
1

CS 5204
Operating Systems

Lecture 9

Godmar Back

10/3/2005CS 5204 Fall 2005 2

Announcements

• Still working on project proposals
– Look for reply email from me with word

“approved” in it
• Out of town Oct 2-6, Oct 16-18:

– No class on Oct 3 & 5;
– Presentations move back; I’ve updated

reading list with new tentative dates
• Midterm: Oct 17

10/3/2005CS 5204 Fall 2005 3

Plan for Today

• Techniques for scalability
• Consistency models
• Openness & Flexibility
• Discussion on End-to-End argument

10/3/2005CS 5204 Fall 2005 4

Continuing on Scalability

• Recall: main problem that limited
scalability was centralization (in services,
in data, in centralized algorithms)

• Aside from using decentralized algorithms
(where possible), what else can be done
to increase scalability?

10/3/2005CS 5204 Fall 2005 5

Scaling Techniques

• Hide communication latencies
– Use asynchronous communication whenever

possible

REQUEST REPLY

Sender

Receiver

synchronous vs. asynchronous

10/3/2005CS 5204 Fall 2005 6

Deferred synchronous RPC

• Combines two asynchronous RPC.

REQUEST ACK

Client

Server

CALL, WAIT FOR ACCEPTANCE, CONTINUE

ACCEPT CALL LOCAL PROCEDURE

ACKRESULTS

2

10/3/2005CS 5204 Fall 2005 7

Scaling Techniques (cont’d)

• Minimize communication
– Through distribution
– Through piggybacking
– Through careful placement of computation
– Examples of these?

• Note shift in focus over time
– as bandwidth becomes cheaper stronger

focus on avoiding relative latency penalty

10/3/2005CS 5204 Fall 2005 8

Latency lags
Bandwidth
• Patterson [2004]
• Answers:

– Caching
– Replication
– Prediction

10/3/2005CS 5204 Fall 2005 9

Workload & Data Distribution

• DNS
Zones

com edu gov de

vtstanford utah

cs

fbox

engregistrar

wwwwww

banner

www

cs

flux gradlab

10/3/2005CS 5204 Fall 2005 10

Consistency Models

• Scalability goal when using caching/replication:
– minimize synchronization requirements
– use relaxed consistency models when possible

• Consistency Models
– Strict consistency
– Sequential consistency; linearizability
– Causal consistency
– FIFO consistency
– Weak consistency

• Refinements: Release consistency, Entry consistency

10/3/2005CS 5204 Fall 2005 11

Strict Consistency

• Any read on a data item x returns the
value most recently written to x.

• Ideal model for programmers
– Requires global clock (example: leases)

10/3/2005CS 5204 Fall 2005 12

Sequential Consistency
• The result of the execution is the same as if

reads and writes were executed in some
sequential order; reads and writes of each
process are executed in program order within
that sequence

3

10/3/2005CS 5204 Fall 2005 13

Sequential Consistency (cont’d)

• Note that sequential consistency requires
– Maintaining constraints by program order
– Data coherence within global sequence (“history”)

• Updates must be synchronous
– Write update vs. write invalidate

• Performance: it has been shown that r+w > t
where r: read time, w: write time, t: message
time
– Optimizing writes makes reads slower & vice versa

10/3/2005CS 5204 Fall 2005 14

Causal Consistency

• Not all processes need to see all writes in
the same order
– Causal consistency – only if writes are

causally related (as in happens before relship)

This sequence is causally consistent, but not sequentially or strictly consistent

10/3/2005CS 5204 Fall 2005 15

Causal Consistency (II)

• Example of a violation: W(x)a happens
before W(x)b, so P3 and P4 must see
results in same order

10/3/2005CS 5204 Fall 2005 16

Weaker Consistency Models

• Idea: don’t propagate all updates, only
propagate consistent state between
updates to distributed synchronization
variables

• Provide sequential consistency, but only
with respect to sync points

Sync Sync Sync Sync

10/3/2005CS 5204 Fall 2005 17

Release Consistency

• Propagate writes when releasing a
distributed synchronization variable

• Can be done eagerly or lazily
• Also possible: entry consistency

– Only update those that will be accessed after
entry

Acquire Release Acquire Release

10/3/2005CS 5204 Fall 2005 18

E2E (cont’d)

• Note that endpoint != application
– Endpoint can also be a layer
– How to identify the endpoints?

• Reasons for violating E2E:
– Performance
– Cost
– Software engineering/Code Reuse (?)

• E2E is only a guiding principle, a type of
“Occam’s Razor”

4

10/3/2005CS 5204 Fall 2005 19

Summary

• Transparency goal
• Techniques for scalability
• Consistency models
• Fault tolerance approaches & results

