
CS 5204 Fall 2005 Sample Midterm

1/4

CS 5204 Sample Midterm

This is an open-book, open-note, closed-internet, closed-cellphone and closed-
computer exam.
1. RPC.
An RPC architecture, such as OMG’s CORBA, performs a number of services or
tasks that allow a client A to invoke a procedure provided by a server object B. A
key goal is to provide transparency, i.e., that client A should be unaware of where
server object B is located.

a) Give two examples of tasks or services that an RPC system does not
have to perform if A and B happen to be located on the same machine,
but in different processes.

b) Give two examples of tasks or services that an RPC system does not
have to perform if A and B happen to be located within the same process.

2. Eraser.
Consider the following code fragment. Recall the naïve version of lockset
refinement (i.e., without considering read-sharing and read-write sharing
separately.) Consider the sets locks_held(t) for a thread t and the candidate
lockset C(x) for a shared variable x.

a) Complete the following table, adding entries whenever locks_held(t) or
C(x) changes. Write down the value of the respective set after the
execution of the corresponding statement in the left-most column.

 locks_held(t) candidate set C(x)
mutex mu1, mu2;
lock(mu2);
if (x == 0) {
 lock(mu1);
 unlock(mu2);
 if (x == 0) {
 x = 5;
 }
 unlock(mu1);
} else {
 unlock(mu2);
}

∅ {mu1, mu2}

b) Will Eraser flag a race condition? Say why or why not.

CS 5204 Fall 2005 Sample Midterm

2/4

3. Logical Clocks.
Consider a system of two processes that are exchanging messages. Ignore
internal events for the purposes of the problem: all events of interests are either
sending or receiving of messages.

a) Construct a scenario (timeline) in which for two events a and b the
following is true. (Show your work.)
• a < b according to the total order < provided by Lamport timestamps

with process-id tiebreaker.
• a and b are concurrent, that is, neither a → b nor b → a is true.

b) Now assume the processes used vector clocks instead. Give the vector
timestamps for a and b and explain how they show a || b.

4. Proportional Share Scheduling (VTRR).
Nieh’s paper defines the service time error of a client A during an interval),(21 tt

∑
−−=

i i

A
AA S

SttttWttE)(),(),(122121

Assume a system with only two clients, A and B, which are both runnable during

),(21 tt . Express B’s service time error),(21 ttEB as a function of),(21 ttEA
(Show your work.)

Solution
1. RPC.

c) Examples of tasks an RPC system typically does, but does not have to do
when both parties are on the same machine, include:

a. No conversion between different data representations (big-endian,

little-endian) has to be done.
b. No need to setup a transport layer connection between client and

server.
c. No need to retransmit requests to make sure server received the

request (depending on semantics of RPC.)

d) Examples of tasks or services that an RPC system does not have to
perform if A and B happen to be located within the same process.

• No need for a client-stub or server-stub.
• No need to create or dispatch a server thread.
• No need to marshal or unmarshal the arguments.

2. Eraser.
a)

 locks_held(t) candidate set C(x)

CS 5204 Fall 2005 Sample Midterm

3/4

1
2
3
4
5
6
7
8
9
10
11
12

mutex mu1, mu2;
lock(mu2);
if (x == 0) {
 lock(mu1);
 unlock(mu2);
 if (x == 0) {
 x = 5;
 }
 unlock(mu1);
} else {
 unlock(mu2);
}

∅
{mu2}

{mu1, mu2}

{mu1}

∅

∅

{mu1, mu2}

{mu2}

∅
∅

b) Eraser will flag a race condition because C(x) is empty in line 6 (and 7).

3. Logical Clocks.
a) Because Lamport+tiebreaker will always order events a and b, any

timeline that shows two concurrent events will work. In particular, picking
event a as the very first message sent from P0 to P1 and event b as the
very first message sent from P1 to P0 will result in two concurrent events.

Both a and b have Lamport timestamps 0 since they are the first event in
their process, so in Lamport+tiebreaker event a is expressed as tuple (0,
P0) whereas b is (0, P1). We have a < b since (0 == 0 && 0 < 1).
However, a and b are concurrent.

b) The vector timestamps of both a and b is [0 0] because they are the first
event in their process, and that process has not received any message
from the other process. The vector timestamps show that a and b are
concurrent because we have ¬([0 0]a < [0 0]b ∨ [0 0]b < [0 0]a), that is,
neither of them is in at least one component strictly larger, and in the other
components larger or equal than the other. (In fact, they’re equal in this
case.)

P0

P1

a

b

CS 5204 Fall 2005 Sample Midterm

4/4

4. Proportional Share Scheduling (VTRR).
Nieh’s paper defines the service time error of a client A during an interval),(21 tt

∑
−−=

i i

A
AA S

SttttWttE)(),(),(122121

Assume a system with only two clients, A and B, which are both runnable during

),(21 tt . Express B’s service time error),(21 ttEB as a function of),(21 ttEA

“Only two clients, both are runnable” means that),(),(212112 ttWttWtt BA +=−
Therefore,

),(

)(),(

)(),(

)1)((),(

)(),()(

)(),(),(

21

1221

1221

1221

122112

122121

ttE
S

SttttW

S
SS

ttttW

S
SttttW

S
SttttWtt

S
SttttWttE

A

i i

A
A

i i

Bi i
A

i i

B
A

i i

B
A

i i

B
BB

−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−=

−
−+−=

−−+−=

−−−−=

−−=

∑

∑
∑
∑

∑

∑

This derivation shows that this definition of service time error preserves the
intuitively desirable invariant that the service time error of B is the negative of the
service time error of A: whatever A gets too much or too little, B gets too little or
too much.

