shared + 1;
    ...
};
...

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}
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Unhandled Cases in Eraser 
Cont.

Data race is detected!

Program State(shared)

int[] shared = new int[1];

shared = 512;

t.start();
Thread t = new Thread() {
  public void run() {
    shared = shared + 1;
    ...
};

shared = shared + 256;

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}
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Implementations: Eraser

● Maintains hash table of sets of locks.

● Represents each set of locks with an index.

● Every shared memory location has shadow 
memory containing lockset index and state.

● Shadow memory is located by adding offset 
to shared memory location address.
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Implementations: Eraser

v

Program 
Memory

Shadow 
Memory

&v +
Shadow
Offset

Lockset 
Index 
Table

mu1

mu2

Lock 
Vector

Shared memory location v 
is associated with locks 

mu1 and mu2

[Savage, Burrows, et al., 2005]
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Ladybug Demonstration

● Rewrite class file
– java -cp Ladybug.jar 
br.ime.usp.ladybug.LadybugClassRewriter 
DataRace.class

● Run modified class
– java -cp Ladybug.jar:. DataRace

● Races reported as exceptions
br.ime.usp.ladybug.RCException: [line 9] 
Race condition detected: t2 of DataRace (hash code = 1b67f74) with Thread-0
        at br.ime.usp.ladybug.StaticLadybug.warn(StaticLadybug.java:1014)
        at br.ime.usp.ladybug.eraser.EraserGC.writeField(EraserGC.java:47)
        ... 
        at DataRace.access$202(DataRace.java:9)
        at DataRace$1.run(DataRace.java:37)

● Can also use GUI
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Conclusion

1. Data races are easy to cause and 
hard to debug.

2. Data races can be prevented by following a
locking discipline.

3. Lockset enforces a locking discipline.
4. Locking discipline violations are located by 

lockset refinement.
5. Lockset is vulnerable to false alarms.
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