

Presented by - Kapil Ahuja

CS5204 Fall2005

Key Point

Basics

- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Basics (Terminology)

In Paper (1970's)
 Today (2000's)

Message Oriented	Event Based
Procedure Oriented	Thread Based

- Mapping not exact as events today use:
 - Cooperative multitasking (basically non-preemptive multitasking)
 - Shared memory

These not present in message oriented system of paper

CS5204 Fall2005

CS5204 Fall2005

Basics (Objectives)

- Eliminate uninformed controversy about which is "better" to build. In general:
 - Message oriented simpler concurrency model
 - Procedure oriented simpler & natural programming style
- Eliminate several degrees of freedom in the design process

- Basics
- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Message Oriented System

- Characterized by:
 - Small number of (relatively static) big processes
 - Explicit set of message channels
 - Limited amount of direct sharing of data in memory
- Examples:
 - Real-time systems
 - General OS: IBM's OS/360, GEC 4080

- Basics
- Message Oriented System

Procedure Oriented System

- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Procedure Oriented System

- Characterized by:
 - Large number of very small processes
 - Rapid creation and deletion of processes
 - Communication by means of direct sharing of data in memory
- Examples:
 - HYDRA
 - Plessey System 250

- Basics
- Message Oriented System
- Procedure Oriented System

Obv.1 & 2: Duality Mapping & Similar Programs

- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Obv. 1 & 2: Duality Mapping & Similar Programs

Message-oriented system Pro

Procedure-oriented

....Obv. 1 & 2 (Contd.) – Server's

Message-oriented

Procedure-oriented

resourceExhausted: BOOLEAN

proc 1: ENTRY PROCEDURE[...] =...

```
proc 2: ENTRY PROCEDURE[...] RETURNS[...] =
          IF resourceExhausted THEN
               WAIT C
          RETURN [results]
```

```
proc L: ENTRY PROCEDURE[...] =
          resourceExhausted = FALSE
          SIGNAL C
```

Obv. 1 & 2: Duality Mapping & Similar Programs

Message-oriented system
Procedure-oriented

- Basics
- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Obv3: Performance Preservation

- 3 components of the dynamic behavior:
 - 1. <u>Execution times of programs themselves</u>
 - 2. <u>Computational overhead of primitive system operations</u>
 - 3. Queuing and waiting times reflecting congestion and sharing of resources

CS5204 Fall2005

9/2/2005

Obv3: Performance Preservation

- 3 components of the dynamic behavior:
 - 1. <u>Execution times of programs themselves</u>
 - 2. <u>Computational overhead of primitive system operations</u>
 - 3. Queuing and waiting times reflecting congestion and sharing of resources

...Obv3 (Contd.) – Comput. Overhead

- This implies the background things can be made equally efficient.
- Example: Message oriented Send Message OR
 Procedure oriented Call a procedure

Obv3: Performance Preservation

- 3 components of the dynamic behavior:
 - 1. <u>Execution times of programs themselves</u>
 - 2. <u>Computational overhead of primitive system operations</u>
 - 3. Queuing and waiting times reflecting congestion and sharing of resources

- Basics
- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Finally: Which One to Use?

- Depends on the substrate upon which the system is built
- Basically the following criteria's:
 - Organization of real & virtual memory
 - Ease of scheduling and dispatching
 - Arrangement of peripheral devices & interrupts
 - Architecture of instruction set & programmable registers
- Thus advantages to have a system in which changing from one form to other is easy

- Basics
- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?
- Conclusion

CS5204 Fall2005

Should you Change?

- Not easy to change to reflect the suggested duality
- Why?
 - Underlying addressing structures etc. tightly bound to the design
 - Transformation to a dual version not justified by the second order gains
- Example where easy to change:
 - Cambridge CAP Computer

- Basics
- Message Oriented System
- Procedure Oriented System
- Obv.1 & 2: Duality Mapping & Similar Programs
- Observation3: Performance Preservation
- Finally: Which One to Use?
- Should you Change?

Conclusion: Still Controversial!

- It was a empirical study i.e. no rigorous proofs
- Thus, number of people still disagree to this duality

My Evaluation: Summary

"It's alright -- you're both doing ok, and you're not that different."

In modern times:

.....up to a constant factor of crashes.

CS5204 Fall2005

My Eval.: Intercomputer Comm.

- Message oriented system preferred
- Why?
 - Easier to implement
- How?
 - No troubles like the shared memory server as in procedure oriented

References

Papers:

- On the Duality of Operating System Structures Lauer, Needham
- Why Events Are A Bad Idea (for high-concurrency servers) Rob von Behren, Jeremy Condit and Eric Brewer
- SEDA: An Architecture for Well-Conditioned, Scalable Internet Services -Matt Welsh, David Culler, and Eric Brewer
- Books:
 - Operating System Concepts Silberschatz, Galvin, Gagne
 - Modern Operating Systems Tanenbaum
- Others:
 - Summary by Jonathan Ledlie at Harvard University
 - Presentation by David Allen at Portland State University
 - Presentation by Mehmet Belgin at Virginia Tech

Questions?

CS5204 Fall2005