
1

CS 5204
Operating Systems

Lecture 7

Godmar Back

9/25/2005CS 5204 Fall 2005 2

Announcements

• Project Proposals due next Monday 9/26
• Posted example survey paper

9/25/2005CS 5204 Fall 2005 3

Goals for Distributed Systems

• Transparency
• Consistency
• Robustness
• Scalability
• Openness
• Flexibility

9/25/2005CS 5204 Fall 2005 4

Types of Scalability

• Size
– Can add more users + resources

• Geography
– Users & resources are geographically far apart

• Administration
– System can span across multiple administrative 

domains

• Q.: What causes poor scalability?

9/25/2005CS 5204 Fall 2005 5

Centralization Pitfalls

• Centralized services
– Single point of failure

• Centralized data
– Bottlenecks → high latency

• Centralized algorithms
– Requiring global knowledge

9/25/2005CS 5204 Fall 2005 6

Decentralized Algorithms

• Incomplete information about global state
• Decide based on local state
• Tolerate failure of individual nodes
• No global, physical clock
• Decentralized algorithms are preferred in 

distributed systems, but some algorithms 
can benefit from synchronized clocks (e.g., 
leases)

» Brief review of clocks to follow



2

9/25/2005CS 5204 Fall 2005 7

Clocks in Distributed Systems

• Physical vs Logical Clocks
• Physical:

– All nodes agree on a clock and use that clock 
to decide on order of events

• Logical clocks:
– A distributed algorithm nodes can use to 

decide on the order of events

9/25/2005CS 5204 Fall 2005 8

Cristian’s Algorithm

Central server keeps time, clients ask for time
Attempts to compensate for latency – component of modern NTP
Protocol – accuracy 1-50ms

9/25/2005CS 5204 Fall 2005 9

Berkeley Algorithm

No time reference necessary

timed polls nodes reply with delta timed instructs nodes 
to adjust to 3:05

9/25/2005CS 5204 Fall 2005 10

Logical Clocks Recap
• Lamport clocks are consistent, but they do not 

capture causality:
– Consistent: a → b  ⇒ C(a) < C(b) 
– But not: C(a) < C(b) ⇒ a → b

• (i.e., they are not strongly consistent) 

• Two independent ways to extend them:
– By creating total order (but not strongly consistent!)

• (Ci, Pm) < (Ck, Pn) iff Ci < Ck || (Ci == Ck && m < n)
– By creating a strongly consistent clock (but not a total 

order!)
• Vector clocks

9/25/2005CS 5204 Fall 2005 11

Vector Clocks

• Vector timestamps:
– Each node keeps track of logical time of other 

nodes (as far as it’s seen messages from 
them) in Vi[i]

– Send vector timestamp vt along with each 
message

– Reconcile vectors timestamp with own vectors 
upon receipt using MAX(vt[k], Vi [k]) for all k

• Can implement “causal message delivery”
9/25/2005CS 5204 Fall 2005 12

Vector Clocks (1)

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

[1 0 0] [2 0 0] [3 0 0] [4 3 0] [5 5 3]

[0 1 0] [2 2 0] [2 3 0] [2 4 3] [2 5 3] [3 6 5]

[0 0 1] [0 1 2] [0 1 3] [3 1 4] [3 1 5] [3 1 6]

[0 1 0]

[2 0 0] [3 0 0] [2 3 0]

[0 1 3]
[3 1 5]

[2 5 3]

a → f b → s c → m
[1 0 0]  < [5 5 3] [2 0 0] < [3 1 6] [3 0 0] < [3 6 5]



3

9/25/2005CS 5204 Fall 2005 13

Vector Clocks (2)

P1

P2

P3

a b c d f

g i j k l m

n o p q r s

[1 0 0] [2 0 0] [3 0 0] [4 3 0] [5 5 3]

[0 1 0] [2 2 0] [2 3 0] [2 4 3] [2 5 3] [3 6 5]

[0 0 1] [0 1 2] [0 1 3] [3 1 4] [3 1 5] [3 1 6]

[0 1 0]

[2 0 0] [3 0 0] [2 3 0]

[0 1 3]
[3 1 5]

[2 5 3]

d || s q || i k || r
[4 3 0]  < [3 1 6] [3 1 4] < [2 2 0] [2 4 3] < [3 1 5]

9/25/2005CS 5204 Fall 2005 14

Vector Clocks: Strong Consistency

• Definition:
– V(a) < V(b): 

V(a) ≤ V(b) and there exists an i: Vi(a) < Vi(b)
– V(a) ≤ V(b): for all components i: Vi(a) ≤ Vi(b)

• Strongly consistent: 
a → b ⇔ V(a) < V(b)

• Also: 
a || b ⇔ V(a) || V(b) 

⇔ ¬ (V(a) < V(b) ∨ V(b) < V(a))

9/25/2005CS 5204 Fall 2005 15

Applications of Logical Clocks

• Distributed mutual exclusion
– Lamport’s algorithm

• Totally ordered multicast
– For updating replicas

• Causal message delivery
– E.g., deliver message before its reply
– message or application layer implementation

• Distributed Simulation


