Syllabus: CS 5114 Theory of Algorithms Spring, 2017

1 General Course Information

CRN	12634
MEETING TIME	3:30 PM–4:45 PM; Tuesdays and Thursdays
CLASSROOM	McBryde 307
FINAL EXAM	Saturday, May 6, 7:45AM–9:45AM

Instructor: Lenwood S. Heath

- Office: 2160J Torgersen Hall
- Office Hours: 9:00–11:00 Tuesdays and Thursdays
- Email: heath@vt.edu

Teaching Assistant: Jacob S. Porter

- Office Hours Held in: 108/110 McBryde Hall
- Office Hours: 1:30–3:30 Wednesdays and Fridays
- Email: jsporter@vt.edu

Web Site: http://courses.cs.vt.edu/cs5114/spring2017/index.php

Canvas (Grades Only): https://canvas.vt.edu/

Piazza: http://piazza.com/vt/spring2017/cs5114

Required Textbook: Introduction to Algorithms (Third Edition). Cormen, Leiserson, Rivest, and Stein. MIT Press, 2009. ISBN: 978-0-262-03384-8.

2 Course Description

This course emphasizes the **computational complexity** of a problem, the **efficiency** of an algorithm for solving a problem, **techniques** for designing algorithms, and the **inherent intractability** of certain problems. Skills that the student will take away from this course include: (1) determining whether a problem is NP-complete, (2) analyzing the time complexity of an algorithm, and (3) applying techniques for designing efficient algorithms.

3 Grading Policy

Grading for the course is on a 1000-point scale, with the points distributed as follows:

Homework assignments: 10 at about 60 points each	600
Midterm exam: March 2, 2017	150
Final exam: Saturday, May 6, 7:45AM–9:45AM	250

A typical homework assignment consists of 2 to 4 problems, posted on the course Web site approximately one week before the due date.

4 Readings

For most classes, there is a reading assignment (see Section 7) to be completed by class time. Each assignment consists of sections or chapters in the textbook.

5 Ethics

The Honor Code applies. All work submitted must be the student's own work. Students may solicit help only from the instructor or the GTA.

6 Announcement

If any student needs special accommodations because of a disability, please contact the instructor during the first week of classes.

¹See $\mathbb{A}T_{E}X$ resources on the course Web site.

 $^{^2 \}mathrm{See}$ Calendar on the course Web site.

7 Course Schedule

DATES	Reading Assignment	TOPICS	
JANUARY			
1/17-1/20	Chapters $1, 2, 3, and 4$	Problems, complexity, analysis	
1/23-1/27	Chapters 7 and 9	Divide and conquer — Mergesort, Quicksort, order statistics	
1/30-2/3	Chapter 15	Dynamic programming	
FEBRUARY			
2/6-2/10	Chapter 16	Greedy algorithms	
2/13-2/17	Chapter 23	Minimum spanning trees	
2/20-2/24	Chapter 34	Encoding problems; polynomial time (P); polynomial-time verification (NP)	
2/27-3/3	Chapter 34	NP-completeness and reducibility	
MARCH			
3/2	Midterm Exam	Topics through polynomial-time verification	
3/6-3/10	Spring Break		
3/13-3/17	Chapter 34	NP-completeness proofs	
3/20-3/24	Chapter 34	NP-complete problems	
3/27-3/31	Sections 35.1–35.3	Approximation algorithms	
April			
4/3-4/7	Chapter 32	String matching	
4/10-4/14	Chapter 33	Computational geometry	
4/17-4/21	Sections 26.1–26.2	Maximum flow	
4/24-4/28	Section 26.3	Maximum bipartite matching	
Мау			
5/2	Last Day of Class	Review for final; questions on homework solutions and course material	
5/6	Final Exam	7:45AM–9:45AM: Comprehensive final exam	

END OF SYLLABUS