
Eraser
 A Dynamic Data-Race Detector

for Multi-Threaded Programs

John C. Linford

Detecting Data Races in
Multi-Threaded Programs

Slide 1 / 22

Key Points

1. Data races are easy to cause and
hard to debug.

2. Data races can be prevented by following a
locking discipline.

3. Lockset enforces a locking discipline.

4. Locking discipline violations are located by
lockset refinement.

Slide 2 / 22

Key Points Cont.

5. Lockset is (mostly) insensitive to the
scheduler.

6. Lockset will detect races which do not
manifest in a given execution.

7. Lockset is vulnerable to false alarms.

Slide 3 / 22

Data Race Review

● At least one access is a write,
● Simultaneous access is not prevented.

● Example (variable X is global and shared)
Thread 1 Thread 2
 X = 2.7 X = 3.1
 Z = 2 T = X

Two threads access a shared variable

E
xecution

Slide 4 / 22

Data Race Demonstration Cont.

t1 = new Thread() {
 public void run() {
 while(t1 != null) {
 ...
 shared[0] = shared[0] + 1;
 ...
 }
 ...

t2 = new Thread() {
 public void run() {
 while(t2 != null) {
 ...
 shared[0] = shared[0] + 1;
 ...
 }
 ...

int[] shared = new int[1];
Thread t1, t2;
public DataRace() {
 // Initialize and start threads (shown below)
}

Slide 5 / 22

Data Race Demonstration

● Data races often lead to
unexpected and even
nondeterministic behavior

● The outcome may be
dependent on specific
execution order
(threads' interleaving)

● Click image to start

Slide 6 / 22

file:///home/johnlinford/Documents/VTwork/Year1/Semester1/cs5204/Eraser/DataRaceApplet/bin/run.sh

Eraser
[Savage, Burrows, et al., 1997]

● On-the-fly tool.
● Lockset algorithm.
● Code annotations to flag

special cases.
● Can be extended to

handle other locking
mechanisms (IRQs).

● Used in industry.
● Slows applications by a

factor of 10 – 30.

Slide 7 / 22

The Lockset Algorithm
(Simple Form)

Let locks_held(t) be the set of
locks held by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each access to v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) := {}, then issue a warning

● Detects races not manifested in one execution.
● Generates false alarms.

Lockset
Refinement

Slide 8 / 22

Lockset Refinement Example

Program locks_held C(v)

Warning!

int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{}

Slide 9 / 22

Simple Lockset is too Strict

● Variables initialized without locks held.

● Read-shared data read without locks held.

● Read-write locking mechanisms
(producer / consumer).

Lockset will produce false-positives for:

Slide 10 / 22

Lockset State Diagram

Virgin

Exclusive

Shared

Shared-Modified

wr

rd,
2nd thread wr

wr, 2nd thread

rd / wr,
1st thread

rd

Warnings are issued only in the Shared-Modified state

Slide 11 / 22

Lockset State Example

Program locks_held C(v) State(v)

int v;
v := 1024;

lock(mu1);

v := v + 1;

unlock(mu1);

lock(mu2);

v := v + 1;

unlock(mu2);

{}

{mu1}

{}

{mu2}

{}

{mu1, mu2}

{mu1}

{}

Virgin

Exclusive

Shared
Shared-Modified

T1

T2

T1
Race detected

correctly

Slide 12 / 22

The Lockset Algorithm
(Extended)

Let locks_held(t) be the set of locks
held in any mode by thread t
Let write_locks_held(t) be the set of
locks held in write mode by thread t
For each shared memory location v,
initialize C(v) to the set of all locks
On each read of v by thread t,

Set C(v) := C(v) ∩ locks_held(t)
If C(v) = {}, then issue a warning

On each write of v by thread t,
Set C(v) := C(v) ∩ write_locks_held(t)
If C(v) = {}, then issue a warning

Slide 13 / 22

Unhandled Cases in Eraser

● Memory reuse
● Unrecognized thread API
● Initialization in different thread
● Benign races

if(fptr == NULL) {
lock(fptr_mu);
if(fptr == NULL) {

fptr = open(filename);
}
unlock(fptr_mu);

}

Slide 14 / 22

Unhandled Cases in Eraser
Cont.

● Race on and will be missed if executes first

int[] shared = new int[1];
Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};
...
shared = 512;
t.start();
shared = shared + 256;
...

[Seragiotto, 2005]
Slide 15 / 22

Unhandled Cases in Eraser
Cont.

Program State(shared)

Data race is not detected!

int[] shared = new int[1];

shared = 512;

t.start();
shared = shared + 256;

Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};
...

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}

Slide 16 / 22

Unhandled Cases in Eraser
Cont.

Data race is detected!

Program State(shared)

int[] shared = new int[1];

shared = 512;

t.start();
Thread t = new Thread() {
 public void run() {
 shared = shared + 1;
 ...
};

shared = shared + 256;

Virgin

Exclusive

Shared
Shared-Modified

locks_held C(v)

{} {mu1}

{}

Slide 17 / 22

Implementations: Eraser

● Maintains hash table of sets of locks.

● Represents each set of locks with an index.

● Every shared memory location has shadow
memory containing lockset index and state.

● Shadow memory is located by adding offset
to shared memory location address.

Slide 18 / 22

Implementations: Eraser

v

Program
Memory

Shadow
Memory

&v +
Shadow
Offset

Lockset
Index
Table

mu1

mu2

Lock
Vector

Shared memory location v
is associated with locks

mu1 and mu2

[Savage, Burrows, et al., 2005]
Slide 19 / 22

Ladybug Demonstration

● Rewrite class file
– java -cp Ladybug.jar
br.ime.usp.ladybug.LadybugClassRewriter
DataRace.class

● Run modified class
– java -cp Ladybug.jar:. DataRace

● Races reported as exceptions
br.ime.usp.ladybug.RCException: [line 9]
Race condition detected: t2 of DataRace (hash code = 1b67f74) with Thread-0
 at br.ime.usp.ladybug.StaticLadybug.warn(StaticLadybug.java:1014)
 at br.ime.usp.ladybug.eraser.EraserGC.writeField(EraserGC.java:47)
 ...
 at DataRace.access$202(DataRace.java:9)
 at DataRace$1.run(DataRace.java:37)

● Can also use GUI

Slide 20 / 22

Conclusion

1. Data races are easy to cause and
hard to debug.

2. Data races can be prevented by following a
locking discipline.

3. Lockset enforces a locking discipline.
4. Locking discipline violations are located by

lockset refinement.
5. Lockset is vulnerable to false alarms.

Slide 21 / 22

References

● S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.E.
Anderson. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. In ACM Transactions on Computer
Systems, 15(4): pp. 391-411, 1997.

● E. Pozniansky and A. Schuster. Dynamic Data-Race
Detection in Lock-Based Multi-Threaded Programs. In
Principles and Practice of Parallel Programming, pp. 170-
190, 2003.

● E. Pozniansky and A. Schuster. MultiRace: Efficient Data
Race Detection Tool for Multithreaded C++ Programs. 2005.
http://dsl.cs.technion.ac.il/projects/multirace/MultiRace.htm.

● C. Seragiotto. Ladybug: Race Condition Detection in Java.
2005. http://www.par.univie.ac.at/~clovis/ladybug/

Slide 22 / 22

http://dsl.cs.technion.ac.il/projects/multirace/MultiRace.htm
http://www.par.univie.ac.at/~clovis/ladybug/

