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ABSTRACT

This paper presents the design and an evaluation of Mondrix,
version of the Linux kernel with Mondriaan Memory Proteatio
(MMP). MMP is a combination of hardware and software that pro
vides efficient fine-grained memory protection between iplelt
protection domains sharing a linear address space. Mondgs
MMP to enforce isolation between kernel modules which hdks
tect bugs, limits their damage, and improves kernel rolasstand
maintainability. During development, MMP exposed two l&rn
bugs in common, heavily-tested code, and during fault tigac
experiments, it prevented three of five file system corruystio

The Mondrix implementation demonstrates how MMP can bring
memory isolation to modules that already exist in a largénsok
application. It shows the benefit of isolation for robustasd er-
ror detection and prevention, while validating previowsrls that
the protection abstractions MMP offers are a good fit fongafe.
This paper describes the design of the memory supervisoketh
nel module which implements permissions policy.

We present an evaluation of Mondrix using full-system sinul
tion of large kernel-intensive workloads. Experimentswgéveral
benchmarks where MMP was used extensively indicate the addi
tional space taken by the MMP data structures reduce thelksern
free memory by less than 10%, and the kernel's runtime ise®a
less than 15% relative to an unmodified kernel.
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1. INTRODUCTION

Reliability and security are quickly becoming users’ bigigeon-
cerns due to the increasing reliance on computers in alsareso-
ciety. Operating systems written in unsafe languages éiesit,
but they crash too often and are susceptible to malicioaskdt
Crashes and security breaches incur large costs in lostigtivity
and increased system administration overhead. Many oé times
cidents could be reduced in severity or even avoided, if i faa
single software module was caught before it propagated ¢fraut
the system. Faults often lead to illegal memory accessesywid
writes can cause further modules to fail. Memory isolatiwhich
forbids one software module from reading or writing anotimed-
ule’s memory without permission, is therefore a crucial poment
of a robust system.

Mondriaan Memory Protection (MMP) [43] is a recently pro-
posed fine-grained memory protection scheme that provided-w
granularity memory isolation in hardware. Previous wonesti-
gated the use of MMP for user-level applications [43] andciexd
how an operating system might employ MMP [42]. In this paper,
we present the design and evaluation of Mondrix, a versiahef
Linux 2.4.19 kernel enhanced with MMP to provide memory iso-
lation between kernel modules. Mondrix runs on top of versio
of the SimICS [27] and Bochs [23] system simulators, whioh ar
modified to model MMP hardware. The main contributions of thi
paper are:

e The design and implementation of a fine-grained kernel
memory protection system. A small module containing in-
terfaces to MMP hardware and the permissions tables forms
the most privileged layer and lives underneath the resteof th
kernel. More complex permission abstractions and manage-
ment policies are layered in separate higher-level modules

e Implementation of a compartmentalized Linux kernel with
eleven isolated modules, including ad-hoc modules already
present in the Linux kernel such as unix domain sockets, a
network device driver split into two modules, and a disk de-
vice driver split into three modules.

e Several modifications to the original MMP hardware design
to improve cross-domain calls and stack permission han-
dling.

e An evaluation of the performance and space overheads of the
full Mondrix implementation for a range of kernel-intensiv
application workloads. The results show that Mondrix exe-
cutes less than 15% more cycles (instructions and memory
stalls) than an unmodified kernel, and its data structures re
duce the amount of kernel free memory by less than 10%.



e Results from fault-injection experiments showing how Mon-
drix can catch errors before they cause data corruptiore Fiv
fault-injection experiments caused file corruption in Linu
and Mondrix prevented file system corruption in three of
those five experiments.

One advantage of MMP hardware memory isolation is that it is
compatible with existing legacy code written in unsafe lzenges.
An alternative approach is to rewrite system code in a safe la
guage, such as Java or C#, that use a combination of a spit ty
system and garbage collection to avoid a large class of meater
cess errors encountered at run time. For example, Micréasof-
ing safe languages [11] in their next generation Windows$avip-
erating system. Safe languages can incur large perfornamere
heads and require unsafe extensions to interface to the leweds
of a machine (though such extensions can be used spariitigh).
performance implementations of safe languages requirieniapt
ing compilers and run-time systems, which increases theuatno
of code that must be trusted.

Although MMP requires a hardware change, it is backwards
compatible with existing instruction sets and compiledr wgmpli-
cations. The recent introduction of the NX bit [2] to the x86ta-
tecture by AMD and Intel indicates that manufacturers aléngi
to add compatible hardware features to improve softwarasteb
ness. We focus on the application of MMP to a conventionat-ope
ating system in this paper, but note that MMP is designed ¢e pr
vide protected sharing for many kinds of large extensibfersoe
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Figure 1: A visual depiction of multiple memory protection do-
mains within a single shared address space.

We review related work in Section 6 before concluding.

2. MMP FEATURES

The three main features of MMP are memory protection, pro-
tected cross-domain calling, and stack protection. Thddiee
briefly reviews the main MMP features, and describes how MMP
has been modified from the original design [43, 42] to support
Mondrix.

2.1 Memory protection
MMP adopts Lampson’s term [22protection domainto refer

systems, such as web browsers and web servers. Mondrix couldto a lightweight context that determines permissions faceking

be extended to exploit additional MMP features, for exantple
provide more efficient yet safe user-level interfaces tmé&kdata
structures.

Preventing illegal memory accesses is not sufficient toantae
system reliability and security. Other failure modes inguAPI
violations, excessive resource consumption, and synctaton
or locking errors. New static analysis [28, 13, 3] technijgan
help locate many of these other sources of software failsineedl

code. As shown in Figure 1, MMP overlays an address space with
multiple disjoint protection domains, each with a uniqueceer-
missions. Each column represents one protection domaiie wh
each row represents a range of memory addresses. In Mondrix,
the address space is the kernel virtual address space. iBhaoe
domain-specific portion of an address; a pointer refersecstme
kernel memory location from any domain. Every thread is asso
ciated with exactly one protection domain at any point ineis-

as some types of illegal memory access. But these analyses ca cution, and any number of threads may be in the same pratectio

sometimes find thousands of possible violations, overwingitine
ability of developers to fix them all. Also, most analyses ane
sound, so they do not find all errors. Although these teclesgue
useful, they are complementary to dynamic checking of mgmor
accesses.

Our fault injections experiments validate the usefulnésaam-
ory isolation in detecting failures and preventing faikifieom dam-
aging system state. Mondrix is able to eliminate file systemup-
tion in three of five cases, and it detects memory use vialatin
90% of executions that lead to kernel panics.

The paper takes a bottom-up approach in describing the Ndondr
design. We begin in Section 2 with a review of the primitives-p

domain at the same time. The color in each box representsthe p
missions that a protection domain has to access the regioe i

ory in the box. MMP allows any number of memory regions within
a domain, and each region can begin and end at any word-dligne
address.

The MMP implementation (Figure 2) stores compressed per-
missions information in permissions tables held in main oM
and caches the tables using an on-chip protection lookasiffier
(PLB) [21]. MMP hardware in the processor pipeline uses thB P
to check permissions on every load, store, and instruceéschf
and raises a protection exception if the executing threas dot
have permissions for an attempted access. Implementing-mem

vided by the MMP hardware. We present new schemes to provide ory permission checks has limited impact on a typical oubrofer

protected control transfer between domains and to managé& st
permissions, influenced by our experience in developing dvign
Section 3 presents for the first time the design and impleatient
of the memory supervisor, a software layer that sits belaker-
nel and which uses the raw MMP hardware to provide a number
of permissions abstractions for higher levels of softw&ection 4
describes the modifications made to Linux, including howkite
nel shares memory with protected modules for disk, netwgrki
and other services. We also describe policies for managiog p
tected memory regions and for handling interrupts safely.udéd
full-system simulation with a modified SimICS and Bochs xB6-s
ulator to evaluate the performance of Mondrix (Section )dér a
variety of kernel-intensive workloads, we observe less thd 0%
reduction in kernel free memory, and a slowdown of less tt&4.1

superscalar processor pipeline. The PLB is comparablezi si
and access latency to a conventional TLB, and the PLB hit rate
is high [43]. Because permission checks are separate fronessl
translation, data can be speculatively read and used beéoneis-
sions checks are completed. Permissions checks need ocbyie
pleted prior to final instruction commit. The permissionbléais

the only in-memory structure whose size is large and whase si
scales with application memory use.

MMP preserves the user/kernel mode distinction, wheredtern
mode enables access to privileged control registers anieged
instructions. The CPU encodes whether a domain is user er ker
nel mode using the high bit of the PD-ID control register (eoze
high bit implies a kernel domain). Protection domain O isdue
manage the permissions tables for other domains, and cassacc
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Figure 2: The major components of the Mondriaan mem-
ory protection system. On a memory reference, the processor
checks permissions for the effective address in the protdon
lookaside buffer (PLB). In parallel, accesses are range cl&ed
with the registers that delimit permissions for a region of he
stack: sb, fb, and sl . If permissions are not found in ei-
ther check then hardware or software looks up the effective
address in the memory-resident permissions table. The peris+
sions come from the stack protection table if the miss addres
is a stack address, otherwise they come from the protectiorat
ble. The reload mechanism caches the matching entry from the
permissions table in the PLB. The gate lookaside buffer (GLB
caches information for cross-domain call entry sites heldr the
switch & return gate table. The CDST register points to the
current top of the cross-domain call stack.

all of memory without the mediation of a permissions tablelyO
the bottom half of the memory supervisor (see Section 3jessn
PDO.

2.2 Cross-domain calling

Cross-domain calling in MMP provides a two-way guarantee;
first that a thread can only enter a callee’s domain at spdcifie
points éwitch gate and second that a thread returning from a
cross-domain call will return to the caller’'s domain onlytla in-
struction following the call to the corresponding switchegaThe
processor switches domains when a call instruction’s tdrge a
switch gate permission, or it executes a return instruatiamked
with a return gate permission. The programmer places swetés
on the first instruction of a routine (which is why they areleadl
switch gates, not call gates), so call sites do not have toldmsti
fied when exporting a function, and a single indirect calirungtion
can call both exported and non-exported routines. The progrer
places return gates on the return instruction of an expodetine.

Gates require more information than regular memory permis-
sions, and so are stored in a separate gate table and cadied wi
a separate gate lookaside buffer (GLB) (Figure 2). This ignan
provement over the previous MMP design that did not dediaate
table to gates. The number of gates, even for a large sysidaw i
(less than 1,000 in Mondrix), because modules tend to havey ma
more internal functions than exported entry points. The gaible
is stored in memory in an open hash table to allow rapid rettien
a GLB miss. Each entry has the format shown in Figure 3. Thie firs

] Address (32b) \
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Figure 3: The format of entries in the gate table. The gate take
encodes cross-domain call points, with switch gates encodj
the callee’s protection domain.

word contains the byte address of the gate instruction. €bersl
word of the entry specifies the gate type, and if it is a switateg
the destination protection domain.

MMP gates are simpler than those present in the x86, I1A-6§4 [10
or PA-RISC because they do not cause a stack switch. They are
similar in spirit, though simpler in implementation to caltd re-
turn capabilities (used in EROS [33]), and capabilitiesduge
Multics [31]. By enforcing call/return semantics on craiksmain
calls, MMP limits the possible implementations of exceptioech-
anisms [30]. Exception management techniques are beyand th
scope of this paper, but we note that call/return was sufficie
handle exception support for Mondrix.

The previous MMP design required hardware for the cross-
domain call stack. The Mondrix version of MMP uses protected
memory in the user area, that the hardware can write, buvardt
(outside of the memory supervisor) can only read. Mondrix RIM
retains theCDST register that points to the current top of the cross-
domain call stack. The Mondrix memory supervisor saves and r
stores this register on a context switch.

For each cross domain call, the processor pushes the return a
dress of the call instruction whose target is the switch ,gtiie
current protection domain 1D, and the current value offthereg-
ister (an addition from previous work whose function is expéd
in the next section). These values are popped and verified on a
cross-domain return. A domain can establish which domdladta
it by reading the cross-domain call stack, and it can trusttdue
because the cross-domain call stack is only writable bywvirarel

One issue in Mondrix is cross-domain calls that do not change
protection domain ID. The processor executes return gatése
callee’s domain, which causes problems if a domain callsa-fu
tion that it also exports. Consider, for examphaval | oc. The
core kernel exports this routine to modules, so it must ptace-
turn gate on its last instruction. If the kernel were to calNia
a regular function call, the instruction with the returnegatould
fault because a regular function call does not push the staded
for a cross-domain return onto the cross-domain call stébkre-
fore a domain must either mark the entry points to exported-fu
tions with a switch gate, or it must duplicate exported fiont.

We chose to mark exported functions with a switch gate, avoid
ing the task of classifying function calls into domain-siog and
non-domain-crossing. Unfortunately, this decision hasdbnse-
qguence of more than doubling the number of cross-domairs call
(Section 5.2.1).

Cross-domain calls require modifications to the procesaat-h
ware. Each instruction fetch checks the GLB for the presafice
a gate. Each instruction cache line has an additional bitatithg
if there are any gates associated with instructions on thet IIf
the bit is clear, then no further action needs to be taken ohB G
miss. If the bit is set and the GLB misses, the GLB must be efill
from the gate table. If the bit is set and there is a hit in theBGL
the cached gate is used. Instruction cache lines are Ipitisdught
in after a miss with the “gate present” hit set, but the bitléaced
down if a subsequent GLB miss and gate table walk determines
there are no gates on the line.



2.3 Stack permissions

Stack storage must be protected differently from other nrgmo
because stacks are associated with threads that can meveebet
protection domains. The Mondrix MMP stack permissions gtesi
fixes problems in the previous MMP designs [42], where déffer
threads resident in the same protection domain had accesgio
other’s stacks. This issue is addressed by adding morehpeaet
hardware.

Mondrix maintains two parallel forms of thread-local stqpek-
missions. Stack permission registers designate staclefamthe
current domain as readable and writable (between the frase b
register { b) and the stack limit registes| ), and earlier frames
(between the stack base registdér andf b) as read-only. Stacks
grow down, so the stack base register is at a higher addrasstta
stack limit register. A separate stack write permissiobtetallows
individual words of earlier stack frames (betwesln andf b) to
be thread-writable (see Figure 2). A stack location is \btéaf
it lies between the read-only and read-write register atae{ b
andsl ), or if its stack write permissions bit is set.

The stack registers and permission table support the conanon
ioms of stack use. The registers allow read-write accestatk s
frames for the thread’s execution in the current domain, read-
only access to previous frames. Stack accesses to the ciiame
and reads from previous frames are handled efficiently. Tdeks
permissions table supports existing calling conventioith wa-
rameters that point to writable stack-allocated data sires. The
stack write permissions table encodes whether a given atirless
is writable by the thread, using one bit per word, and the erist
of this table is cached in the PLB.

On a cross-domain call the hardware saves the current frasee b
on the cross-domain call stack, and the current stack pologe
comes the new frame base (unless the stack pointer poirgisieut
sb andsl in which case the processor faults). Cross-domain calls
move all stack frames that were allocated in the previousailom
into the read-only area betwesb andf b.

The memory supervisor only allows a thread to grant write per
missions on its current frame area, a thread may not gregif its
write permissions on a previous domain’s frames. The memory
pervisor flushes stack permissions information from the RItBn
a thread is descheduled, and also unloads and reloads d'shrea
stack permission register during context switches.

3. THE MEMORY SUPERVISOR

This section describes the features and implementatiomeof t
Mondrix memory supervisor, which was designed to easily sli
“under” an existing kernel to form the most privileged saiter
layer. The supervisor is split into two pieces, a top and &obot
The bottom layer (which is not checked by MMP hardware) has
the sole job of writing the permissions tables in memory. The
top layer does everything else, including presenting aviare-
independent memory protection interface to the rest of dra,
enforcing memory protection policies, tracking memoryrsig
and implementing group protection domains.

This section describes the top layer of the supervisor. The p
pose of Mondrix is to provide memory isolation, and the mgmor
supervisor enforces policies about memory sharing, suchdes
main can't give itself write permission on a piece of memdrstt
was exported to it read-only. If the top half of the supervide-
cides a permissions request is valid, it passes the requeket
bottom half which updates the protection tables.

This section defines several terms (including access anérewn
ship) for memory use, and then presents the intuitions lethia

supervisor’s policies for memory sharing, as well as a tEtaum-
mary of of the policy (Table 1).

3.1 Definitions for memory use

Access permissions

A domain’s permission, gate, and stack tables jointly dbsdits
access permissionse., the operations it can perform on memory
such as execute a return gate or write a location. We call memo
accessiblef there is some way for a domain to access it without
causing a fault, i.e., by reading, writing, or executingdemory is
sharedwhen it is accessible by more than one domain.

Memory ownership

Memory ownershipis a component of permissions policy that is
implemented entirely within the memory supervisor. Owhgrs
identifies the domain that has ultimate authority on perioiss
and use of a memory region. The address space is divided into
non-overlapping regions, where each region is owned bytkyxac
one protection domain. The supervisor itself owns all of mgm
initially. An owner can set arbitrary access permissionsn@mory
that it owns, and can grant arbitrary access permissiongpore
permissions on that memory to other domains. For example; ad
main that wants to generate code would give itself readewnér-
mission on the buffer, write the code, then change its pesions

to execute-read.

Memory ownership is much coarser grain than memory protec-
tion, and changes much less frequently. The supervisortaiaim
ownership information using a sorted list of memory regiang
their owners.

In Mondrix, the only way for a domain to cede ownership of
memory is to create a new domain using that memory. The super-
visor could provide a&hown call, which would allow a domain to
give ownership of a memory region to another domain, buttiis
not found necessary.

Export permissions

The memory supervisor also implemengxport permissions
which describe how a domain can grant permissions to another
domain. Ownership conveys unlimited export permissiong, b
non-owner domains can have restricted export permissiéis.
instance, an owner domain can give another domain (calhitadio

X) read-write access permissions on a buffer, but limit itead-

only export permissions. Domain X can read and write thedouff
but cannot grant read-write permissions on the buffer tard tho-
main Y.

The current Mondrix supervisor implements a limited form of
export permissions, based on ownership and access peynsssi
An owner can export permissions freely, while a non-owner ca
export only up to its access permissions level.

3.2 Permissions and memory allocation

The Mondrix design allows protection, entirely managed by
the supervisor, to be separated from dynamic memory aitotat
which is managed by the kernel. This allows the main kernel al
locators (the page and the slab [5] allocator) to remainidethe
supervisor, and lets the kernel retain custom memory atosa
i.e., allocators that manage their own free list such as thex.
inode or socket allocators.

The supervisor provides special API calfge¢ mal | oc and
per mf r ee) to support allocators that provide memory to other
domains. A domain (call it domain X) calls an allocator domai
(call it domain Z), and the allocator domain determines ttaet s



address and length of the memory that X will receive. Thecalior
domain then calls the memory supervisor to establish psianis
for X on the memory it has chosen. The supervisor determhrags t
the permissions are for X by reading the cross-domain cadkst

An allocator domain can own the memory it allocates, which is
the fast path used by the slab and page allocators, or it cam ha
export permissions, which is used by the custom allocatecalse
they do not own the memory they allocate; they get it from thb s
or page allocator.

The memory supervisor is also responsible for revoking perm
sions when required, e.g., when a memory region is freed enwh
a domain is deleted. The supervisor must revoke the pelontssi
because it can not trust other domains to do so correctly.

The supervisor keeps track of which domains have access per-
missions to memory. This has three significant advantagée T
first advantage is that the supervisor prevents domains lieak:
ing permissions by automatically deleting permissionsmwieces-
sary. The second advantage is that memory need not be tragked
kernel code after it is allocated. The owning domain simplgres
the memory, and frees it as usual. The owning domain does not
need to track the domains to which it exports permissiordijae
ing the changes in kernel code to use MMP. The final advantage
is that revoking permissions from only the domains that haise
significantly faster than checking all domains for acceghktsi.

3.3 Thread-local stack permissions

The memory supervisor is responsible for managing threealt
stack permissions. Threads can control permissions onfydimes
in their current domain; the supervisor rejects permissioange
requests for memory between the most recently saved frasee ba
and the stack base. If a thread grants write permission #maefrit
must revoke permissions on the frame before the frame ietorn
it will leak permissions (just as a domain which does not prp
revoke permissions on a buffer leaks permissions). On sudingd
events, the kernel calls the supervisor to save and relestthtbad-
local CPU registerssp, f b, sl , CDST, and the stack table base).

3.4 Creating and deleting domains

The supervisor manages the creation and deletion of protect
domains. A domain can create a new domairsbliydividing pass-
ing ownership of a region of its own memory to the new child do-
main. The supervisor tracks the parental relationshipsdst do-
mains using a tree, with the supervisor itself at the root.eWh
domain is deleted, ownership of its memory regions passés to
closest extant ancestor. The supervisor must also revakeige
sions on memory owned by the deleted domain from all domains.

3.5 Permissions policy

Table 1 summarizes the supervisor's APl and policies for-man
aging memory ownership and permissions. There are two talls
set permissions on memory regiongr ot sets permission for the
current domain whilerpr ot _export sets permission in another
domain. Thepd_subdi vi de call creates a new domain, while
pd_f r ee deletes a domain. Memory allocator domains call the su-
pervisorper mal | oc andper mf r ee routines to give the caller
of the allocator access permissions in the memory beingatial.

While there are many details in the table, the supervisacypol
follows a few general rules: a non-owner can not dictate germ
sions to an owner; a non-owner can not downgrade the peongssi
of another domain; a non-owner can not upgrade its own permis
sions.

Table 1 refers to an ordering on permissions values. Mondrix
uses a partial order. Read-write, execute-read, and gategsons

An owner can grant itself arbitrary permissions.
A non-owner can only downgrade its permissions.
An owner can override a domain’s permissions.

Comments

Itis an error for a non-owner to override an owner’s pernoissi
A non-owner can only export at its access level, and can qudyade anothe
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The supervisor revokes permissions on memory owned by éedettomain
from all other domains. The memory owned by the deleted domacomes

owned by its parent, which may or may not have been the caller.
When the allocator owns memory, it allocates it with readteypermissions.

A domain cannot allocate memory to the memory’s owner.
A non-owning domain allocates at the access permissionsit &iad cannot|

downgrade the permissions of another non-owning domain.

A domain can only subdivide with memory it owns and does natesh
A free revokes permission from all sharing domains.

A domain cannot subdivide with memory it does not own.

A non-owning domain cannot free memory.

C<D?D: ERROR

n
y/n
n

/I Access permissions granted tq
/I caller of memory allocator.

/I Access permissions revoked
/ from caller of memory allocato

pd_subdivide(ptr, len, E);
/I Create new domain.
pd.free(target);

/I Delete domain.
permalloc(ptr, len);
permfree(ptr, len);

none

none
X
G
X

n
n

Table 1: Memory supervisor policy for memory ownership and permissons. The Before column shows the state of the calling domaimd the target domain before the supervisor call, identified ly
the Call column. The After column shows the state after the dh A 'y’ (or ‘n’) in the own? column indicates the domain owns (or does not own) the memory being manipulated. An ‘X’ or 'Y’ in an
access column indicates an arbitrary memory access permiss, though an ‘X’ in the before and after columns indicates he value has not changed. Other uppercase letters indicatespecific (but
arbitrary) permissions value; “none” indicates no permisgons; “RW” indicates read-write permissions. Columns for domains not involved in a particular call are left empty. An ERROR outcome
anywhere in a row indicates the supervisor call returns an eror for that call. The operator ? :, borrowed from the C language, indicates conditional state.
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Figure 4. An example of a group protection domain. In this
case, protection domain 1 has read-write permissions on two
regions of memory. It grants read-only permissions on both
to group protection domain 1. Protection domain 3 joins the
group protection domain (indicted by the arrow labeled “mem-
ber”), gaining read-only permission to the two pieces of mem
ory from GPD 1 (indicated by the two arrows from GPD 1 to
PD 3).

all compare equal, so a non-owning domain can convert betwee
these permissions values. All of these values compareegréen
read-only, which in turn compares greater than no pernmissio

3.6 Group protection domains

A group protection domaits a collection of memory regions,
each with a specified permission. Group domains are usefehwh
multiple domains need access to the same set of memory segion
and where the memory segments in that set change over timag. Th
are not essential to Mondrix’s function, but they are a pdwéeool.

A regular protection domain can create a group protection do
main and then grant access permissions to the group forptaulti
memory segments. Another protection domain can fjbenthe
group domain to gain the permissions specified by the segnirent
the group. This process is shown in Figure 4, where PD 1 export
two memory regions read-only to a group protection domait th

is joined by PD 3. When a domain grants or revokes permissions

to a group, the memory supervisor adds or revokes permssion
the new memory for every domain in the group. All domains are
members of a special global group maintained by the supervis
that contains memory regions with global access permissibhe
supervisor can reduce the cost of updating group permisgign
sharing appropriately aligned pieces of the underlying-lidsed
permission table across domains.

One example use of group domains is for the kernel inode-struc
ture, which records metadata information for file systenects;.
Several modules (such as the EIDE disc driver and the iratpr
loader) need read access to inodes.
only group protection domain of inodes that a module canfoin

4. COMPARTMENTALIZING LINUX

The Mondrix prototype partitions the Linux kernel into proted
modules using MMP. This section first describes how Mondrix d
vides the Linux kernel code into protection domains, anah tthe-
scribes the code Mondrix adds to Linux to explicitly managam
ory access permissions, cross-domain calls, and intetrupt

4.1 Mondrix module structure

Module Description
. Code that writes the MMP permissiors
mem. supervisor (bot) tables
mem. supervisor (top) Code to manage device-independgnt
- Sup P MMP permission abstractions.

kernel Most of the Linux operating system.
This is an ad-hoc collection of the kef-

printk nel functions and data consisting of
printk and related functions (e.g|,
spri ntf, vsprintf).

ide-mod

ide-disk Collectively, the EIDE disk driver.

ide-probe-mod

unix Unix domain sockets (used by syslogd).

rtc The real time clock.

binfmt.misc l'r;sinlslr;t)erpreter loader (supporting

8390 The bottom and top halves of the net-
work driver, controlling an NE2000 nett

ne work interface card.

Table 2: Mondrix kernel modules. Each module is resident in
its own domain even when several modules share a description

The code in Mondrix is divided into the protection domains
shown in Table 2. The partition of code into domains is aaljtr
but Mondrix uses several guiding principles. It isolatesheker-
nel module in its own domain. If the kernel developers thifilao
collection of functions as a module, then that collectiom cantrol
its memory permissions in Mondrix. The disk and network devi
drivers are sub-divided into several modules and each reaaul
sides in its own domain.

Mondrix also collects certain functions into domains inertb
increase memory isolation within the kernel. Domain 0 halds
bottom half of the memory supervisor. Domain 1 holds the @ip h
of the memory supervisor. Most of the kernel is resident imdim
2, while domain 3 holds the collection of kernel functionattprint,
write and format strings (included the dreadsat i nt f function,
cause of many buffer overflows).

The division into protection domains forces all memory siwar
between modules to be explicit. The principle of least e
dictates that each kernel module has the minimum memory per-
missions necessary for correct operation, but this desirst e

The kernel creates -a readbalanced against performance and ease of programmingx&or e

ple, thepr i nt k domain was granted permission to read all kernel

get read permissions on these memory areas. The memory locastrings. Kernel strings are contiguous in memory and gngrreéad

tions that hold inodes change over time as inodes are adideatd
deleted, and the kernel keeps the group protection domaiodés
up to date by adding the new ones to the group, and deletirmdhe
ones from the group.

The memory supervisor regulates which protection domaans c
join a group. Group domains, like any access control meshani
with groups [32], must address difficult issues of how grougmm

bership is managed. The memory supervisor would enforce the

policy chosen by the system designer, but we defer to thatitee
for possible policies, and simply present the group mecmani

permission for each string would be tedious, error-prore: lass
efficient. Individual modules export read permissiorpta nt k
for individual strings or for their string section. All wetaccess to
stack variables (mostly fqur oc filesystem calls tepri nt f)is
provided and removed explicitly.

4.2 Loading modules into protection domains

Linux kernel modules are object files that a user loads into a
running kernel using thensnod program. Thé nsnod program
reads a module from disk, then links it against the curremtiying
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Figure 5: A before and after picture for domain creation with
module loading. For each domain, the thicker bar shows the
protection information, and the thinner side bar shows owne-
ship information.

kernel (based on symbol information it receives from a systall),
resolving any undefined symbols in the object module.

After checking the module, the kernel calls the memory super
visor to set correct memory permissions on the module. The su
pervisor needs the length of the program sections (already p
vided byi nsnod), and for every function its start address (also
already provided) and the address of the return instrugtiton-
drix's i nsnod provides this additional information). Program sec-
tion information is used to properly set the initial pernmiss for
the module, while function entry and exit information is dge
guarantee that switch and return gates are set only at trieasth
at the return instruction of a function respectively. Themmoey
supervisor places the obvious permissions on each sedign (
execute-read permission on the text section).

The supervisor needs the address of the return instruction f
public functions in the module that other domains call, sait set
a return gate on the function. Witicc versions 3.3.x, the return
instruction is placed arbitrarily in the function to allowttining of
uncommonly executed code, so Mondrix stores the returnuioist
tion addresses in the kernel modules.

Figure 5 shows how permissions and ownership information

change when a domain is created to hold a newly loaded module.

In the before state, the kernel (in PD 1) owns all of physicahrm
ory. In the after state, it has subdivided, and loaded a neoitiib
PD 2. Permissions for the module’s code and static data aes gi
by the shaded regions, and correspond to the object file ayfou
program sections. The kernel allows the module in PD 2 to own
its static code and data, but it retains ownership of theattte
address space.

Previous work [42] predicted that symbol information coind
plicitly define sharing relationships. Code and data carxperted
by name (using th&XPORT_SYMBOL directive in Linux). While
this is the currently encouraged method for exporting fiamst in
the Linux kernel, there is plenty of legacy code that exphirte-
tions anonymously by passing their address directly. Kesode
assigns the addresses of regular and static functionsuctustes
of function pointers that it passes to other domains. Theeasam
of the static functions are not visible to the other domalng,the
function pointers are! Unfortunately, import and exporfwoiction
name symbols is only an incomplete record of true inter-doma
calling behavior.

As bad as the situation is for code, it is worse for data. C’biam
guity between pointer and array, and the relative rarityrmgdarting
data by named symbol makes imports nearly useless as aatimdic

of true inter-domain data sharing. Most code useser n decla-
rations for data instead &XPORT_SYMBCL.

4.3 Disk driver

Many kernel drivers are split into two parts, a device-dejgen
bottom half and a device-independent top half, where ealfhsha
an independently loaded kernel module. The EIDE disk ditineex
one top half{ de- nod) and two bottom halves, one to gather disk
controller informationi(de- pr obe- nod), and one to gather disk
geometry informationi(de- di sk). Different halves of a driver
share data structures, and call each other frequently.

Adapting device drivers for Mondrix consists of placing ksip
calls to the memory supervisor that manage access permsssio
memory used by the driver and shared with other parts of the sy
tem. In order to increase memory isolation, Mondrix grards p
mission on page and buffer cache memory regions beforengalli
the disk driver to read or write the data, and revokes perariss
once the I/O is done. The EIDE disk model in Bochs does not sup-
port DMA, but the EIDE disk model in SimICS does, so Mondrix
controls the permissions for both DMA and programmed l/Gdat
transfer.

Another part of device safety is proper programming of devic
registers. In one file system corruption prevention expeniniSec-
tion 5.1.2), Mondrix was able to determine that the disk cater
was programmed with a bad address range because it readrirom a
illegal location. Mondrix could do more of this kind of chéug;
specifically it could check memory bounds for every 1/O resjue
(DMA or PIO) without changing the interface. A small I/O balsm
check domain is created, and only this domain gets writesacite
memory mapped I/O device control registers. The kernel iwedr
calls into the 1/0 domain to write to the DMA engine registéfae
bounds checker checks the values and performs the writeg- Wr
ing device control registers is already slow compared tonabr
memory references, so the additional latency of the crossaih
call and check should not have a significant impact on ovpeaH
formance. This approach would catch DMA programming efrors
but would not prevent a faulty device from writing out of iteop
grammed bounds.

4.4 Network driver

The NE2000 network driver has a chip-specific portiB840),
which coordinates the reception and transmission of paciet!
handles device interrupts and initialization, and a bcarekific
portion (e), which moves data onto and off of the network card.
Mondrix must give theB390 module read-write permissions on
certain fields in thesk_buf f , which is the kernel data structure
which manages packet data. It must give tteemodule read or
read-write permission (for transmission or reception)hlenpacket
data itself.

Mondrix allows thene module to retain read permission on
packet data while packets can be retransmitted. It allowsd-re
write access to th8390 module to 8 words (32 of 144 bytes)
in thesk_buf f structure, none of which are kernel data structure
pointers (though some of the fields point to packet data)s pbi-
icy limits the damage a malfunctioning driver can do to thenké
and increases the chances that a malfunctioning driverdvoel
detected by an illegal memory reference. Mondrix allowsnkér
programmers to balance memory isolation with performange.
more restrictive permissions policy would remove writeesscto
the8390 module forsk_buf f s that are on the free list.

It is unfortunate that the only Ethernet device model Boahs s
ports is the NE2000, since the NE2000 is not a sophisticateide
(it does not support DMA), but adding an additional Etheireet-



ware model to the Bochs machine simulator was beyond theescop
of this work.

4.5 Interrupts

Handling device interrupts is an important operating systesk,
and MMP allows them to proceed in a protected way. Interrdpts
not cause a protection domain switch, but jump to sharedruge
stubs that are marked executable in every domain using gl
group protection domain. The interrupt assembly stubs ahaeed
library, albeit a simple one that has no data.

The stubs must be verified by inspection, as they are now {abou
50 lines of assembly code), since they are trusted in evenado
The transfer from the interrupt stub to a C handler routine &a
switch gate, causing a domain crossing to the handler’'s doma
Distributing the assembly stubs to all protection domaioesdnot
create a new vulnerability since the correct functioninghef ma-
chine is dependent on the correct functioning of the infgras-
sembly stubs.

4.6 Inlining

In C, header files sometimes include inlined functions teé&t r
erence a module’s internal data. Any domain that calls tlieed
function needs permission to access the inlined data. Sue®t
the domain exporting the inlined function should exportnpisr
sions on its data, and sometimes an inlined function shaalthin-
lined to avoid giving other domains permission to read otenits
sensitive data. Mondrix uses both approaches, on a casesby ca
basis.

4.7 Slab allocator

The kernel slab allocator [5] is called frequently for snmaém-
ory objects, allocated out of cachdsnemcache_t). Mondrix
takes advantage of the fact that the domain that allocateslzec
is almost always the one that allocates memory from it. Misndr
manages the permissions for entire slabs (usually pageshai

to the caches. This does not compromise safety because the su

pervisor checks (with hardware providing integrity) if tballing
domain owns the cache, and if not, provides permissions fanly
the individual object requested. However with this pol&gomain
that owns a cache can write into memory that was not yet dalidca
and not cause a fault.

Like many decisions about how tightly to control memory per-
missions in Mondrix, optimizing the slab allocator tradpsexd and
isolation. Mondrix chooses speed in this case, but the fajdt-
tion results (Section 5.1.2) indicate a high degree of tgmtawvith
this policy.

5. EXPERIMENTAL EVALUATION

This section analyzes the performance of Mondrix executimg
the SimICS [27] and Bochs [23] machine simulator. We added
a functional model of the MMP hardware to each simulator, and
booted Mondrix on the modified simulator. The memory supervi
sor in Mondrix handles all permissions requests, and it®bohalf
writes the permissions tables, so all instruction and mgrtraffic
from that code is present. The model includes a cache siionjat
gathers workload statistics, and checks all accesses f@at@er-
missions.

5.1 Functional evaluation

Our hypothesis when building Mondrix was that the memory iso
lation it provides would allow the kernel to detect data stnve
corruption, limiting damage from bugs. Mondrix exposedtara

bug in Linux, and we injected faults into Mondrix to see hofeef
tive it would be at detecting and avoiding data structureugation.

5.1.1 Mondrix exposes a Linux error

Converting Linux to Mondrix exposed a case where, during ker
nel initialization, the kernel freed the stack memory on ahhit
was executing. The kernel continued to use the stack menfiry a
it freed it, even making calls into dynamically loaded maul

pr oc_pi d_l ookup is a function in the proc file system (a
pseudo-filesystem for processes control and informatfwat)looks
up a user area based on the process identifier. The function
calls free_task_struct on the task it looks up. The call
should not actually free the task structure because thetifumc
decrements a reference count that was incremented eanlier i
proc_pi d_l ookup. free_task_struct only frees the task
structure if the structure’s reference count is zero. Bet rf-
erence count is zero at one point during kernel initialaatiso
free_task_struct actually frees the task structure. Since the
task structure and the kernel stack are in the same allocatii,
the kernel stack is freed along with the task structure. i case,
the kernel frees the memory for the stack on which it is exagut
Since the Mondrix memory supervisor revokes all permissiom
memory that is freed, it reports many protection violatitmosn the
kernel reading and writing the stack memory it just freed.

Another call to freetaskstruct is made in
proc_pi d_del et e_i node, where it should be balanced
by a previous increment of the use count on the istsict
memory. But again this routine causes the kernel to freetdeks
memory on which it is executing. The code that manipulates th
reference counts for the task structure was changed duhiag t
development of version 2.5, and versions 2.6.x use the nsigrsy
We did not check if the new code manifests the same bug we found
in 2.4.19, because we have not ported our kernel change6.io 2.

5.1.2 Faultinjection experiments

In order to demonstrate Mondrix's effectiveness at coiiain
memory corruption in the presence of kernel bugs, we raniasser
of experiments injecting faults into Mondrix. We use the sdault
injection code used in the Rio file cache studies [8] and N§@&k
which changes instructions and data in the kernel binaryvimy
that models the effect of real software bugs. Once the kéoaek
all of its modules, the fault injection code injects faultsdathe
kernel tries to run a small workload consistingfafnd andwget
to simulate normal use of the disk and network.

Corrupting the file system is one of the worst possible outgom
from a kernel failure. After each fault injection experinh@re ran
the Unix file system consistency check prograsck. If f sck
deleted files or directories in its effort to reconstructfitesystem,
we classified that run as corrupting the file system. Deldiieg
and directories goes beyond the metadata fixups (e.g., ftkiag
free block count) that are common from a kernel crash or hang.

These experiments were run on Linug’st 2 filesystem. There
are journaling file systems (likext 3) that largely avoid the prob-
lem of corrupted file systems due to unexpected crashes pelker
behavior. The purpose of the experiment is to show that Mrndr
can catch the effect of kernel problems before they progagatl
spread to other parts of the kernel. A corrupt file system isaa r
sonably common and unpleasant example of kernel bugs'teffec
rippling out from their point of origin.

Five out of 200 fault injection experiments resulted in arapt
file system. In three of these cases, Mondrix detected a memor
permission violation, and in all three cases if Mondrix &dltvhen
the MMP protection system detected the violation, it woutd n



Symptom || #runs | MMP catch Benchmark Description
None 157 | 4 (02.5%) config-xemacs|| ./configure for xemacs 21.4.14
Hang 23| 9 (39.1%) A small http server (thttpd) serves 452 KB
Panic 20 | 18 (90.0%) thttpd of data from 28 requests, 13 of which re-
quire forking a cgi script which run severdl
Table 3: Fault injection experiments on Mondrix. Faults either programs.
resulted in a clean shutdown (this category includes casesere find /usr -print| xargs grep kangaroo;
the faulting process (and/or others) is terminated), a hangr a find Jusr is 255MB, 1,720 directories with
panic. The # runs column shows the number of instances for 16,343 files.
each symptom (200 runs total). The MMP catch column indi- A MySQL client test from the MySQL
cates the number of runs where Mondrix caught a memory per- distribution. The client connects to the
missions problem (which was not caught by the kernel's page MySQL database (on the same machine) and ex-
table). ecutes 150 test transactions covering the

range of database functionality.

have corrupted the file system. Table 4: The names and descriptions of the benchmarks run on

The three cases are interesting because they display ¢ngjtits Mondrix to evaluate MMP support in the Linux kernel.
of MMP, and the diversity of kernel failure symptoms. In orzse
(simulating a pointer dereference bug) MMP catches the EIBE
controller reading from dynamically allocated kernel meynd he
disk controller does not have access to that memory, but é wa
passed a bad pointer. In another case (in which a randonudnstr
tion was deletedspri nt f was passed a pointer to a device lock
instead of a character buffer, and it corrupted the lock aatiny
data structures. In the final case (simulating failure ttidtize a
variable), the console driver reads from an address thd tethe

day’s standards, but is a limitation of the simulation eoniment.
This model represents the performance of an aggressivegsoc
over the next few years.

SimICS EIDE disk model properly limits disk bandwidth and
provides a simple fixed latency for each disk operation. We us
a disk latency of 5.5ms, representing an aggressive 2 mséor t
rotational latency of a 15K RPM disk and an average seek time o

address of a kernel stack, but is not. . . .

’ . : . 3.3ms (the disk-active workloads make random requestsngaki

The proper strategy for dealing with faults in th.e. kernelejm . this number optimistic). The SimICS EIDE disk model inclade
on how the operator wants to balance availability with data i MA.

tegrity. Linux’s default behavior on a kernel memory faslta kill
the process context that caused the fault. This can be astiedfe
way of limiting the scope of the problem while keeping theteys
running. For instance, in one of our fault injection expents the
kernel killed rodpr obe after it finished loading a module. Be-
cause the user process had completed its work, killing théego
was a safe and effective course of action. Some faults are sgr
rious, resulting in hangs or kernel panics. Mondrix can ctetden
faults are corrupting data structures and stop them to fhmiscope
of the damage.

The data in Table 3 summarize our fault injection experiment
MMP detected more illegal memory sharing as the symptoms of a
fault rose in severity from minor symptoms (possibly kiia user
task) to system hangs and kernel panics. This data is siagest
that MMP is detecting important errors as illegal memoryrsttg
especially in conjunction with the data about file systermgation.
However, a lack of symptoms does not always imply correctape
tion, nor does a hang necessarily imply a major problem. hapb
data structures can be corrupted when the kernel sucdgsstiuts
down, and some hangs occur late in shutdown where they are be
nign. Subdividing the kernel into more domains might cataren
memory data structure corruption (and cost more perforejanc

Table 4 shows the system-intensive benchmarks we ran on Mon-
drix to measure the effect of isolating kernel modules inasete
protection domains. The benchmarks were chosen as common
tasks that stress the disk and network subsystems of Morithix
OS was booted fresh before each trial. All utilities werarfrthe
Debian Linux distribution as of January, 2005.

The configuration okemnacs is a long running test that stresses
the virtual memory system with process creations, delstion
scheduling and small file access. It runs for long enoughttieat
kernel memory allocators reclaim memory. Thiet t pd bench-
mark is a small web server that serves data and runs cgi script
The cgi scripts in turn run several native programs e.g.rita pn-
vironment variables. This benchmark uses the network heand
also creates many small processes. Thad benchmark is disk
and filesystem intensive, as is thizSQL database test.

The graphs in Figure 6 (best viewed in color) show the perfor-
mance of the benchmarks on Mondrxonf i g- xemacs, fi nd
and MySQL run on SimICS, whilet ht t pd runs on Bochs (be-
cause SimICS does not have an NE2000 network device model).
"SimICS’s EIDE disk model supports DMA, so the workloads run
on SimICS spend only a small amount of time servicing dis&rint
rupts. The NE2000 network device in Bochs does not use DMA, so
. the time to service network interrupts includes the timelfferpro-
5.2 Performance evaluation cessor to copy the packet data. Most of the keatéier category

We use a performance model to estimate the overhead of addingin thet ht t pd workload includes data copying from interrupt pro-
fine-grained memory protection support to the processor.a%e cessing. Bochs does not model the device latency of the nietwo
sume a processor that can complete one x86 instruction plr.cy  card.

We model a two level cache hierarchy, based on the Intel Benti The CPU overhead of adding MMP to Mondrix is less than
4, with 16 KB 4-way associative level-one instruction andada 15% for all benchmarks, and below 8% for the non-networking
caches, and an 8-way associative 2 MB level-two unified cache benchmarks. As explained in Section 4.4, Mondrix tightly-co
Level-one miss penalty is 16 cycles, and level-two miss fgna  trols the permissions on network packets. The numerous tmll
is 200 cycles (this memory access penalty is low, reprasgrati npr ot _export from the kernel’'s networking code shows up as
4 GHz processor able to access local DRAM in 50 ns). Cache line time spent writing permissions tables{p_bot in the graph). The
are 64 bytes. Main memory size is 256 MB, which is small by to- MMP overhead could be reduced further by using a pool of pre-
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Figure 6: Performance of benchmarks on Mondrix, including instructions, memory stalls, and disk device latency. Thet her
category for user programs is for any program whose individwal contribution to performance falls below a threshold. Theot her
category for the kernel includes system calls, kernel threds and interrupt processing that falls below a threshold. Ceegories like
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open,cl ose,read,orwite. Themrmp_bot category is the bottom of the Mondrix memory supervisor thatwrites the protection
tables, while mmp_t op is the top half of the memory supervisor. The workload’s kerrel/user execution time split appears at the

bottom of the legend.

allocated packet buffers.

Table 5 shows the performance overhead of Mondrix as com-

pared with an unmodified Linux. CPU and memory overhead is
less than 15%. All experiments described in this sectionthse
bitvector format [43] for the permissions tables.

Permissions tables are written in response to memory alloca

Benchmark Cyc(-10%) | Mbot | Mtop | Kern
config-xemacs|| 16.5 (4.4%)| 2.4% | 0.7% | 1.3%
thttpd 0.23 (14.8%)| 9.3% | 2.0% | 3.7%
find 143 (3.3%)| 1.3% | 1.2% | 0.8%
MySQL 0.21 (9.6%)| 4.0% | 3.3% | 2.3%

Table 5: Performance overheads for workloads on Mondrix, as
compared with Linux. The Cyc column shows the number of
cycles (in billions) for the workloads, and in parenthesisthe
slowdown of the workload compared with Linux. The Mbot
column shows the percentage of time spent in the bottom halffo
the memory supervisor, writing permissions tables, while Mop
shows the time spent in the top half of the memory supervisor.
The Kern column shows the overhead in the remaining kernel
code including code added to the kernel to manage memory
permissions and PLB refills.

tion, process creation, and direct calls to the memory stper
sor. The slab allocator optimizations (see Section 4.7)edre
fective at limiting table updates due to memory allocatidrhe
confi g-xemacs andthttpd benchmark create many pro-
cesses, and see increased table writing activity because Tfie
kernel could keep tables for a process’ program sectioridemets
while most of the process’ text pages are resident, redutiag
overhead of re-executing the same process. Direct catetmem-
ory supervisor are a matter of programmer policy. Mondriigit
control of permissions on network buffers is the main cdmiior to
the performance overhead in the bottom of the memory sugtvi
Much of the kernel overhead fdrht t pd arises from increased
memory traffic due to PLB refils, as explained in Section 5.2.3

To keep the overhead from the bottom of the memory supervisor
low, the table writing code is heavily optimized. The tablgting
code uses lookup tables to write permissions in 32-bit woadd
the code is optimized to quickly find the proper table giveatth
most allocations are for a page or less.

Thef i nd benchmark andy SQL make heavy use of the file
system, creating significant idle time. This idle time oapd much
of the Mondrix overhead caused by the additional checks én th
inode allocator, the generic block driver, and the slab ntgrat
locator. The code in these subsystems calls the memory\dsiper
and makes local decisions about granting memory access.



Benchmark XD Ca | Cy/Ca | Self/Other

config-xemacs|| 0.3% | 3.29 | 1,286| 70% 30%
thttpd 0.8% | 0.15 939 | 64% 36%
find 0.2% | 2.74 846 | 57% 43%
MySQL 0.7% | 0.12 664 | 50% 50%

Table 6: Cross-domain calling behavior for workloads running
on Mondrix. The XD column is the percentage of total execu-
tion time each workload spends doing cross-domain calls (in
cluding compute cycles and memory references). The Ca col-
umn is the number of cross-domain calls in millions. The Cy/@
column is the average number of non-idle kernel cycles (in-
struction and memory stall) between cross-domain calls. Té
Self/Other column indicates the percentage of cross-domai
calls that a domain makes to itself versus those that cause a
domain change.

There were several challenges running the network expatme

Benchmark Free Mem Used
config-xemacs| 10.2%
thttpd 1.1%
find 7.8%
MySQL 1.6%

Table 7: Reduction in free kernel memory after each workload
as reported by /proc/meminfo.

domain changes). The loads for the permission table baséep®i
are not included since these can be cached on chip. Durirgf all
these benchmarks, the cross-domain call stack never greggsed
than 64 entries, so this data structure does not occupyfisiymi
cache area.

5.2.2 Evaluation of memory use in Mondrix

Table 7 shows the memory overhead of Mondrix by comparing
the output of /proc/meminfo after each benchmark for Mondrid

on Bochs. There is a bug in the Bochs device model which causesan unmodified Linux. The memory overhead represents how much

occasional transmit errors at the device level. The ocoogef

less free memory the kernel has after running each benchipeark

these bugs can be seen as the idle time in the graph as the kerné:ause that is the most conservative metric. For all bendksrthe

resets the network card and retransmits the lost packetste@h
packet corruptions occurred in this run out of 498 packeigh(e
packet corruptions occurred in the corresponding test onoaiix

fied Linux).

In order to minimize the timeout bug and because the simulato
does more work (checking permissions) when running Mondrix
simulated time runs at different rates in the Linux and Mandr
benchmarks. Under unmodified Linux the system believes4at
seconds have elapsed, while under Mondrix the system ksliev

sum of theAct i ve andl nacti ve memory in the kernel was
within 1% for Mondrix and Linux. The memory supervisor’s dat
structures do not disturb the kernel’s active memory use.

5.2.3 PLB refill traffic

Table 8 shows how effective the on-chip protections cadhe (t
protection lookaside buffer (PLB)) is at caching permiasioOn a
PLB miss, the cost model for the refill is 1 cycle per load plng a
memory stall the load incurs. The PLB caches permissioresfdat

that only 2 seconds have elapsed. The amount of web server re-heap, text and stack memory (but it does not cache gate iaform

lated work is the same, but under Linux the benchmark doeg mor
user work kIl ogd runs under Linux and does not have time to

tion). All benchmarks spend less than 4% of their executiome t
refilling the PLB. The PLB refill cost is spread through exémut

run under Mondrix). To compensate we compare only webserver 0f all domains including the memory supervisor. The netingk

related time fott ht t pd. The overheads from the memory super-
visor are higher in Table 5 than in Figure 6 because the idte ti
was subtracted from the total runtime (normalizing to welrse
related work) to compute the figures in the table. Onht t pd
runs under Bochs, so it is the only benchmark with this proble

We investigated removing permissions frak_buf f s when
Mondrix places them on the free list and reinstating the jrm
sions when they are dequeued. That brings the total overheta
19.1% from the 14.8% in the table.

5.2.1 Evaluation of cross-domain calling in Mondrix

Table 6 summarizes cross-domain calls in Mondrix. Cross-
domain calls account for less than 1% of the total execuiine t
for all benchmarks. The protection domain granularity ecdd
in Mondrix is very fine-grained (justifying architecturalgport).
The table shows that cross-domain calls are frequent (sit teee
every thousand cycles of kernel activity), and cross-dancails
from a domain to itself are more frequent than calls to otter d
mains. A domain makes cross-domain calls to itself whenlis ca
a function that it also exports to another domain (like thenke
exportskmal | oc). As the kernel is split into more domains, more
calls will be cross-domain calls.

The cost model for a cross-domain call or return is a 5 cycle
penalty to flush the pipeline and perform memory accessesapiy
memory stall accrued by the memory accesses. Each croszitiom
call stores the protection domain, return address and iptbec-
tion domain changes, the contents of tHeregister. Each cross-
domain return loads these values (only loadimif the protection

benchmark writes the permissions table frequently, sceibdp the
most time refilling the PLB.

The memory supervisor keeps the PLB consistent with the per-
missions table by flushing the PLB when necessary. The PUuB-is i
plemented as a ternary CAM [43], so permissions can be flusined
power-of-two sized virtual address regions. The superflashes
the PLB for address ranges that could become stale whenté@swri
the protection tables, and it flushes the PLB of stack pefariss
on a process switch.

The PLB miss rate is a bit lower than typical second level each
miss rates. The PLB can effectively cache information fgiars
larger than a page, like the kernel text and data sections.

6. RELATED WORK

Nooks [37, 38] provides device driver safety using conerdl
hardware. Nooks uses conventional paging hardware totésola
modules by putting them in different addressing contextete-

Benchmark PLBtime | PLB mr

config-xemacs 0.8% 0.51%
thttpd 3.8% 0.87%
find 0.4% 0.07%
MySQL 1.7% 0.22%

Table 8: The PLB ti me column is the percentage execution
time of each benchmark that the hardware refills the PLB. The
PLB nr column is the miss rate of the PLB.



tion domains). These domains execute with full kernel [@ges,
but they differ in their view of memory permissions. Croggin
Nook boundaries is expensive because it requires changitugiv
address context and copying parameters. To minimize boynda
crossings, Nooks places multiple kernel modules in the ganme
tection domain. MMP can enforce the natural, fine-grainedut®
boundaries established by the Linux kernel developers. fiigie
qguency of cross-domain calls in the MMP system (Sectionl}.2.
is at least an order of magnitude greater than Nooks [37]owith
decrease in performance, indicating that MMP offers graated-
ularity and isolation.

Nooks is an elegant solution to the specific problem of briggi
safety to OS extensions for existing hardware, while MMPps&
posal for a general-purpose architectural mechanism fitepred
sharing, which we have applied to the problem of safe OS exten
sions in this paper. MMP can also be used to provide safe wser e
tensions, and a variety of other applications like data @amnts,
optimistic compiler optimizations, and efficient read lens for
garbage collection.

Mondrix contains modules that are not device drivers (lip-s
port for unix domain sockets) and whose memory access ahd cal
ing relationship to the rest of the kernel is not as well beldaas de-
vice drivers. It provides protection domains for these ad-mod-
ules just as it provides protection for device drivers. Noodlies
on the specific calling relationship drivers have with thenke¢and
could not isolate modules like the unix domain socket madtre
several fault injection experiments where Mondrix cauglshar-
ing violation in advance of a kernel panic, the unix domairs e
source of the violation.

Nooks includes a recovery system [38] that can safely reatar
failed device driver. It tracks kernel objects and triesgclaim re-
sources on a fault. Mondrix does not have a recovery meamanis
but recovery can be done at a coarser level of granularity i@
lation, so Mondrix could use many of Nook’s techniques wiiile
MMP hardware should increase the efficiency of the Nooksémpl
mentation.

Nooks consists of 22,266 non-comment lines of code, inaydi
924 lines of Linux kernel changes. The top of the Mondrix mem-
ory supervisor is 3,922 lines of non-comment code, the boit
1,730 and Mondrix requires 1,909 lines of kernel changesn-Mo
drix requires more kernel changes because memory perméssie
managed at a finer granularity, requiring more calls to thenorg
supervisor. The advantage to adding hardware is that tiséetiu
computing base can be kept small and understandable, aneeitl
by the size of the memory supervisor. The functional coniplet
the hardware design is quite low, as it has a well-defined\ieha
that only needs to consider a single dynamic instructiontiame.

6.1 Language-based protection

Microsoft plans to use safe languages (called “managed’rode
to implement new features in its next next generation opeyatys-
tem, called “Vista”[11]. One of the reasons for the switchrtan-
aged code is to provide safety for kernel extensions. \ddtaSted
computing base will be orders of magnitude larger than Miarsdr
At this point it is unclear if malicious attacks will be stagp by
safe languages, or if attacks will cause resource exhaustiber
than crashes. Itis also unclear if the performance coshéosafety
of such a system will be acceptable. The switch to a system con
sisting entirely of managed code (if it can be done) will takeny
years, during which the vulnerabilities in non-managedecwoill
persist. The operating system and its drivers are a larggraumo

to recode, but there is research on how to recode an OS foea saf

language [16, 19].

There have been several operating systems that use safe lan-
guages as their primary extensibility mechanism [20, 4lthw
SPIN [4] a large, recent example. SPIN demonstrates how an op
erating system written in a safe language (Modula-3) can &gem
efficient in terms of CPU and memory consumption. But device
drivers in SPIN are written in C, because rewriting existitiyer
code is too much work. Also, because of their low-level ratur
many device drivers require unsafe programming language fe
tures [4]. One advantage of MMP is that it efficiently support
legacy code, written in unsafe languages.

The SPIN project included a linker design [36] whose goads ar
similar to the gate design in Mondrix. In SPIN, a typesaferref
ence to a domain gives permission to call that domain’s fanst
Mondrix allows more fine-grained control. A module may exyor
different arbitrary subset of its functions to each othendm.

CCured [29, 9] is a language-based approach to adding mem-
ory safety to C. It is unclear whether it is more programméoref
to create Mondrix, or to port Linux to CCured. One issue with
CCured for operating systems is the requirement of wrapjoers
libraries not compiled with a CCured compiler. Since pretaiy
device drivers are often distributed in binary-only formatanu-
facturers would have to provide wrappers, or they could kerse
engineered. CCured performance is variable, with slowddnom
0-81%.

6.2 Hardware-based protection

Intel and AMD have announced support for the NX bit in the
page table[2], indicating their willingness to add hardever make
software more reliable. Any attempt to execute an instoadiiom
aregion with the NX bit set would cause a fault. Securitysmous
applications can set the NX bit on their stack, heap, and skta
tions, that would prevent some malicious attacks. Howevanym
attacks overwrite data in jump tables and function pointarsi
these attacks will not be prevented by the NX hit.

The operating system for the Cambridge CAP computer [40],
and Multics [31] were written to run on hardware that suppdrt
capabilities, which provided some of the isolation guazastof
MMP. However, the structure of these systems is differeminfa
modern OS due to hardware imposed restrictions. For instanc
Multics limits the number of subsystems in a process to 8 cahyl
allows a subsystem to call another with a higher identifier.

MMP has been compared to segments [24] and capabilities [43]
It has the flexibility of segments, but with the simplicitycaback-
wards compatibility of linear addressing. It provides soofh¢he
most attractive features of capabilities, like fine-grdipeotection
domains and flexible resource sharing, while maintainingekb
wards compatible programming model and providing simgbts
revocation. Hardware capabilities require a fundamentattom-
patible change in the processor instruction set, comglipatmis-
sion revocation [18, 6], and have trouble allowing domamséde
different permissions on a region of memory accessed viagesgh
capability. Many of these problems have been addressedémte
software-based capability systems [34, 35], but the inaibje
programming model problem remains a significant hurdle.

XOM [26, 25] is a hardware design and OS implementation of
an untrusted OS on trusted hardware. Its goals are différemt
Mondrix (Mondrix empowers the developer while XOM empow-
ers content providers), but the hardware/OS co-desigessare a
close match.

6.3 OS structure

Single-address space operating systems place all praciesae
single, large address space [7, 17, 14], and many use postect



domains to specify memory permissions for different threan-
texts [21]. The granularity of protection in these systesa page
to match the underlying paging hardware. MMP's finer grarityla
allows the protection techniques of single address spaes @%e
applied to legacy operating systems.

The modularity of Mondrix resembles that found in many mi-
crokernel designs [1, 15], but without the performance |eois
of protection domain switches being coupled with addresgesp
switches.

Lightweight virtual machines like Xen [12] and Denali [39]
can get some benefits of fault containment by replicatingreent
OS/application environments. But they do not address thecde
tion of faults within an OS or application, they just provide al-
ternative to a crash should such an error take place.

7. CONCLUSION

MMP provides a practical solution to the longstanding gdal o
fine-grained memory protection. MMP provides fine-graineat p
tection with backwards compatibility for operating systenSAs
and programming models, using only a small amount of additio
hardware that is not on the processor critical path. MMP ds/oi
additional confusing programmer-visible abstractiort,can sup-
port most of the best ideas previously proposed for segrdemte
capability systems.

Our experience in building Mondrix indicates that MMP’s pro
gramming model fits naturally with how modern software is de-
signed and written. MMP provides hardware enforcement st-ex
ing module boundaries, improving software maintainapaitd ro-
bustness. Mondrix’s use of hardware memory protectiorezses
Linux’s robustness from software errors.

Modularity is a proven technique for providing flexible artd-s
ble systems, but current hardware and operating systemidpro
only crude, and therefore neglected, support for modulfiwace
systems. We believe fine-grained memory protection of the ki
provided by MMP should be a standard component of future com-
puting platforms.
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