
1

CS 5204
Operating Systems

Lecture 5

Godmar Back

9/6/2005CS 5204 Fall 2005 2

Announcements

• Project/survey paper handout on 
Wednesday

9/6/2005CS 5204 Fall 2005 3

Motivation

• Q: Is Lauer/Needham relevant to current 
systems?

• Which model should we pick for which 
application – both are available on current 
systems

• Must understand implementation trade-
offs on contemporary systems
– In addition to programming model trade-offs

9/6/2005CS 5204 Fall 2005 4

Implementing Threads

• Issues:
– Who maintains thread state/stack space?
– How are threads mapped onto CPUs?
– How is coordination/synchronization implemented?
– How do threads interact with I/O?
– How do threads interact with existing APIs such as 

signals?
– How do threads interact with language runtimes (e.g., 

GCs)?
– How do terminate threads safely?

9/6/2005CS 5204 Fall 2005 5

Managing Stack Space
• Stacks require continuous virtual 

address space
– virtual address space fragmentation 

(example 32-bit Linux)
• What size should stack have?

– How to detect stack overflow?
– Ignore vs. software vs. hardware

• Related: how to implement
– Get local thread id “pthread_self()”
– Thread-local Storage (TLS)

stack1

stack2

guard

guard

9/6/2005CS 5204 Fall 2005 6

Nonpreemptive Threads

• Aka Coroutines
– CPU switches at well-defined points (“yield”, or 

synchronization points: “lock”, “wait”)
– Low context-switch cost - similar to procedure call

• Advantages
– Can make integrating garbage collection easier
– Can allow for very fine-grained resource control 

(Capriccio)
– Can be implemented w/o kernel support



2

9/6/2005CS 5204 Fall 2005 7

Nonpreemptive Threads (cont’d)

• Disadvantages: 
– Can increase latency
– Hard to extend to multiprocessor machines
– Makes termination of uncooperative threads 

hard (why?)
• Note: using nonpreemptive threads does 

not negate need for locks – why?

9/6/2005CS 5204 Fall 2005 8

Preemptive Threads

• CPU can switch at any time
– Higher context switch cost: more state to save

• Advantages
– Allows for quasi-parallelism (latency benefits)

• Disadvantages
– Requires kernel support
– Can make scheduling & GC control harder

9/6/2005CS 5204 Fall 2005 9

Example: x86

• Nonpreemptive = C calling conventions:
– Caller-saved: eax, ecx, edx + floating point
– Callee-saved: ebx, esi, edi, esp

• ebp, eip for a jmpbuf size of 6*4 = 24 bytes

• Preemptive = save entire state
– All registers + 108 bytes for floating point context

• Note: context switch cost = save/restore state 
cost + scheduling overhead + lost locality cost

9/6/2005CS 5204 Fall 2005 10

On Termination

• If you terminate a thread, how will you 
clean up if you have to terminate it?

• Strategies:
– Avoid shared state 

where possible
– Disable termination
– Use cleanup handlers

try/finally, 
pthread_cleanup

Queue q1, q2; // shared
thread_body() {
while (true) {
Packet p = q1.dequeue();
q2.enqueue(p);

}
}

Queue q1, q2; // shared
thread_body() {
while (!done) {
Packet p = q1.dequeue();
q2.enqueue(p);

}
}

9/6/2005CS 5204 Fall 2005 11

User-level Threads (aka 1:N)
• Kernel sees one thread per process
• Scheduling + synchronization done in 

user-space
– Potentially fast context switches
– fast locks (if nonpreemptive!)

• Threads are lightweight

9/6/2005CS 5204 Fall 2005 12

User-level Threads (cont’d)
• Drawbacks:

– I/O blocks entire process
– Often nonpreemptive (although can be 

advantage)
– Both of these can be remedied with signals

• Virtual timers for preemption
• Asynchronous I/O signals 
• This is expensive and often fragile

– Not multiprocessor capable



3

9/6/2005CS 5204 Fall 2005 13

Kernel-level Threads (aka 1:1)

• Kernel manages threads
• I/O blocks only current thread
• Context switch requires kernel trap

– Synchronization may require kernel traps as 
well

• OS timer interrupts provides preemption, 
kernel scheduler schedules threads
– Allows for use of SMPs

9/6/2005CS 5204 Fall 2005 14

M:N Model

• Implemented in Solaris
– Implementation for Linux in NGTL

• Idea: 
– Create small number M of LWPs (“light-weight 

processes”) onto which (larger number) N of 
user-level threads are being scheduled

– Only create LWP if all LWPs are currently 
blocked; time out unused LWPs

9/6/2005CS 5204 Fall 2005 15

Lightweight Processes (M:N) 

Source: Multithreading in the Solaris Operating Environment, Sun 2002

9/6/2005CS 5204 Fall 2005 16

Drawbacks of M:N model

• Solaris discarded LWPs
– Linux never introduced them (NPTL won over NGTL)

• Why:
– Automatic concurrency control hard

• How many LWPs should be allocated?

– Experience showed limited gain from faster context 
switches in user mode

– _schedlock contention
– Signal implementation difficult

• Needed manager thread for asynchronous signals

9/6/2005CS 5204 Fall 2005 17

Linux NPTL

• Recent 1:1 model
• Enabled by kernel changes:

– Introduction of task groups in kernel (e.g. 
exit_group)

– scalable scheduling facilities O(1) scheduler
• Fast-path synchronization in user-mode

– Futex (Fast Userspace Mutex) – avoids need 
to enter kernel for common case

– FUTEX_WAIT/FUTEX_WAKE

9/6/2005CS 5204 Fall 2005 18

Outlook
• 1996 talk by John Ousterhout: “Why threads are 

a bad idea”
– Threads are hard to program (synchronization, 

deadlock)
– Threads break abstractions
– Threads are hard to make fast
– Threads aren’t well-supported

• Conclusion: use threads only when their power 
is needed, for true CPU concurrency – else use 
single-threaded event-based model

• SEDA & Capriccio (and others) followed



4

9/6/2005CS 5204 Fall 2005 19

Summary

• Implementation issues:
– Stack management
– Preemptive vs. nonpreemptive

• “cooperative multitasking”
– User-level vs Kernel-level models
– I/O management & signal implementation


