
1

CS 5204
Operating Systems

Lecture 10

Godmar Back

10/30/2005CS 5204 Fall 2005 2

Announcements

• This week: first milestone meeting
– Sign up now
– Reports due by 5pm today

• Midterm will be handed back next Monday 
(Oct 31)

• Might switch some presentations - will 
update reading list and send email to 
affected presenters
– Move up SFI (John) & Nooks (Hari)

10/30/2005CS 5204 Fall 2005 3

Plan for Today

• End-to-End argument
• Review memory management

10/30/2005CS 5204 Fall 2005 4

Layered Architectures

(horizontal component)
• Layer k may interact with peer layer k only via protocols
(vertical component)
• Layer k+1 interacts with layer k via interface

10/30/2005CS 5204 Fall 2005 5

Layering and the E2E Argument

• In any system 
using layering, 
designer has a 
choice of where 
to place 
functionality
– Unless design by 

committee

Physical

Datalink

Network

Transport

Session

Presentation

Application

Physical

Datalink

Network

Transport

Session

Presentation

Application

10/30/2005CS 5204 Fall 2005 6

End-to-end argument

• If correct & complete implementation 
requires help & knowledge only endpoints 
have, do not push the functionality down 
into lower layers

• Corollary:
– A layer should only implement functionality 

that is needed by all clients, and can be 
completely implemented within that layer.



2

10/30/2005CS 5204 Fall 2005 7

E2E Examples

• Careful file transfer
• Security & Encryption
• Error detection & correction
• Causal message delivery

10/30/2005CS 5204 Fall 2005 8

E2E (cont’d)

• Note that endpoint != application
– Endpoint can also be a layer
– How to identify the endpoints?

• Reasons for violating E2E:
– Performance
– Cost
– Software engineering/Code Reuse (?)

• E2E is only a guiding principle, a type of 
“Occam’s Razor”

10/30/2005CS 5204 Fall 2005 9

Review Memory Management

• Logical Organization
• Physical Organization
• Protection
• Paging

10/30/2005CS 5204 Fall 2005 10

Logical Organization

Code/Text
Data

Heap

Stack

0

MAX_USER

Dynamic

Local

Global/Static

10/30/2005CS 5204 Fall 2005 11

Compilation and Memory Layout

Code/Text

Data

Heap

Stack

Loader

hello.o
hello.decaf:
void main() {

Print(“Hello”);
}

hello.s:
tmp:

.asciz “Hello”;

text

data
hello\0

ELF
executable:

Decaf Compiler

Assembler

Linker

10/30/2005CS 5204 Fall 2005 12

• Quick Demo of /proc/*/maps



3

10/30/2005CS 5204 Fall 2005 13

Linux IA32 3+1 Model

0

MAX_USER
=3GB

Global/Static

Code/Text
Data

Heap

Stack

Dynamic

Local

4GB Kernel

10/30/2005CS 5204 Fall 2005 14

Linux IA32 3+1 Model (MT)

0

MAX_USER
=3GB

Global/Static

Code/Text
Data
Heap Dynamic

Local

4GB Kernel

Stack 1

Stack 2

10/30/2005CS 5204 Fall 2005 15

Virtual Address Space 
Management

• Key resource is virtual addresses
– Memory objects occupy continuous regions:

• Stacks of kernel threads
• Data segment
• Shared libraries:

– Data, bss, text
• Subtract space taken up by kernel if necessary

• 64bit architectures where sizeof (void*) == 
8 this is practically no longer an issue
– But tough on 32bit architectures

10/30/2005CS 5204 Fall 2005 16

Virtual to Physical Mapping

Virtual Memory 
Addresses

Physical Memory 
Addresses

MMU

V
irt

_m
ax

: 0
…

2^
si

ze
of

(v
oi

d*
)

P
hy

s_
m

ax
: 0

…
R

AM
si

ze

Page Table:
V → P

10/30/2005CS 5204 Fall 2005 17

OS Tasks for Virtual Memory Mgnt

• Predominant technology today: Paging
– Older technique: segmentation

• Must maintain & update permissions for each 
page (Protection)

• Must maintain & update Virt→Phys mappings
– and adjust on context switch

• Must manage physical frames
– Detect usage & store content of unused frames to 

secondary storage

10/30/2005CS 5204 Fall 2005 18

Protection
• Memory is associated with protection bits:

– R – Read
– W – Write
– X – Execute
– U – User – can it be accessed in user mode

• Oddball X86: pages only have “W” write bit + U bit. 
Recent addition “NX” bit – “don’t execute”

• Note: OS has full control over what a virtual address 
resolves to for a given process
– Trap is caused if it doesn’t resolve to anything at the moment
– Trap is caused if permissions don’t allow attempted action



4

10/30/2005CS 5204 Fall 2005 19

Maintaining V → P Mappings
• Note that V → P translation happens on every 

memory access
– Caching needed → cache is called TLB (“translation 

lookaside buffer”)
– What happens on a TLB miss?

• TLB misses can be handled in software or 
hardware:
– Software: special handler must look up mapping and 

restore it (MIPS, Alpha)
– Hardware: (x86) must follow data structure layout in 

memory so MMU can read information from there to 
refill TLB

10/30/2005CS 5204 Fall 2005 20

x86 Virtual Address Translation

• Pre-PAE x86 Microsoft Technet [URL]

10/30/2005CS 5204 Fall 2005 21

Linux Page Table Structure

• Linux’s internal structures mimic what MMU expects
– Ports to other architectures must emulate x86 page tables in 

Linux kernel

PAE x86 shown:
from two-level to three-level 
translation scheme 
(2+9+9+12 vs 10+10+12)

Source:
Mel Gorman: Understanding 
the Linux Virtual Memory 
Manager

10/30/2005CS 5204 Fall 2005 22

TLB & Context Switches

• Note that mappings are process-specific:
– Virtual address 10000 in process A maps to a 

different page then address 10000 in process 
B – every process gets it own address space

– Either tag TLB entries with process id (MIPS) 
or flush entire TLB on context switch (x86)

• The subsequent TLB misses are what makes a 
context switch expensive.

10/30/2005CS 5204 Fall 2005 23

Managing Physical Frames
• Now memory is viewed as a resource

– Must keep track of what’s free, what’s in use
• Buddy allocator

– Must keep track of what’s stored in pages that are in use
• Consumers are memory objects

– User process objects (stacks, data, text, …)
– In-kernel ones (file system buffer caches, packet buffers, etc.)

• Algorithms
– Idea: monitor how pages are accessed, write least used ones to 

disk
– LRU heuristics, page buffering

10/30/2005CS 5204 Fall 2005 24

Summary

• Memory Management involves
– Logical organization of address space
– Physical organization of memory
– Policies for protection (page-based, 

traditionally)
– Policies for paging


