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Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)
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Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.
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Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”
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Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.
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Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.
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Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.
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Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.
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Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.
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Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)
if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then
REJECT; // S is too small

for (u in S)
for (v in S)
if ((u <> v) && ((u, v) not in E))
REJECT; // S is missing an edge

ACCEPT;
}
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Nondeterministic Acceptance

(G,K ) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

I An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
I There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

I It provides insight into the nature of certain hard
problems.
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Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.
There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.
Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.
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Class NP(cont)

Alternative Interpretation:
NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.
If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!
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How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:
Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.
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NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.
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Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.

CS 5114: Theory of Algorithms Spring 2014 16 / 1



Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.
CS 5114: Theory of Algorithms Spring 2014 16 / 1



Proof Sketch
SAT ∈ NP:

A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .
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Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.
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Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.
(a) Show A ∈ NP.
(b) Pick an NP-complete problem B and show B ≤p A.
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NP-completeness Proof Template

To show that decision problem B is NP-complete:
1 B ∈ NP

I Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .

2 B is NP-hard.
I Choose a known NP-complete problem, A.
I Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

I Show that X ∈ A if and only if T (X ) ∈ B.
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3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.
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3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)
x[i] = nd-choice(TRUE, FALSE);

Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)
ACCEPT;

else
REJECT;

}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.
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Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
I We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.
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Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · ·+ yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.
After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.
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Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.
Assume E has a satisfying truth assignment.
Then that extends to a satisfying truth assignment for
cases (a) and (b).
In case (c), assume ym is assigned “true”.
Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.
Then all the clauses in case (c) are satisfied.
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Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

F If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

F But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.
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Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

Manber

Manber

done

GJ
will do

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.
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Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.
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SAT ≤p CLIQUE

(1) Easy to show CLIQUE in NP.
(2) An instance of SAT is a Boolean expression

B = C1 · C2 · · ·Cm,

where
Ci = y [i ,1] + y [i ,2] + · · ·+ y [i , ki ].

Transform this to an instance of CLIQUE G = (V ,E) and K .

V = {v [i , j ]|1 ≤ i ≤ m,1 ≤ j ≤ ki}

Two vertices v [i1, j1] and v [i2, j2] are adjacent in G if i1 6= i2
AND EITHER y [i1, j1] and y [i2, j2] are the same literal
OR y [i1, j1] and y [i2, j2] have different underlying variables.
K = m.
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SAT ≤p CLIQUE (cont)

Example: B = (x + y + (z)) · (x + y + z) · (y + z).
K = 3.

(3) B is satisfiable iff G has clique of size ≥ K .
B is satisfiable implies there is a truth assignment such
that y [i , ji ] is true for each i .
But then v [i , ji ] must be in a clique of size K = m.
If G has a clique of size ≥ K , then the clique must have
size exactly K and there is one vertex v [i , ji ] in the clique
for each i .
There is a truth assignment making each y [i , ji ] true.
That truth assignment satisfies B.

We conclude that CLIQUE is NP-hard, therefore
NP-complete.
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Co-NP

Note the asymmetry in the definition of NP.
I The non-determinism can identify a clique, and you can

verify it.
I But what if the correct answer is “NO”? How do you

verify that?
Co-NP: The complements of problems in NP.

I Is a boolean expression always false?
I Is there no clique of size k?

It seems unlikely that NP= co-NP.
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Is NP-complete = NP?

It has been proved that if P6= NP, then NP-complete 6=
NP.
The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in NP.

I GRAPH ISOMORPHISM: Are two graphs isomorphic?
I COMPOSITE NUMBERS: For positive integer K , are

there integers m,n > 1 such that K = mn?
I LINEAR PROGRAMMING
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PARTITION ≤p KNAPSACK

PARTITION is a special case of KNAPSACK in which

K =
1
2

∑
a∈A

s(a)

assuming
∑

s(a) is even.

Assuming PARTITION is NP-complete, KNAPSACK is
NP-complete.

CS 5114: Theory of Algorithms Spring 2014 33 / 1



“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?

Input size for KNAPSACK is O(N log K )
I Thus O(KN) is exponential in N log K .

The dynamic programming algorithm counts through
numbers 1, · · · ,K . Takes exponential time when
measured by number of bits to represent K .
If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2014 34 / 1



“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?
Input size for KNAPSACK is O(N log K )

I Thus O(KN) is exponential in N log K .
The dynamic programming algorithm counts through
numbers 1, · · · ,K . Takes exponential time when
measured by number of bits to represent K .

If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2014 34 / 1



“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?
Input size for KNAPSACK is O(N log K )

I Thus O(KN) is exponential in N log K .
The dynamic programming algorithm counts through
numbers 1, · · · ,K . Takes exponential time when
measured by number of bits to represent K .
If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2014 34 / 1



“Practical” Problems (cont)

Lesson: While KNAPSACK is NP-complete, it is often
not that hard.
Many NP-complete problems have no pseudo-
polynomial time algorithm unless P= NP.
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