CS 5984 Algorithms in Bioinformatics

An Introduction

Strings, Trees, and Sequences

Lenwood S. Heath
Computer Science
Virginia Tech
heath@cs.vt.edu

August 27, 2001

Overview

- Disclaimers and Observations
- Molecular Biology
- Evolution and Genetics
- Algorithms
- Applications
- Biology and Computer Science

Disclaimers and Observations

- I am not a biologist or chemist!
- To every general rule in biology there are exceptions.
- Biology is much broader than what computer scientists need to know to do good bioinformatics.
- Biologists speak a different language than computer scientists.
- Bioinformatics is about bringing biological and computational scientists together to accomplish some goal in a life science.

Molecular Biology

- Cell function
- Nucleic acids, DNA, RNA, chromosomes, genes
- Amino acids, proteins

The Cell's Fetch-Execute Cycle

- **Stored Program:** DNA, chromosomes, genes
- Fetch/Decode: RNA, ribosomes
- **Execute Functions:** Proteins oxygen transport, cell structures, enzymes
- **Inputs:** Nutrients, environmental signals, external proteins
- Outputs: Waste, response proteins, enzymes

Nucleic acids

A = adenine complements T = thymine.

C = cytosine complements G = guanine.

U = uracil replaces T = thymine.

DNA

DNA Strand and Its Complement

Double-Stranded DNA

Transcription

DNA strand and its complement are unzipped

RNA is transcribed from the DNA template or noncoding strand

Chromosomes

- Long molecules of DNA 10⁴ to 10⁸ base pairs
- In higher organisms, come in matched pairs — humans have 26 pairs.
- A gene is a subsequence of chromosome that encodes a protein.
- Remainder (up to 90%) of chromosome is intergenic DNA.
- While only a fraction of the genes are expressed in a cell at any time, all genes are present in every cell.

Amino Acids

- Protein is a large molecule that is a chain of amino acids (100 to 5000).
- There are 20 common amino acids (Alanine, Cysteine, ..., Tyrosine)
- Three bases called a codon suffice to encode an amino acid. There are also START and STOP codons.
- The encoding of amino acids via 3-base codons is the genetic code.

Proteins

Unlike DNA, proteins have three dimensional structure.

- Controlled by genetic sequence, physics, chemistry.
- Protein folds in three dimensions and assumes a configuration (shape) that allows it to perform its function.

Evolution and Genetics

- Genetics of a species: the complement of genes shared by all members of a species
- **Genotype:** genetic information in an individual organism
- Phenotype: observable characteristics of an organism determined by its genotype and environment
- Mutation: change in the genotype of an organism that can be inherited by its organism
- Evolution: the accumulation of mutations over generations; new species can result

Mutations

- Insertion, deletion, change in bases
- Genes can change relative positions on chromosome by DNA recombination
- Phylogeny: Evolutionary tree of species derived from observations of mutations

Algorithms and Problems

A **problem** is a relationship between inputs — **instances** — and outputs — **solutions**.

EXAMPLES.

- Sorting
- Searching
- Convex hull of a set of points
- Shortest paths in graphs
- Minimum spanning tree (MST)
- Traveling salesman problem

Algorithms Solve Problems

An **algorithm** is a step-by-step procedure for **solving** a problem.

Instance
$$\longrightarrow$$
 Algorithm \longrightarrow Solution

EXAMPLES.

- Bubble sort; heap sort; quick sort
- Sequential search; binary search
- Graham's algorithm (for convex hull)
- Dijkstra's algorithm (for shortest path)
- Kruskal's algorithm (for MST)

Pseudocode

```
Kruskal-W(G, w)
\triangleright Find a MST for G = (V, E) with edge weights w,

ightharpoonup where w: E \rightarrow \{1, 2, \dots, W\}.
for i \leftarrow 1 to W \triangleright Initialize bucket array.
     do bucket[i] \leftarrow nil \triangleright Empty linked list
> Put edges in buckets by weight.
for (u,v) \in E
     do bucket[w(u, v)] \leftarrow bucket[w(u, v)], (u, v)
E' \leftarrow \emptyset
> Process edges by increasing weight.
for i \leftarrow 1 to W
     do E' \leftarrow E' \cup \mathsf{bucket}[i]
         Do a modified DFS on G' = (V, E'),
             resulting in the spanning forest (V, E'_i)
         E' \leftarrow E'_i
return T = (V, E') \triangleright T is an MST.
```

Kruskal's algorithm for bounded-weight graphs

Resource Consumption

Algorithms consume resources. What resources?

- **Time** Why is it taking so long?
- Memory RAM or disk utilization
- Communications in a distributed system
- **Processors** in a parallel computer

For hard problems, TIME usually dominates.

Computational Complexity

Instances come in all sizes. Let N be the size of a typical instance.

Computational complexity describes how execution time scales with N.

EXAMPLES.

- $O(\log N)$ binary search
- \bullet O(N) sequential search
- $O(N \log N)$ heap sort
- $O(N^2)$ bubble sort
- $O(2^N)$ examine all substrings of a string of length N
- \bullet O(N!) traveling salesman problem

Applications

A Sample of Computational Applications in Biology

- Sequence Comparison
- Fragment Assembly
- Database Searching
- Phylogenies
- Genome Rearrangement John Paul Vergara
- Protein Folding

Sequence Comparison

Compare two DNA sequences and give a measure of similarity.

Example: ACATCGGAATAG CACGGAATACGG

A good alignment:

- Matches: +5 points
- Insertions/deletions: -3 points
- Substitutions: ?
- Similarity score: 38

Algorithms for Comparison

Dynamic Programming — Optimal

- Develop a table of optimal scores for longer and longer substrings
- Optimal solution pops out "at the end of the table"
- Generally polynomial time but **not linear** O(N) time

Heuristics — Suboptimal — e.g., BLAST

Fragment Assembly

Aim: Sequence a DNA strand of thousands of bp's.

- Replicate a single DNA strand of thousands of bp's millions of times.
- Chop up into random fragments (substrands).
- Sequence each fragment.
- Compute how to best piece these fragments together to find original sequence.

Example

Use binary strings:

1 1 0 1 1 1 0 0

Random fragments:

1 1 0 1 0 1 1 1 0 0

Possible fragment assemblies:

1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 others?

What if data contains errors?

Database Searching

Aim: Find a plausible function for a protein whose gene has been sequenced.

- Sequence a DNA strand and locate a gene within it.
- Use a web based search tool accessing a database of genes and their functions to find gene matches that are close enough. E.g., BLAST and PSI-BLAST.
- Use matches to guess or confirm gene function.
- Annotate and add your new gene to database.

Phylogenies

Aim: Use genetic information about a group of species to determine phylogenetic tree.

- Generally have to postulate missing ancestors at internal nodes of tree.
- Can use some specific traits from different species; or can estimate a genetic distance between species.
- Problem is generally NP-complete.

Genome Rearrangement

Given two gene sequences, how many mutations (movements) might have lead from one to the other?

If mutations are only movements of blocks of genes, then here is a plausible sequence of three mutations:

Reversals

Assume that each mutation is a reversal of a gene sequence

Previous example:

Here is a sequence of four reversals:

Sorting by Reversals

Really a restricted sorting problem

Recent dissertation:

"Sorting by Bounded Permutations,"
John Paul C. Vergara, Department of
Computer Science, Virginia Tech
1997.

John Paul modeled the problem using

- Permutations, and
- Graphs

and developed polynomial-time algorithms for special cases.

Protein Folding

Aim: Find the shape and function of a protein.

- Protein shape is complex and three-dimensional; it partially determines protein function.
- How does shape arise from the genetic sequence and the environment?
- Rich continuous/discrete problem.

What Computer Science Offers Biology

- Expertise in modeling problems with sequences, graphs, etc.
- Expertise in solving problems algorithmically
- Analysis of problems
 - Tractable or intractable
 - Efficiency
 - Randomness
 - Approximation
- Direction in implementation

Biology and Computer Science

- Discrete models for DNA, RNA, proteins, and phylogeny
- Efficient algorithms for tractable problems
- Approximation algorithms for intractable problems
- The challenge of large search problems