CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science Virginia Tech Blacksburg, Virginia

Spring 2014

Copyright © 2014 by Clifford A. Shaffer

Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.

A problem is said to be <u>tractable</u> if an algorithm exists to solve it with polynomial time complexity: O(p(n)).

• It is said to be **intractable** if the best known algorithm requires exponential time.

Examples:

- Sorting: $O(n^2)$
- Convex Hull: $O(n^2)$
- Single source shortest path: $O(n^2)$
- All pairs shortest path: $O(n^3)$
- Matrix multiplication: $O(n^3)$

Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:

- A special kind of reduction.
- 2 Nondeterminism.

Decision Problems

(I, S) such that S(X) is always either "yes" or "no."

• Usually formulated as a question.

Example:

• Instance: A weighted graph G = (V, E), two vertices *s* and *t*, and an integer *K*.

Question: Is there a path from *s* to *t* of length ≤ *K*? In this example, the answer is "yes."

Decision Problems (cont)

Can also be formulated as a language recognition problem:

• Let *L* be the subset of *I* consisting of instances whose answer is "yes." Can we recognize *L*?

The class of tractable problems \mathcal{P} is the class of languages or decision problems recognizable in polynomial time.

< 🗇 🕨 < 🖃 >

Polynomial Reducibility

Reduction of one language to another language.

Let $L_1 \subset I_1$ and $L_2 \subset I_2$ be languages. L_1 is **polynomially reducible** to L_2 if there exists a transformation $f: I_1 \rightarrow I_2$, computable in polynomial time, such that $f(x) \in L_2$ if and only if $x \in L_1$. We write: $L_1 \leq_p L_2$ or $L_1 \leq L_2$.

< ロ > < 同 > < 回 > < 回 >

Examples

- CLIQUE \leq_{p} INDEPENDENT SET.
- An instance *I* of CLIQUE is a graph *G* = (*V*, *E*) and an integer *K*.
- The instance I' = f(I) of INDEPENDENT SET is the graph G' = (V, E') and the integer K, were an edge (u, v) ∈ E' iff (u, v) ∉ E.
- *f* is computable in polynomial time.

Transformation Example

- G has a clique of size ≥ K iff G' has an independent set of size ≥ K.
- Therefore, CLIQUE \leq_p INDEPENDENT SET.
- **IMPORTANT WARNING:** The reduction does not **solve** either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.

< ロ > < 同 > < 回 > < 回 >

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the "nd-choice" primitive: nd-choice(ch₁, ch₂, ..., ch_j) returns one of the choices ch₁, ch₂, ... **arbitrarily**.

Nondeterministic algorithms can be thought of as "correctly guessing" (choosing nondeterministically) a solution.

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the "nd-choice" primitive: nd-choice(ch₁, ch₂, ..., ch_j) returns one of the choices ch₁, ch₂, ... **arbitrarily**.

Nondeterministic algorithms can be thought of as "correctly guessing" (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of as running on super-parallel machines that make all choices simultaneously and then reports the "right" solution.

Nondeterministic CLIQUE Algorithm

```
procedure nd-CLIQUE (Graph G, int K) {
 VertexSet S = EMPTY; int size = 0;
  for (v in G.V)
    if (nd-choice(YES, NO) == YES) then {
      S = union(S, v);
      size = size + 1;
  if (size < K) then
   REJECT; // S is too small
  for (u in S)
    for (v in S)
      if ((u <> v) \&\& ((u, v) not in E))
        REJECT; // S is missing an edge
 ACCEPT:
```

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Nondeterministic Acceptance

- (*G*, *K*) is in the "language" CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.

< ロ > < 同 > < 回 > < 回 >

Nondeterministic Acceptance

- (*G*, *K*) is in the "language" CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.

Nondeterministic Acceptance

- (*G*, *K*) is in the "language" CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
- Nondeterminism is a useful concept
 - It provides insight into the nature of certain hard problems.

Class \mathcal{NP}

- The class of languages accepted by a nondeterministic algorithm in polynomial time is called \mathcal{NP} .
- There are an **exponential** number of different executions of nd-CLIQUE on a single instance, but any one execution requires only **polynomial time** in the size of that instance.
- Time complexity of nondeterministic algorithm is greatest amount of time required by any **one** of its executions.

Class $\mathcal{NP}(\text{cont})$

Alternative Interpretation:

- \mathcal{NP} is the class of algorithms that never mind how we got the answer can check if the answer is correct in polynomial time.
- If you cannot verify an answer in polynomial time, you cannot hope to find the right answer in polynomial time!

< ロ > < 同 > < 回 > < 回 >

How to Get Famous

Clearly, $\mathcal{P} \subset \mathcal{NP}$.

Extra Credit Problem:

• Prove or disprove: $\mathcal{P} = \mathcal{NP}$.

This is important because there are many natural decision problems in \mathcal{NP} for which no \mathcal{P} (tractable) algorithm is known.

< 同ト < ヨト < ヨト

$\mathcal{NP}\text{-completeness}$

A theory based on identifying problems that are as hard as any problems in $\mathcal{NP}.$

The next best thing to knowing whether $\mathcal{P} = \mathcal{N}\mathcal{P}$ or not.

A decision problem *A* is \underline{NP} -hard if every problem in NP is polynomially reducible to *A*, that is, for all

$$B \in \mathcal{NP}, \quad B \leq_{p} A.$$

A decision problem A is \underline{NP} -complete if $A \in NP$ and A is \underline{NP} -hard.

< ロ > < 同 > < 回 > < 回 >

Satisfiability

Let *E* be a Boolean expression over variables x_1, x_2, \dots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (\overline{x_2} + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a <u>literal</u>. Each sum is called a <u>clause</u>.

SATISFIABILITY (SAT):

- Instance: A Boolean expression *E* over variables x_1, x_2, \dots, x_n in CNF.
- Question: Is *E* satisfiable?

<ロト < 回 > < 回 > < 回 > < 回 >

Satisfiability

Let *E* be a Boolean expression over variables x_1, x_2, \dots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (\overline{x_2} + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a <u>literal</u>. Each sum is called a <u>clause</u>.

SATISFIABILITY (SAT):

- Instance: A Boolean expression *E* over variables x_1, x_2, \cdots, x_n in CNF.
- Question: Is *E* satisfiable?

Cook's Theorem: SAT is \mathcal{NP} -complete.

Proof Sketch

 $\mathsf{SAT}\in\mathcal{NP}\text{:}$

- A non-deterministic algorithm **guesses** a truth assignment for x_1, x_2, \dots, x_n and **checks** whether *E* is true in polynomial time.
- It accepts iff there is a satisfying assignment for *E*.

< ロ > < 同 > < 回 > < 回

Proof Sketch

 $SAT \in \mathcal{NP}$:

- A non-deterministic algorithm **guesses** a truth assignment for x_1, x_2, \dots, x_n and **checks** whether *E* is true in polynomial time.
- It accepts iff there is a satisfying assignment for *E*.

SAT is \mathcal{NP} -hard:

- Start with an arbitrary problem $B \in \mathcal{NP}$.
- We know there is a polynomial-time, nondeterministic algorithm to accept *B*.
- Cook showed how to transform an instance *X* of *B* into a Boolean expression *E* that is satisfiable if the algorithm for *B* accepts *X*.

(1) Since SAT is \mathcal{NP} -complete, we have not defined an empty concept.

3

(1) Since SAT is $\mathcal{NP}\text{-}\text{complete},$ we have not defined an empty concept.

```
(2) If SAT \in \mathcal{P}, then \mathcal{P} = \mathcal{NP}.
```

(1) Since SAT is \mathcal{NP} -complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(1) Since SAT is \mathcal{NP} -complete, we have not defined an empty concept.

(2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.

(3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP} -complete, then $B \leq_p A$ implies A is \mathcal{NP} -complete.

(1) Since SAT is $\mathcal{NP}\text{-}complete,$ we have not defined an empty concept.

```
(2) If SAT \in \mathcal{P}, then \mathcal{P} = \mathcal{NP}.
```

```
(3) If \mathcal{P} = \mathcal{NP}, then SAT \in \mathcal{P}.
```

(4) If $A \in \mathcal{NP}$ and B is \mathcal{NP} -complete, then $B \leq_p A$ implies A is \mathcal{NP} -complete.

Proof:

- Let $C \in \mathcal{NP}$.
- Then $C \leq_{p} B$ since *B* is \mathcal{NP} -complete.
- Since $B \leq_{p} A$ and \leq_{p} is transitive, $C \leq_{p} A$.
- Therefore, A is \mathcal{NP} -hard and, finally, \mathcal{NP} -complete.

Implications (cont)

(5) This gives a simple two-part strategy for showing a decision problem A is \mathcal{NP} -complete.

- (a) Show $A \in \mathcal{NP}$.
- (b) Pick an \mathcal{NP} -complete problem *B* and show $B \leq_{p} A$.

$\mathcal{NP}\text{-completeness}$ Proof Template

To show that decision problem *B* is \mathcal{NP} -complete:

- - Give a polynomial time, non-deterministic algorithm that accepts *B*.
 - Given an instance *X* of *B*, **guess** evidence *Y*.
 - **Check** whether *Y* is evidence that $X \in B$. If so, accept *X*.

$\mathcal{NP}\text{-completeness}$ Proof Template

To show that decision problem *B* is \mathcal{NP} -complete:

- - Give a polynomial time, non-deterministic algorithm that accepts *B*.
 - Given an instance *X* of *B*, **guess** evidence *Y*.
 - **Check** whether *Y* is evidence that $X \in B$. If so, accept *X*.
- 2 B is \mathcal{NP} -hard.
 - ► Choose a known *NP*-complete problem, *A*.
 - Describe a polynomial-time transformation T of an arbitrary instance of A to a [not necessarily arbitrary] instance of B.
 - Show that $X \in A$ if and only if $T(X) \in B$.

A B > A B >

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression *E* in CNF such that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

< ロ > < 同 > < 回 > < 回 >

3SAT is \mathcal{NP} -complete

(1) $3SAT \in \mathcal{NP}$.

```
procedure nd-3SAT(E) {
  for (i = 1 to n)
    x[i] = nd-choice(TRUE, FALSE);
  Evaluate E for the guessed truth assignment.
  if (E evaluates to TRUE)
    ACCEPT;
  else
    REJECT;
}
```

nd-3SAT is a polynomial-time nondeterministic algorithm that accepts 3SAT.

Proving 3SAT \mathcal{NP} -hard

• Choose SAT to be the known \mathcal{NP} -complete problem.

- We need to show that SAT \leq_{p} 3SAT.
- 2 Let $E = C_1 \cdot C_2 \cdots C_k$ be any instance of SAT.

Strategy: Replace any clause C_i that does not have exactly 3 literals with two or more clauses having exactly 3 literals.

Let
$$C_i = y_1 + y_2 + \cdots + y_j$$
 where y_1, \cdots, y_j are literals.
(a) $j = 1$

• Replace (y_1) with

$$(y_1 + v + w) \cdot (y_1 + \overline{v} + w) \cdot (y_1 + v + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w})$$

where v and w are new variables.

Proving 3SAT \mathcal{NP} -hard (cont)

(b) *j* = 2

• Replace $(y_1 + y_2)$ with $(y_1 + y_2 + z) \cdot (y_1 + y_2 + \overline{z})$ where z is a new variable.

(c) *j* > 3

• Relace $(y_1 + y_2 + \cdots + y_j)$ with

$$(y_1+y_2+z_1)\cdot(y_3+\overline{z_1}+z_2)\cdot(y_4+\overline{z_2}+z_3)\cdots$$

$$(y_{j-2} + \overline{z_{j-4}} + z_{j-3}) \cdot (y_{j-1} + y_j + \overline{z_{j-3}})$$

where $z_1, z_2, \cdots, z_{j-3}$ are new variables.

- After replacements made for each *C_i*, a Boolean expression *E'* results that is an instance of 3SAT.
- The replacement clearly can be done by a polynomial-time deterministic algorithm.

Proving 3SAT \mathcal{NP} -hard (cont)

(3) Show *E* is satisfiable iff E' is satisfiable.

- Assume *E* has a satisfying truth assignment.
- Then that extends to a satisfying truth assignment for cases (a) and (b).
- In case (c), assume *y_m* is assigned "true".
- Then assign z_t , $t \le m 2$, true and z_k , $t \ge m 1$, false.
- Then all the clauses in case (c) are satisfied.

Proving 3SAT NP-hard (cont)

- Assume E' has a satisfying assignment.
- By restriction, we have truth assignment for *E*.
 - (a) y_1 is necessarily true.
 - (b) $y_1 + y_2$ is necessarily true.
 - (c) Proof by contradiction:
 - * If y_1, y_2, \dots, y_j are all false, then z_1, z_2, \dots, z_{j-3} are all true.
 - ★ But then $(y_{j-1} + y_{j-2} + \overline{z_{j-3}})$ is false, a contradiction.

We conclude SAT \leq 3SAT and 3SAT is \mathcal{NP} -complete.

Tree of Reductions

Reductions go down the tree.

Proofs that each problem $\in \mathcal{NP}$ are straightforward.

(日)

Perspective

The reduction tree gives us a collection of 12 diverse \mathcal{NP} -complete problems.

The complexity of all these problems depends on the complexity of any one:

• If any $\mathcal{NP}\text{-}\text{complete problem is tractable, then they all are.}$

This collection is a good place to start when attempting to show a decision problem is \mathcal{NP} -complete.

Observation: If we find a problem is \mathcal{NP} -complete, then we should do something other than try to find a \mathcal{P} -time algorithm.

$\mathbf{SAT} \leq_{p} \mathbf{CLIQUE}$

(1) Easy to show CLIQUE in *NP*.(2) An instance of SAT is a Boolean expression

$$B=C_1\cdot C_2\cdots C_m,$$

where

$$C_i = y[i, 1] + y[i, 2] + \cdots + y[i, k_i].$$

Transform this to an instance of CLIQUE G = (V, E) and K.

$$V = \{v[i,j] | 1 \le i \le m, 1 \le j \le k_i\}$$

Two vertices $v[i_1, j_1]$ and $v[i_2, j_2]$ are adjacent in *G* if $i_1 \neq i_2$ AND EITHER $y[i_1, j_1]$ and $y[i_2, j_2]$ are the same literal OR $y[i_1, j_1]$ and $y[i_2, j_2]$ have different underlying variables. K = m.

CS 5114: Theory of Algorithms

SAT \leq_{ρ} **CLIQUE** (cont)

Example: $B = (x + y + \overline{(z)}) \cdot (\overline{x} + \overline{y} + z) \cdot (y + \overline{z})$. K = 3.

- (3) B is satisfiable iff G has clique of size $\geq K$.
 - *B* is satisfiable implies there is a truth assignment such that $y[i, j_i]$ is true for each *i*.
 - But then $v[i, j_i]$ must be in a clique of size K = m.
 - If G has a clique of size ≥ K, then the clique must have size exactly K and there is one vertex v[i, j_i] in the clique for each i.
 - There is a truth assignment making each $y[i, j_i]$ true. That truth assignment satisfies *B*.

We conclude that CLIQUE is \mathcal{NP} -hard, therefore \mathcal{NP} -complete.

$\text{Co-}\mathcal{NP}$

- Note the asymmetry in the definition of \mathcal{NP} .
 - The non-determinism can identify a clique, and you can verify it.
 - But what if the correct answer is "NO"? How do you verify that?
- Co- \mathcal{NP} : The complements of problems in \mathcal{NP} .
 - Is a boolean expression always false?
 - Is there no clique of size k?
- It seems unlikely that $\mathcal{NP} = \text{co-}\mathcal{NP}$.

< ロ > < 同 > < 回 > < 回 >

Is \mathcal{NP} -complete = \mathcal{NP} ?

- It has been proved that if $\mathcal{P} \neq \mathcal{NP}$, then \mathcal{NP} -complete $\neq \mathcal{NP}$.
- The following problems are not known to be in *P* or *NP*, but seem to be of a type that makes them unlikely to be in *NP*.
 - ► GRAPH ISOMORPHISM: Are two graphs isomorphic?
 - ► COMPOSITE NUMBERS: For positive integer K, are there integers m, n > 1 such that K = mn?
 - LINEAR PROGRAMMING

PARTITION \leq_{p} **KNAPSACK**

PARTITION is a special case of KNAPSACK in which

$$K = \frac{1}{2}\sum_{a\in A} s(a)$$

assuming $\sum s(a)$ is even.

Assuming PARTITION is $\mathcal{NP}\text{-}complete,$ KNAPSACK is $\mathcal{NP}\text{-}complete.$

"Practical" Exponential Problems

• What about our O(KN) dynamic prog algorithm?

"Practical" Exponential Problems

- What about our O(KN) dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus O(KN) is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers 1, · · · , *K*. Takes exponential time when measured by number of bits to represent *K*.

"Practical" Exponential Problems

- What about our O(KN) dynamic prog algorithm?
- Input size for KNAPSACK is $O(N \log K)$
 - Thus O(KN) is exponential in $N \log K$.
- The dynamic programming algorithm counts through numbers 1, · · · , *K*. Takes exponential time when measured by number of bits to represent *K*.
- If K is "small" (K = O(p(N))), then algorithm has complexity polynomial in N and is truly polynomial in input size.
- An algorithm that is polynomial-time if the numbers IN the input are "small" (as opposed to number OF inputs) is called a **pseudo-polynomial** time algorithm.

"Practical" Problems (cont)

- Lesson: While KNAPSACK is \mathcal{NP} -complete, it is often not that hard.
- Many \mathcal{NP} -complete problems have no pseudopolynomial time algorithm unless $\mathcal{P} = \mathcal{NP}$.

< ロ > < 同 > < 回 > < 回 >