
CS 5204 Fall 2005 Midterm 1 Solutions

1/4

CS 5204 Midterm 1 Solutions

23 students took the midterm. The table below shows who graded which
problem. Please contact the grader first with questions about your scores.

Problem 1 2 3 4 Total
Pts possible 10 16 12 12 50
Maximum 10 16 12 12 46
Minimum 2 9 0 0 19
Median 8 12 8 6 37
Average 7 12 8 7 34
Grader Godmar Wensi Wensi Godmar

The chart below shows a histogram of the score distribution.

CS5565 Fall 05 Midterm 1 Score Histogram n=23

0

1

2

3

4

5

6

7

8

<21 21-25 26-30 31-35 36-40 41-45 46-50

Ranges

N
um

be
r o

f S
tu

de
nt

s

CS 5204 Fall 2005 Midterm 1 Solutions

2/4

1. Threading vs Message Passing (10 pts)
Lauer and Needham make the following claim in their 1978 paper on the duality
of operating system structures: We assert without proof that the facilities of each
of our two canonical models can be made to execute as efficiently as the
corresponding facilities of the other model. Considering what you have learned
from the SEDA and Capriccio papers, give one example of where L & N were
correct, and one example where they were wrong.

a) (5 pts) Some examples of where it could be argued that Lauer & Needham
were correct
o L&N state that it is possible to make the “basic actions of the two

models behave identically with respect to the scheduling and
dispatching of client processes.” This is exactly the argument Capriccio
makes when pointing out that their blocking graph was directly inspired
by SEDA’s stages and explicit queues.

o L&N expect the same performance from each model: the fact that
Capriccio can roughly match the performance of SEDA appears to
support this.

b) (5 pts) Some examples of where it could be argued that Lauer & Needham

were wrong
o L&N say that “sending a message” has the same complexity as

“forking to an entry” procedure. While true in theory, no threading
system comes even close in thread creation times to low overhead in
passing a message, in particular in shared-address space server
systems such as the one considered in SEDA/Capriccio.

o L&N say that “virtual memory and paging and swapping can even be
used with equal effectiveness” in either model. Generally, threading
systems impose much larger pressure on the VM system that
message-based systems: even a system such as Capriccio, which
goes to great length to minimize the virtual address space overhead of
thread stacks, will suffer from larger virtual address space consumption
than a message-based system, all other things being equal.

2. Capriccio (16 pts)

a)
b)
c) (4 pts each) Draw the callgraph for this program, starting with function

main at the root. Label each function with the approximate size of its stack
frame, similar to Figure 5 in the paper. Suppose we set MaxPath = 4096
and MinChunk = 1024.

CS 5204 Fall 2005 Midterm 1 Solutions

3/4

main
S=8+ε

g
S=500+ε

s
S=8000+ε

r
S=ε

C0

C1
C2

Back edge – requires
checkpoint

Initial checkpoint (for
consistency with Figure 5,
not required for credit)

MaxPath=4096 requires
this checkpoint since path
main → g → s has length
8508+3ε > 4096

random
S=ε Not required for full credit

– could assume random()
is inlined

Note that MinChunk does not affect where to put in checkpoints. It only
affects how often those checkpoints will have to allocate and link new
stack chunks. (For instance, with MinChunk = 1k, about every (1,000/ε)th
call of checkpoint C1 would result in a new chunk being allocated.)

d) (4 pts) Futexes make only sense in a kernel-level implementation –
Capriccio is a user-level threading implementation, where threads cannot
be preempted outside of specific scheduling points. Implementing locks in
Capriccio does not require atomic instructions.

3. VTRR (12 pts)
Your friend has implemented VTRR in a simulator and asks you to help him test
it. His first test involves the following 4 tasks:
A, B, C, D with shares {SA = 10, SB = 5, SC = 2, SD = 1}.

a) (4 pts)
A B C C A B A B C A B A B A B A B B

Short answer: VTRR achieves perfect proportional fairness at the end of a
scheduling period, which is 18 time units (tu). This schedule clearly does
not, as can be seen easily.
After 18 time units (tu), A should have received 10 tu, B 5 tu, C 2 tu and D
1 tu. In the schedule shown, D didn’t get any, (and C got 3, A got 7, B got
8) which can’t be correct.

b) (4 pts)

A B C D A B A C B A B A A A B A A A

Although this schedule shows perfect proportional fairness, it is also not
correct under VTRR, because VTRR schedules in decreasing share order,
here: A B C D. It starts with A, and either goes down the list one by one or
starts over with A. It will never schedule C after A without having
scheduled B in between.

CS 5204 Fall 2005 Midterm 1 Solutions

4/4

c) (4 pts)

A B C D A B A B C A B A A A B A A A

The service error is defined as
∑

−−=
i i

A
AA S

SttttWttE)(),(),(122121

A has received 3 tu of work after 9 tu, versus the 5 it should have, so its
service

error is -2: 2
18
10)9(3)9,0(−=−=AE

4. Leases (12 pts)
a) (6 pts) The Leases paper assumes that write-through caches are being

used; they claim that extending the mechanism to support non-write-
through caches is straightforward. Explain what would need to be done in
order to use a write-back cache with leases and what additional
problem(s) this could cause!

(3 pts) To support write-back caches, modified data needs to be written
back when a write lease is invalidated or expires.
(3 pts) Applications will then have to recover from lost writes because
these writes may fail. The write must then be either retried or if that fails,
such failure must be communicated back to the client that issued the write,
which however may have continued operating assuming that the data has
been written. See page 203, left column, paragraph 2.

b) (6 pts) When discussing options for Lease Management, the paper states

that multiple files per lease can also result in a form of false sharing.
Explain what is meant by that!

If multiple files share a lease, then an update to any single one of them will
require invalidating the lease for all of them. If host A updates file F in the
set, and host B updates a different file G in the set of files covered by a
shared lease, it will falsely appear as though A and B are sharing files,
which in truth they do not.
This can either lead to increased lease invalidation traffic, and it could
delay writes if say client A decides to not give up its lease before it
expires.

