
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 37

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
5-

02

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Parallel Algorithms

Running time: T (n,p) where n is the problem size, p is
number of processors.
Speedup: S(p) = T (n,1)/T (n,p).

I A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for∞ processors.
Efficiency: E(n,p) = S(p)/p = T (n,1)/(pT (n,p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

I Measure of how much the p processors are used (not
wasted).

I Optimal efficiency = 1 = speedup by factor of p.
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Parallel Algorithms

As opposed to T (n) for sequential algorithms.

Question: What algorithms should be compared?

pT (n,p) is total amount of “processor power” put into the
problem.

If E(n,p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against – very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.
Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p =∞, then convert to
run on p processors.

Hopefully, if T (n,p) = X , then T (n,p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle.
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Parallel Algorithm Design

no notes

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n,1) = n
T (n,n) = log n

S(n) = n/ log n
E(n,n) = 1/ log n

For p = 256, n = 1024.
T (1024,256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.
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Parallel Algorithm Design (2)

Good in terms of speedup.

1024/256, assuming one processor emulates 4 in 4 times the
time.
E(1024,256) = 1024/(256 ∗ 40) = 1/10.

But note that efficiency goes down as the problem size grows.



Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,
for S = serial fraction, P = parallel fraction, S + P = 1.
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Amdahl’s Law

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM
5/88 and follow-up technical correspondance in CACM 8/89.

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
see a nonlinear curve going down.

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S + P × N)/(S + P)

= S + P × N
= S + (1− S)× N
= N + (1− N)× S.
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Amdahl’s Law Revisited

How long sequential process would take / How long for N
processors.

Since S + P = 1 and P = 1− S.

The point is that this equation drops off much less slowly in N:
Graphing (sequential fraction for fixed N) vs. speedup, you get
a line with slope 1− N.

All of this seems to assume the same algorithm for sequential
and parallel. But that’s OK – we want to see how much
parallelism is possible for the parallel algorithm.

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)
All processors operate the same instruction in step.
Example: Vector processor.

Pipelined Processing:
Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
Processors are independent.
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Models of Parallel Computation

Vector: IBM 3090, Cray

Pipelined: Graphics coprocessor boards

MIMD: Modern clusters.

MIMD Communications (1)

Interconnection network:
Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter: Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.
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MIMD Communications (1)

no notes



MIMD Communications (2)

Shared memory:
Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).
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MIMD Communications (2)

no notes

Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:
Start at the low end, add two bits.
If necessary, carry bit is brought forward.
Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)
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Addition

no notes

Parallel Addition

Divide and conquer to the rescue:
Do the sum for top and bottom halves.
What about the carry bit?

Strengthen induction hypothesis:
Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L,Lc,R, and Rc.

Can combine pieces in constant time.
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Parallel Addition

Two possibilities: carry or not carry.

Also, for each a boolean indicating if it returns a carry.

If right has carry then
Sum = Lc |R

Else
Sum = L|R

If Sum has carry then
Carry = TRUE

For Sumc

Do the same using Rc since it is computing value having
received carry.

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n,n) = T (n/2,n/2) + O(1) = O(log n).

We need only the EREW memory model.
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Parallel Addition (2)

Not 2T (n/2,n/2) because done in parallel!



Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n,n/2) ≈ 1/ log n.

Why is the efficiency so low?
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Maximum-finding Algorithm: EREW

Since T (n,1)
nT (n,n) =

n
n log n

Lots of idle processors after the first round.

More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n,n/ log n) = O(log n).
E(n,n/ log n) = O(1).
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More Efficient EREW Algorithm

In log n time.

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.
All comparisons are pre-arranged.
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More Efficient EREW Algorithm (2)

Cannot improve time past O(log n).

Doesn’t depend on a specific input value.

As an analogy to help understand the concept of static:
Bubblesort and Mergesort are static in this way. We always
know the positions to be compared next.
In contrast, Insertion Sort is not static.

Brent’s Lemma
Lemma 12.1: If there exists an EREW static algorithm with
T (n,p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai ,1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with dai/(s/t)e steps, where
the s/t processors emulate the steps taken by the
original p processors.
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Brent’s Lemma

Note that we are using t as the actual number of steps, as well
as the variable in the big-Oh analysis, which is a bit informal.



Brent’s Lemma (2)

The total number of steps is now
t∑

i=1

dai/(s/t)e ≤
t∑

i=1

(ai t/s + 1)

= t + (t/s)
t∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!
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Brent’s Lemma (2)

If s is sequential complexity, then the modified algorithm has
O(1) efficiency.

Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

I Now, only one v is “1”.
Second step: Look at all vi ,1 ≤ i ≤ n.

I The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”
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Maximum-finding: CRCW

Need O(n2)processors
Need only constant time.
Efficiency is 1/n.

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:
Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).
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Maximum-finding: CRCW (2)

n/2 processors
n processors, using previous “divide and crush” algorithm.

This leaves n/8 elements which can be broken into n/128
groups of 16 elements with 128 processors assigned to each
group. And so on.

Efficiency is 1/ log log n.

Parallel Prefix

Let · be any associative binary operation.
I Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k ,1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

I O(n) time required (using previous prefix)
Approach: Divide and Conquer

I IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1,m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1,m) – from IH.

CS 5114: Theory of Algorithms Spring 2014 20 / 37

Parallel Prefix

Let · be any associative binary operation.
I Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k ,1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

I O(n) time required (using previous prefix)
Approach: Divide and Conquer

I IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1,m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1,m) – from IH.

20
14

-0
5-

02

CS 5114

Parallel Prefix

We don’t just want the sum or min of all – we want all the
partials as well.

We have the lower half done, and the upper half values are
each missing the contribution from the lower half.



Parallel Prefix (2)

Complexity: (2) requires n/2 processors and CREW for
parallelism (all read middle position).
T (n,n) = O(log n); E(n,n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.
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Parallel Prefix (2)

That is – no processors are “excessively” idle. This is because
we needed to copy PR(1, n/2) into n/2 positions on the last
step.

E =
n

n · log n
=

1
logn

Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

I Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
I Solve for E (by induction).
I Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n,n) = O(log n).
S(n) = S(n/2) + n − 1, so S(n) = O(n) for S(n) the

total number of steps required to process n elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.
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Better Parallel Prefix

Since the E’s already include their left neighbors, all info is
available to get the odds.

There is only one recursive call, instead of two in the previous
algorithm.

Need EREW model for Brent’s Lemma.

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor Pσ(i) such that no processor is the destination
for more than one message.

Problem:
In an n-cube, each processor is connected to n other
processors.
At the same time, each processor can send (or receive)
only one message per time step on a given connection.
So, two messages cannot use the same edge at the
same time – one must wait.
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Routing on a Hypercube

Need a figure

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:
(a) Route each message from i to j to a random processor

r (by a randomly selected route).
(b) Continue the message from r to j by the shortest route.
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Randomizing Switching Algorithm

n-dimensional hypercube has 2n nodes.

Remember that we want parallel algorithms with cost log n, not
cost na!
The distance from any processor i to another processor j is
only log n steps.



Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin
for (k = 1 to n)

T[i, k] = RANDOM(0, 1);
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;
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Randomized Switching (2)

no notes

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)

T[i, k] =
Current[i, k] EXCLUSIVE_OR Dest[i, k];

for (k = 1 to n)
if (T[i, k] = 1)

Transmit i along dimension k;
coend;
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Randomized Switching (3)

no notes

Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely (by chance).
In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.
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Randomized Switching (4)

no notes

Sorting on an array

Given: n processors labeled P1,P2, · · · ,Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?
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Sorting on an array

Any algorithm that correctly sorts 1’s and 0’s by comparisons
will also correctly sort arbitrary numbers.



Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
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Parallel Array Sort

Manber Figure 12.8.

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.
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Correctness of Odd-Even Transpose

no notes

Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.
Remove this diagonal, moving comparisons in the upper
triangle one step closer.
The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).
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Correctness (2)

Map the execution of n to an execution of n − 1 elements.

See Manber Figure 12.9.

Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.
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When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.
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Sorting Networks

no notes



Batcher’s Algorithm

For n a power of 2, assume a1,a2, · · · ,an and b1,b2, · · · ,bn

are sorted sequences.

Let x1, x2, · · · , x2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.
Split a, b into odd- and even- index elements.
Merge aodd with bodd , aeven with beven, yielding
o1,o2, · · · ,on and e1,e2, · · · ,en respectively.
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Batcher’s Algorithm

No notes

Batcher’s Sort Image
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Batcher’s Sort Image
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Batcher’s Sort Image

No notes

Batcher’s Algorithm Correctness

Theorem 12.3: For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1,ei) and x2i+1 = max(oi+1,ei).

Proof:
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).
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Batcher’s Algorithm Correctness

See Manber Figure 12.11.

Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.
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Batcher Sort Complexity

O(log n) sort steps, with each associated merge step counting
O(log n).



Matrix-Vector Multiplication

Problem: Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:
Use n processor elements arranged in an array, with
processor Pi initially containing element bi .
Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n + m)
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Matrix-Vector Multiplication

See Manber Figure 12.17.


