
1

1

Application Performance and Flexibility on
Exokernel Systems

Kaashoek, Engler, Ganger, Briceno, Hunt, Mazieres, Pinckney,
Grimm, Jannotti, Mackenzie

CS5204 – Operating Systems

Christopher J. Goddard

11-02-2005 2

Introduction
■ Traditional Operating Systems

� Rely on kernel and privileged servers to manage
system resources

■ Unprivileged applications required to use
interfaces of privileged software

� Applications cannot do what they want
� May run slowly
� Or, cannot be implemented at all

3

Issues
■ An “interface for all”

� Must consider possible needs and all ways it could be
used

� Must consider trade-offs

■ Authors' Position
� This sort of anticipation is:

� Prone to mistakes
� Restrictive
� Infeasible

4

Proposed Solution
■ Separate protection from management

� Kernel protects resources
� Applications manage their own resources
� End-to-end argument

■ Example: Application manages its disk-block
cache and kernel allows cached pages to be
shared securely between applications

■ Result: Exokernel approach

5

Abstractions
■ Of course, not all applications need (or want) to

their own customized resource management
scheme

■ Need for traditional abstractions (shells, file
utilities, other UNIX abstractions)

■ Library operating systems (libOSes) provide these
abstractions

� In this way the application need not communicate with
exokernel directly

6

Exokernel + libOSes

Image from SOSP '95 Exokernel Talk (http://pdos.csail.mit.edu/~engler/exo-sosp-talk.ps)

2

7

Justification
■ Step by step integration of new OS features

■ New functionality can be distributed with
applications

■ Any skilled programmer can create a standalone
libOS without having to modify rest of system

■ There are many more application authors than
there are operating system developers (weak)

8

Exokernel
■ Goal of exokernel: to give applications more

control

■ Challenge:
� To provide extensibility to applications, allowing them

to exploit performance
� Also, to provide a base for a general purpose (well

rounded) system
� Ideal: Operating systems built on top of exokernel perform

just as well as, or better than, current operating systems

9

Exokernel Principles
■ Separate protection from management

� Exokernel is only allowed management necessary for
protection

■ Expose Allocation
� Applications allocate resources explicitly

■ Expose Names
� Use physical names whenever possible
� Capture useful information

10

Principles Continued
■ Expose Revocation

� Revocation policies exposed to applications
� Allowed to decide which resource instance to give up
� Each application has control over its physical

resources

■ Expose Information
� All system information is exposed to applications
� Examples:

� Application knows number of hardware network buffers
� Application knows which pages cache file blocks

11

Protected Abstractions
■ Kernel protection of high level abstractions

� Files = metadata, disk blocks, buffer cache pages
� Want access control on high level (permissions)
� But exokernels allow access to low level resources

■ Main challenge in designing exokernels
� Discover kernel interfaces that provide high level

access control
� Do not require a specific implementation
� Do not limit application control over low level resources

12

Protected Sharing
■ Advantages of library implementations:

� Can trust applications that are using them
� Need not protect against malicious use

■ Disadvantages:
� Cannot trust other libOSes that have access to a

particular resource
� Guarantees regarding invariants must take into

consideration other processes that have access to the
resource

� What level of trust should the libOS place on other
processes?

3

13

Three Levels of Trust
■ Mutual Trust

� Common case
� Example: UNIX programs run by the same user trust

each other
� Similarly, when two exokernel processes can write

each others' memory, libOSes can trust each other

■ Unidirectional Trust
� Two processes share resources – one trusts the other

but trust is not mutual
� Example: Network Servers – Privileged process

accepts connection, forks, performs as user 14

Trust Levels Continued
■ Mutual Distrust

� Two processes share high level abstractions but
distrust each other

� Example: Two unrelated processes communicate over
UNIX socket but neither has trust

� libOSes must reasonably and defensively interpret all
actions of the other process

� Example: Socket write larger than buffer interpreted as end
of file

� Mutual distrust is infrequent

15

Stable Storage
■ Exokernel must multiplex disks across multiple

library file systems (libFSes) which are contained
within each libOS

■ libFSes can define new file types with different
metadata characteristics

■ Exokernel must give libFSes control over
hardware while still protecting files from
unauthorized access

16

Stable Storage Continued
■ Exokernel has a difficult job

� Must multiplex disk but cannot rely on simple
techniques to do so

■ Exokernel must follow four requirements:
� New file formats should be simple/lightweight
� libFSes should be able to share files at raw disk block

and metadata level
� Storage must be efficient (close to raw hardware

performance)
� Cache sharing between libFSes

17

XN: A Stable Storage System
■ Stable storage is difficult to implement

� XN is the authors' fourth design

■ XN's main purpose: Efficiently determine access
rights of a principal to a disk block

� Prevent a user from claiming another user's disk
blocks as part of their own files

■ Conventional OS: Easy – knows metadata format

■ Exokernel: Hard – application defined metadata

18

Solution: UDFs
■ XN uses untrusted deterministic functions (UDFs)

� These are specific to each file type and translate
metadata

� Used to translate metadata into a simple form for the
kernel to use

� UDFs can be installed by a developer to define new
metadata formats

■ UDFs enable the kernel to handle metadata
formatting without actually having to understand
the format itself

4

19

C-FFS: A Library File System
■ The co-locating fast file system (C-FFS) is a UNIX-

like libFS

■ Access Control
� Provides UNIX style access control (uids, gids, etc.)

■ Well Formed Updates
� Supplies UNIX specific file semantics (legal filenames)

■ Atomicity
� Performs locking (ensures that data is recoverable)

■ Implicit Updates
� Certain state transitions imply actions (mod times)

20

ExOS: A Library Operating System
■ ExOS: A libOS that provides many 4.4BSD

abstractions
� Runs many unmodified UNIX applications

� Most shells, file utilities (grep, ls, etc.), and network programs
(telnetd, ftp, etc.)

� Missing functionality
� Full paging, process groups, windowing system
� Authors note that there is no reason why these cannot be

implemented; they just did not have time to implement or port
them

21

ExOS Goals
■ Goals

� Simplicity
� Flexibility

■ Entirely library based, so applications can override
any feature

■ Any functionality of ExOS can be replaced by
application-specific code

22

Performance Enhancements

■ Cheetah HTTP Server

■ Merged File Cache and Retransmission Pool
� Uses precomputed file checksums which are stored in

each file
� No in memory data touching by CPU
� Transmission/retransmission(s) directly from file cache

■ HTML-based File Grouping
� HTML document and associated files co-located on

disk

23

Cheetah Performance

Image from Application Performance and Flexibility on Exokernel Systems 24

Lessons
■ Libraries are simpler than kernels

� Over many iterations, “edit, compile, debug” much
faster than the “edit, compile, reboot, debug”
associated with traditional kernels

� Libraries easier to debug due to isolation from rest of
system

■ But... exokernel interface not easy to design
� Exokernel must export low level interfaces but also

offer protection
� Several iterations required to develop a substantial

interface

5

25

Conclusion

� Exokernel is a radical change in traditional kernel
design

� Using libraries to implement file systems and
operating systems gives applications more power

� Applications can take advantage of performance
� Good foundation for a multipurpose operating system

� Libraries themselves not always so easy to
implement

� “Large implementor base” is questionable

26

Discussion

� Questions or comments?

27 28

A Note on Virtual Machines

■ Virtual machine monitor
� Privileged
� Isolates less privileged applications in emulated copies

of hardware

■ However, emulation hides information

■ VMMs confine processes to virtual machines,
whereas exokernels give applications access to
libOSes without compromising a single view of the
machine

29

More on UDFs

■ Each UDF is stored (on disk) as a template which
corresponds to a metadata format

� Example: A UNIX file system would have templates for
data blocks, inodes, indirect blocks, etc.

� A template cannot be changed after it is specified

■ Each template contains at least one non-
deterministic function (owns-udf)

■ Functions are written in a pseudo-RISC assembly
language (checked by kernel for determinacy)

30

More on UDFs

■ So, interpreted UDFs allow libFSes to track
access rights

■ XN does not need to understand

■ XN just verifies that block ownership is tracked
correctly

6

31

C-FFS: A Library File System

■ The co-locating fast file system (C-FFS) is a UNIX-
like libFS

■ Since XN just provides basic file system integrity
guarantees, more specific invariants may be
needed

� Example: UNIX file systems guarantee uniqueness of
filenames within a directory

■ Provides four additions to XN's protection policies

32

Xok: An Exokernel

■ Exokernel: Xok

■ Multiplexes physical resources

■ Virtual memory abstractions at application level
� Exposes hardware capabilities
� Exposes kernel data structures
� Low level interface allows for paging at the application

level
� Paging can be done from disk or over the network
� Allows for page transformations – compression, digital

signatures and verification, or encryption

33

More on Xok

■ Issue: Process might want to sleep until a certain
condition is true

� Difficult with exokernels since applications handle most
of the OS functionality

■ Solution: Wakeup predicates
� Wakeup predicates are injected into kernel by

application
� Boolean expressions used by application to wake

when state of system changes

34

Wakeup Predicates

■ Simple, yet powerful
� Due to application control

■ Example:
� To wait for a disk block to finish being paged in, an

application can use a wakeup predicate to wait for the
block's state to change from “in transit” to “resident”

■ Example:
� Webserver

