CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2014
Copyright © 2014 by Clifford A. Shaffer

Algebraic and Numeric Algorithms

- Measuring cost of arithmetic and numerical operations:
- Measure size of input in terms of bits.
- Algebraic operations:
- Measure size of input in terms of numbers.
- In both cases, measure complexity in terms of basic arithmetic operations: $+,-, *, /$.
- Sometimes, measure complexity in terms of bit operations to account for large numbers.
- Size of numbers may be related to problem size:
- Pointers, counters to objects.
- Resolution in geometry/graphics (to distinguish between object positions).

Exponentiation

Given positive integers n and k, compute n^{k}.

Algorithm:

$$
\begin{aligned}
& p=1 ; \\
& \text { for }(i=1 \text { to } k) \\
& p=p * n ;
\end{aligned}
$$

Analysis:

- Input size: $\Theta(\log n+\log k)$.
- Time complexity: $\Theta(k)$ multiplications.
- This is exponential in input size.

Faster Exponentiation

Write k as:

$$
k=b_{t} 2^{t}+b_{t-1} 2^{t-1}+\cdots+b_{1} 2+b_{0}, b \in\{0,1\}
$$

Rewrite as:

$$
k=\left(\left(\cdots\left(b_{t} 2+b_{t-1}\right) 2+\cdots+b_{2}\right) 2+b_{1}\right) 2+b_{0}
$$

New algorithm:

```
p = n;
for (i = t-1 downto 0)
    p = p * p * exp(n, b[i])
```


Analysis:

- Time complexity: $\Theta(t)=\Theta(\log k)$ multiplications.
- This is exponentially better than before.

no notes

no notes

no notes

Greatest Common Divisor

- The Greatest Common Divisor (GCD) of two integers is the greatest integer that divides both evenly.
- Observation: If k divides n and m, then k divides $n-m$.
- So,

$$
f(n, m)=f(n-m, n)=f(m, n-m)=f(m, n) .
$$

- Observation: There exists k and / such that

$$
\begin{aligned}
& n=k m+I \text { where } m>I \geq 0 . \\
& n=\lfloor n / m\rfloor m+n \bmod m .
\end{aligned}
$$

- So,

$$
f(n, m)=f(m, l)=f(m, n \quad \bmod m) .
$$

GCD Algorithm

$$
f(n, m)= \begin{cases}n & m=0 \\ f(m, n \bmod m) & m>0\end{cases}
$$

```
int LCF(int n, int m) {
    if (m == O) return n;
    return LCF (m, n % m);
}
```


Analysis of GCD

- How big is n mod m relative to n ?

$$
\begin{aligned}
n \geq m & \Rightarrow n / m \geq 1 \\
& \Rightarrow 2\lfloor n / m\rfloor>n / m \\
& \Rightarrow m\lfloor n / m\rfloor>n / 2 \\
& \Rightarrow n-n / 2>n-m\lfloor n / m\rfloor=n \bmod m \\
& \Rightarrow n / 2>n \bmod m
\end{aligned}
$$

- The first argument must be halved in no more than 2 iterations.
- Total cost:

Multiplying Polynomials (1)

$$
P=\sum_{i=0}^{n-1} p_{i} x^{i} \quad Q=\sum_{i=0}^{n-1} q_{i} x^{i}
$$

- Our normal algorithm for computing $P Q$ requires $\Theta\left(n^{2}\right)$ multiplications and additions.
$\begin{array}{ll}\text { N CS } 5114 \\ \text { さ } \\ \text { I } \\ \dot{J} & \text { GGreatest Common Divisor }\end{array}$
Assuming $n>m$, then $n=a k, m=b k, n-m=(a-b) k$ for integers a, b.

This comes from definition of mod.

no notes

Can split in half $\log n$ times. So $2 \log n$ is upper bound.

Note that this is linier on problem size, since problem size is $2 \log n$ (2 numbers).

Multiplying Polynomials (2)

- Divide and Conquer:

$$
\begin{array}{rlr}
P_{1} & =\sum_{i=0}^{n / 2-1} p_{i} x^{i} & P_{2}=\sum_{i=n / 2}^{n-1} p_{i} x^{i-n / 2} \\
Q_{1} & =\sum_{i=0}^{n / 2-1} q_{i} x^{i} & Q_{2}=\sum_{i=n / 2}^{n-1} q_{i} x^{i-n / 2} \\
P Q & =\left(P_{1}+x^{n / 2} P_{2}\right)\left(Q_{1}+x^{n / 2} Q_{2}\right) \\
& =P_{1} Q_{1}+x^{n / 2}\left(Q_{1} P_{2}+P_{1} Q_{2}\right)+x^{n} P_{2} Q_{2} .
\end{array}
$$

- Recurrence:

$$
\begin{aligned}
& T(n)=4 T(n / 2)+O(n) . \\
& T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Multiplying Polynomials (3)

Observation:

$$
\begin{aligned}
& \left(P_{1}+P_{2}\right)\left(Q_{1}+Q_{2}\right)=P_{1} Q_{1}+\left(Q_{1} P_{2}+P_{1} Q_{2}\right)+P_{2} Q_{2} \\
& \left(Q_{1} P_{2}+P_{1} Q_{2}\right)=\left(P_{1}+P_{2}\right)\left(Q_{1}+Q_{2}\right)-P_{1} Q_{1}-P_{2} Q_{2}
\end{aligned}
$$

Therefore, PQ can be calculated with only 3 recursive calls to a polynomial multiplication procedure.

Recurrence:

$$
\begin{aligned}
T(n) & =3 T(n / 2)+O(n) \\
& =a T(n / b)+c n^{1} .
\end{aligned}
$$

$\log _{b} a=\log _{2} 3 \approx 1.59$.
$T(n)=\Theta\left(n^{1.59}\right)$.

Matrix Multiplication

Given: $n \times n$ matrices A and B.
Compute: $C=A \times B$.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Straightforward algorithm:

- $\Theta\left(n^{3}\right)$ multiplications and additions.

Lower bound for any matrix multiplication algorithm: $\Omega\left(n^{2}\right)$.

Strassen's Algorithm

(1) Trade more additions/subtractions for fewer multiplications in 2×2 case.

no notes
(2) Divide and conquer.

In the straightforward implementation, 2×2 case is:

$$
\begin{aligned}
& c_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

Requires 8 multiplications and 4 additions.

Another Approach (1)

Compute:

$$
\begin{aligned}
& m_{1}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right) \\
& m_{2}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
& m_{3}=\left(a_{11}-a_{21}\right)\left(b_{11}+b_{12}\right) \\
& m_{4}=\left(a_{11}+a_{12}\right) b_{22} \\
& m_{5}=a_{11}\left(b_{12}-b_{22}\right) \\
& m_{6}=a_{22}\left(b_{21}-b_{11}\right) \\
& m_{7}=\left(a_{21}+a_{22}\right) b_{11}
\end{aligned}
$$

Another Approach (2)

Then:

$$
\begin{aligned}
& c_{11}=m_{1}+m_{2}-m_{4}+m_{6} \\
& c_{12}=m_{4}+m_{5} \\
& c_{21}=m_{6}+m_{7} \\
& c_{22}=m_{2}-m_{3}+m_{5}-m_{7}
\end{aligned}
$$

7 multiplications and 18 additions/subtractions.

Strassen's Algorithm (cont)

Divide and conquer step:
Assume n is a power of 2 .

Express $C=A \times B$ in terms of $\frac{n}{2} \times \frac{n}{2}$ matrices.

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Strassen's Algorithm (cont)

By Strassen's algorithm, this can be computed with 7 multiplications and 18 additions/subtractions of $n / 2 \times n / 2$ matrices.

Recurrence:

$$
\begin{aligned}
& T(n)=7 T(n / 2)+18(n / 2)^{2} \\
& T(n)=\Theta\left(n^{\log _{2} 7}\right)=\Theta\left(n^{2.81}\right)
\end{aligned}
$$

Current "fastest" algorithm is $\Theta\left(n^{2.376}\right)$
Open question: Can matrix multiplication be done in $O\left(n^{2}\right)$ time?

But, this has a high constant due to the additions. This makes it rather impractical in real applications.

But this "fastest" algorithm is even more impractical due to overhead.

Introduction to the Sliderule

Compared to addition, multiplication is hard.
In the physical world, addition is merely concatenating two lengths.

Observation:

$$
\log n m=\log n+\log m
$$

Therefore,

$$
n m=\operatorname{antilog}(\log n+\log m) .
$$

What if taking logs and antilogs were easy?

Introduction to the Sliderule (2)

The sliderule does exactly this!

- It is essentially two rulers in log scale.
- Slide the scales to add the lengths of the two numbers (in log form).
- The third scale shows the value for the total length.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial of degree $n-1$

$$
P_{\mathbf{a}}(x)=\sum_{i=0}^{n-1} \mathbf{a}_{i} x^{i}
$$

Alternatively, a degree $n-1$ polynomial can be uniquely represented by a list of its values at n distinct points.

- Finding the value for a polynomial at a given point is called evaluation.
- Finding the coefficients for the polynomial given the values at n points is called interpolation.

Multiplication of Polynomials

To multiply two n - 1 -degree polynomials A and B normally takes $\Theta\left(n^{2}\right)$ coefficient multiplications.

However, if we evaluate both polynomials, we can simply multiply the corresponding pairs of values to get the values of polynomial $A B$.

Process:

- Evaluate polynomials A and B at enough points.
- Pairwise multiplications of resulting values.
- Interpolation of resulting values.

```
~ CS 5114
N
```

Introduction to the Slider

cosenater: logen- bogot togm

no notes

This is an example of a transform. We do transforms to convert a hard problem into a (relatively) easy problem.

That is, a polynomial can be represented by it coefficients.

Multiplication of Polynomials (2)

This can be faster than $\Theta\left(n^{2}\right)$ IF a fast way can be found to do evaluation/interpolation of $2 n-1$ points (normally this takes $\Theta\left(n^{2}\right)$ time).

Note that evaluating a polynomial at 0 is easy, and that if we evaluate at 1 and -1 , we can share a lot of the work between the two evaluations.

Can we find enough such points to make the process cheap?

An Example

Polynomial A: $x^{2}+1$.
Polynomial B: $2 x^{2}-x+1$.
Polynomial AB: $2 x^{4}-x^{3}+3 x^{2}-x+1$.

Notice:

$$
\begin{aligned}
A B(-1) & =(2)(4)=8 \\
A B(0) & =(1)(1)=1 \\
A B(1) & =(2)(2)=4
\end{aligned}
$$

But: We need 5 points to nail down Polynomial AB. And, we also need to interpolate the 5 values to get the coefficients back.

