Application Performance and Flexibility on
Exokernel Systems

Kaashoek, Engler, Ganger, Briceno, Hunt, Mazieres, Pinckney,
Grimm, Jannotti, Mackenzie

CS5204 - Operating Systems

Christopher J. Goddard

11-02-2005 a !

= An “interface for all”
Must consider possible needs and all ways it could be
used
Must consider trade-offs

= Authors' Position
This sort of anticipation is:
Prone to mistakes
Restrictive
Infeasible

A

= Of course, not all applications need (or want) to
their own customized resource management
scheme

= Need for traditional abstractions (shells, file
utilities, other UNIX abstractions)

= Library operating systems (libOSes) provide these

abstractions
In this way the application need not communicate with

exokernel directly
.

= Traditional Operating Systems
Rely on kernel and privileged servers to manage
system resources

= Unprivileged applications required to use
interfaces of privileged software
Applications cannot do what they want
May run slowly
Or, cannot be implemented at all

A

= Separate protection from management
Kernel protects resources
Applications manage their own resources
End-to-end argument

= Example: Application manages its disk-block
cache and kernel allows cached pages to be
shared securely between applications

= Result: Exokernel approach

A

Mosaic NG DOOM
| www | | IPERLM DOS/VM
TCPPOSIX PG Y

' -l I‘.xce[.;tmn

Exokernel .

Image from SOSP ‘95 Exokemel Talk (http://pdos.csail.mit edu/~englerfexo-sosp-talk.ps) A i

= Step by step integration of new OS features

= New functionality can be distributed with
applications

= Any skilled programmer can create a standalone
libOS without having to modify rest of system

= There are many more application authors than
there are operating system developers (weak)

A

= Separate protection from management
Exokernel is only allowed management necessary for
protection

= Expose Allocation
Applications allocate resources explicitly

= Expose Names
Use physical names whenever possible
Capture useful information

A

= Kernel protection of high level abstractions
Files = metadata, disk blocks, buffer cache pages
Want access control on high level (permissions)
But exokernels allow access to low level resources

= Main challenge in designing exokernels
Discover kernel interfaces that provide high level
access control
Do not require a specific implementation
Do not limit application control over low level resources

r

» Goal of exokernel: to give applications more
control

= Challenge:
To provide extensibility to applications, allowing them
to exploit performance
Also, to provide a base for a general purpose (well

rounded) system
Ideal: Operating systems built on top of exokernel perform
just as well as, or better than, current operating systems
A

» Expose Revocation
Revocation policies exposed to applications
Allowed to decide which resource instance to give up
Each application has control over its physical
resources

= Expose Information
All system information is exposed to applications
Examples:
Application knows number of hardware network buffers
Application knows which pages cache file blocks

A

» Advantages of library implementations:
Can trust applications that are using them
Need not protect against malicious use

= Disadvantages:
Cannot trust other libOSes that have access to a
particular resource
Guarantees regarding invariants must take into
consideration other processes that have access to the
resource
What level of trust should the libOS place on other
processes? e

= Mutual Trust
Common case
Example: UNIX programs run by the same user trust
each other
Similarly, when two exokernel processes can write
each others' memory, libOSes can trust each other

= Unidirectional Trust
Two processes share resources — one trusts the other
but trust is not mutual

Example: Network Servers — Privileged process
accepts connection, forks, performs as user 13!

» Exokernel must multiplex disks across multiple
library file systems (libFSes) which are contained
within each libOS

= libFSes can define new file types with different
metadata characteristics

= Exokernel must give libFSes control over
hardware while still protecting files from
unauthorized access

A

= Stable storage is difficult to implement
XN is the authors' fourth design

= XN's main purpose: Efficiently determine access
rights of a principal to a disk block
Prevent a user from claiming another user's disk
blocks as part of their own files

= Conventional OS: Easy — knows metadata format

= Exokernel: Hard — application defined metadata

A

= Mutual Distrust
Two processes share high level abstractions but
distrust each other
Example: Two unrelated processes communicate over
UNIX socket but neither has trust
libOSes must reasonably and defensively interpret all

actions of the other process
Example: Socket write larger than buffer interpreted as end
of file

Mutual distrust is infrequent

A

= Exokernel has a difficult job
Must multiplex disk but cannot rely on simple
techniques to do so

» Exokernel must follow four requirements:
New file formats should be simple/lightweight
libFSes should be able to share files at raw disk block
and metadata level
Storage must be efficient (close to raw hardware
performance)

Cache sharing between libFSes

A

= XN uses untrusted deterministic functions (UDFs)
These are specific to each file type and translate
metadata
Used to translate metadata into a simple form for the
kernel to use
UDFs can be installed by a developer to define new
metadata formats

= UDFs enable the kernel to handle metadata
formatting without actually having to understand

the format itself
‘13'

» The co-locating fast file system (C-FFS) is a UNIX-
like libFS

= Access Control
Provides UNIX style access control (uids, gids, etc.)
= Well Formed Updates
Supplies UNIX specific file semantics (legal filenames)
= Atomicity
Performs locking (ensures that data is recoverable)
= Implicit Updates
Certain state transitions imply actions (mod times)

A

= Goals
Simplicity
Flexibility

= Entirely library based, so applications can override
any feature

= Any functionality of ExOS can be replaced by
application-specific code

A

B0
—HCSABSD
] = Harvast/BSD
Beono == S5ocket/BSD
& = SocketfXok
2 = Cheetah
5
Feseo
3
2?”0«
E
ol

0B 100 Byte 1 KB; 10KE: 100 KEyta
o W HTTP pn;ln.skn vie

Image from Application Performance and Flexibility on Exokernel Systems 23!

= EXOS: A libOS that provides many 4.4BSD
abstractions

Runs many unmodified UNIX applications
Most shells, file utilities (grep, Is, etc.), and network programs
(telnetd, ftp, etc.)

Missing functionality
Full paging, process groups, windowing system
Authors note that there is no reason why these cannot be
implemented; they just did not have time to implement or port

them
‘20'

= Cheetah HTTP Server

= Merged File Cache and Retransmission Pool
Uses precomputed file checksums which are stored in
each file
No in memory data touching by CPU
Transmission/retransmission(s) directly from file cache

= HTML-based File Grouping
HTML document and associated files co-located on
disk

A

» Libraries are simpler than kernels
Over many iterations, “edit, compile, debug” much
faster than the “edit, compile, reboot, debug”
associated with traditional kernels
Libraries easier to debug due to isolation from rest of
system

= But... exokernel interface not easy to design
Exokernel must export low level interfaces but also
offer protection
Several iterations required to develop a substantial

interface 1
24

- Exokernel is a radical change in traditional kernel
design

1 Using libraries to implement file systems and
operating systems gives applications more power

Applications can take advantage of performance
Good foundation for a multipurpose operating system

Libraries themselves not always so easy to
implement
“Large implementor base” is questionable

A

A

= Each UDF is stored (on disk) as a template which
corresponds to a metadata format
Example: A UNIX file system would have templates for
data blocks, inodes, indirect blocks, etc.
A template cannot be changed after it is specified

= Each template contains at least one non-
deterministic function (owns-udf)

= Functions are written in a pseudo-RISC assembly
language (checked by kernel for determinacy)
.2'3'

Questions or comments?

A

= Virtual machine monitor
Privileged
Isolates less privileged applications in emulated copies
of hardware

» However, emulation hides information
= VMMs confine processes to virtual machines,

whereas exokernels give applications access to
libOSes without compromising a single view of the

machine
‘28'

= So, interpreted UDFs allow libFSes to track
access rights

= XN does not need to understand

= XN just verifies that block ownership is tracked
correctly

A

» The co-locating fast file system (C-FFS) is a UNIX-
like libFS

= Since XN just provides basic file system integrity
guarantees, more specific invariants may be
needed
Example: UNIX file systems guarantee uniqueness of
filenames within a directory

= Provides four additions to XN's protection policies

A

= Issue: Process might want to sleep until a certain
condition is true
Difficult with exokernels since applications handle most
of the OS functionality

= Solution: Wakeup predicates
Wakeup predicates are injected into kernel by
application
Boolean expressions used by application to wake
when state of system changes

A

= Exokernel: Xok
= Multiplexes physical resources

= Virtual memory abstractions at application level
Exposes hardware capabilities
Exposes kernel data structures
Low level interface allows for paging at the application

level
Paging can be done from disk or over the network
Allows for page transformations — compression, digital

signatures and verification, or encryption I
32

= Simple, yet powerful
Due to application control

= Example:
To wait for a disk block to finish being paged in, an
application can use a wakeup predicate to wait for the
block's state to change from “in transit” to “resident”

= Example:
Webserver

A

