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Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Algebraic and Numeric Algorithms

Measuring cost of arithmetic and numerical operations:
I Measure size of input in terms of bits.

Algebraic operations:
I Measure size of input in terms of numbers.

In both cases, measure complexity in terms of basic
arithmetic operations: +,−, ∗, /.

I Sometimes, measure complexity in terms of bit
operations to account for large numbers.

Size of numbers may be related to problem size:
I Pointers, counters to objects.
I Resolution in geometry/graphics (to distinguish between

object positions).
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Algebraic and Numeric Algorithms

no notes

Exponentiation

Given positive integers n and k , compute nk .

Algorithm:

p = 1;
for (i=1 to k)
p = p * n;

Analysis:
Input size: Θ(log n + log k).
Time complexity: Θ(k) multiplications.
This is exponential in input size.

CS 5114: Theory of Algorithms Spring 2014 3 / 65

Exponentiation

Given positive integers n and k , compute nk .

Algorithm:

p = 1;
for (i=1 to k)

p = p * n;

Analysis:
Input size: Θ(log n + log k).
Time complexity: Θ(k) multiplications.
This is exponential in input size.

20
14

-0
4-

24

CS 5114

Exponentiation
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Faster Exponentiation

Write k as:

k = bt2t + bt−12t−1 + · · ·+ b12 + b0,b ∈ {0,1}.

Rewrite as:

k = ((· · · (bt2 + bt−1)2 + · · ·+ b2)2 + b1)2 + b0.

New algorithm:
p = n;
for (i = t-1 downto 0)

p = p * p * exp(n, b[i])

Analysis:
Time complexity: Θ(t) = Θ(log k) multiplications.
This is exponentially better than before.
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Faster Exponentiation

no notes



Greatest Common Divisor

The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly.
Observation: If k divides n and m, then k divides n −m.
So,

f (n,m) = f (n −m,n) = f (m,n −m) = f (m,n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.
n = bn/mcm + n mod m.

So,
f (n,m) = f (m, l) = f (m,n mod m).
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Greatest Common Divisor

Assuming n > m, then n = ak , m = bk , n −m = (a− b)k for
integers a, b.

This comes from definition of mod .

GCD Algorithm

f (n,m) =

{
n m = 0
f (m,n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}
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GCD Algorithm
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Analysis of GCD

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1
⇒ 2bn/mc > n/m
⇒ mbn/mc > n/2
⇒ n − n/2 > n −mbn/mc = n mod m
⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.
Total cost:
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Analysis of GCD

Can split in half log n times. So 2 log n is upper bound.

Note that this is linier on problem size, since problem size is
2 log n (2 numbers).

Multiplying Polynomials (1)

P =
n−1∑
i=0

pix i Q =
n−1∑
i=0

qix i .

Our normal algorithm for computing PQ requires Θ(n2)
multiplications and additions.
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Multiplying Polynomials (2)
Divide and Conquer:

P1 =

n/2−1∑
i=0

pix i P2 =
n−1∑

i=n/2

pix i−n/2

Q1 =

n/2−1∑
i=0

qix i Q2 =
n−1∑

i=n/2

qix i−n/2

PQ = (P1 + xn/2P2)(Q1 + xn/2Q2)

= P1Q1 + xn/2(Q1P2 + P1Q2) + xnP2Q2.

Recurrence:

T (n) = 4T (n/2) + O(n).

T (n) = Θ(n2).
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Multiplying Polynomials (2)

Do this to make the subproblems look the same.

Multiplying Polynomials (3)
Observation:

(P1 + P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q2

(Q1P2 + P1Q2) = (P1 + P2)(Q1 + Q2)− P1Q1 − P2Q2

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:

T (n) = 3T (n/2) + O(n)

= aT (n/b) + cn1.

logb a = log23 ≈ 1.59.
T (n) = Θ(n1.59).
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Multiplying Polynomials (3)

In the second equation, the sums in the first term are half the
original problem size, and the second two terms were needed
for the first equation.

PQ = P1Q1 +X n/2((P1 +P2)(Q1 +Q2)−P1Q1−P2Q2)+xnP2Q2

A significant improvement came from algebraic manipulation to
express the product in terms of 3, rather than 4, smaller
products.

Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A× B.

cij =
n∑

k=1

aikbkj .

Straightforward algorithm:
Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).
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Matrix Multiplication
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Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
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Another Approach (1)

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11
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Another Approach (1)

no notes

Another Approach (2)

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.
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Another Approach (2)

c12 = m4 + m5

= (a11 + a12)b22 + a11(b12 + b22)

= a11b22 + a11b12 − a11b22

= a12b22 + b11b12

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A× B in terms of n
2 ×

n
2 matrices.[

c11 c12

c21 c22

]
=

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]
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Strassen’s Algorithm (cont)
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Strassen’s Algorithm (cont)

no notes

Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2× n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)
Open question: Can matrix multiplication be done in O(n2)
time?
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Strassen’s Algorithm (cont)

But, this has a high constant due to the additions. This makes it
rather impractical in real applications.

But this “fastest” algorithm is even more impractical due to
overhead.



Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
CS 5114: Theory of Algorithms Spring 2014 17 / 65

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?

20
14

-0
4-

24

CS 5114

Introduction to the Sliderule

no notes

Introduction to the Sliderule (2)

The sliderule does exactly this!
It is essentially two rulers in log scale.
Slide the scales to add the lengths of the two numbers
(in log form).
The third scale shows the value for the total length.
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Introduction to the Sliderule (2)

This is an example of a transform. We do transforms to convert
a hard problem into a (relatively) easy problem.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1∑
i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation.
Finding the coefficients for the polynomial given the
values at n points is called interpolation.
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Representing Polynomials

That is, a polynomial can be represented by it coefficients.

Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
Evaluate polynomials A and B at enough points.
Pairwise multiplications of resulting values.
Interpolation of resulting values.
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Multiplication of Polynomials
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Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?
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Multiplication of Polynomials (2)
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An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8
AB(0) = (1)(1) = 1
AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.
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An Example

−1 0 1
A 2 1 2
B 4 1 2

AB 8 1 4

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:
For n = 4, ω = i or ω = −i .
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Nth Root of Unity

For the first circle, n = 4, ω = i .

For the second circle, n = 8, ω =
√

i .

Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .
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Nth Root of Unity (cont)
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Nth Root of Unity (cont)

no notes



Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Let a = [a0,a1, ...,an−1]T be a vector.
The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.
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Discrete Fourier Transform

In the array, indexing begins with 0.

Example:
1 + 2x + 3x2 + 4x3

Values to evaluate at: 1, i ,−1,−i .

Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i
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Array example
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Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.
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Inverse Fourier Transform

Just replace each ω with 1/ω

After substituting 1/ω for ω.

Observe the sharable parts in the matrix.

Fast Polynomial Multiplication

Polynomial multiplication of A and B:
Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0,a1, ...,an−1,0, ...,0]

Perform DFT on representations for A and B.
Pairwise multiply results to get 2n − 1 values.
Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.
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Pairwise multiply results to get 2n − 1 values.
Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.20
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Fast Polynomial Multiplication

Θ(n log n)

Θ(n)

Θ(n log n)

Total time: Θ(n log n).



FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin
if n=1 then V[0] = a0;
else
FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do
V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end
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FFT Algorithm

no notes

Parallel Algorithms

Running time: T (n,p) where n is the problem size, p is
number of processors.
Speedup: S(p) = T (n,1)/T (n,p).

I A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for∞ processors.
Efficiency: E(n,p) = S(p)/p = T (n,1)/(pT (n,p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

I Measure of how much the p processors are used (not
wasted).

I Optimal efficiency = 1 = speedup by factor of p.
CS 5114: Theory of Algorithms Spring 2014 30 / 65

Parallel Algorithms

Running time: T (n,p) where n is the problem size, p is
number of processors.
Speedup: S(p) = T (n,1)/T (n,p).

I A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for∞ processors.
Efficiency: E(n,p) = S(p)/p = T (n,1)/(pT (n,p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

I Measure of how much the p processors are used (not
wasted).

I Optimal efficiency = 1 = speedup by factor of p.

20
14

-0
4-

24

CS 5114

Parallel Algorithms

As opposed to T (n) for sequential algorithms.

Question: What algorithms should be compared?

pT (n,p) is total amount of “processor power” put into the
problem.

If E(n,p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against – very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.
Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p =∞, then convert to
run on p processors.

Hopefully, if T (n,p) = X , then T (n,p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle.
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Parallel Algorithm Design

no notes

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n,1) = n
T (n,n) = log n

S(n) = n/ log n
E(n,n) = 1/ log n

For p = 256, n = 1024.
T (1024,256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.
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Parallel Algorithm Design (2)

Good in terms of speedup.

1024/256, assuming one processor emulates 4 in 4 times the
time.
E(1024,256) = 1024/(256 ∗ 40) = 1/10.

But note that efficiency goes down as the problem size grows.



Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,
for S = serial fraction, P = parallel fraction, S + P = 1.
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Amdahl’s Law

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM
5/88 and follow-up technical correspondance in CACM 8/89.

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
see a nonlinear curve going down.

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S + P × N)/(S + P)

= S + P × N
= S + (1− S)× N
= N + (1− N)× S.
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Amdahl’s Law Revisited

How long sequential process would take / How long for N
processors.

Since S + P = 1 and P = 1− S.

The point is that this equation drops off much less slowly in N:
Graphing (sequential fraction for fixed N) vs. speedup, you get
a line with slope 1− N.

All of this seems to assume the same algorithm for sequential
and parallel. But that’s OK – we want to see how much
parallelism is possible for the parallel algorithm.


