CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2014

Copyright © 2014 by Clifford A. Shaffer

] 5 =
CS 5114: Theory of Algorithms

Spring 2014

1/1



Tractable Problems

We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).
@ It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
@ Sorting: O(n?)
@ Convex Hull: O(n?)
@ Single source shortest path: O(n?)
@ All pairs shortest path: O(n®)
@ Matrix multiplication: O(n®)

CS 5114: Theory of Algorithms Spring 2014

2/1



Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

@ A special kind of reduction.
© Nondeterminism.

CS 5114: Theory of Algorithms Spring 2014 3/1



Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
@ Usually formulated as a question.
Example:

@ Instance: A weighted graph G = (V, E), two vertices s
and t, and an integer K.

@ Question: Is there a path from s to t of length < K? In
this example, the answer is “yes.”

CS 5114: Theory of Algorithms Spring 2014

4/1



Decision Problems (cont)

Can also be formulated as a language recognition problem:

@ Let L be the subset of / consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014



Polynomial Reducibility

Reduction of one language to another language.

Let Ly C 1 and L, C kL be languages. L; is

polynomially reducible to L, if there exists a transformation
f: Iy — kL, computable in polynomial time, such that

f(x) € Ly if and only if x € L;.

We write: L4 Sp Lo or Ly < Lo.

CS 5114: Theory of Algorithms Spring 2014 6/1



Examples

@ CLIQUE <, INDEPENDENT SET.

@ Aninstance / of CLIQUE is a graph G = (V, E) and an
integer K.

@ The instance I = f(/) of INDEPENDENT SET is the
graph G' = (V, E’) and the integer K, were an edge
(u,v) € E"iff (u,v) ¢ E.

@ fis computable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014

7/1



Transformation Example

@ G has a clique of size > K iff G’ has an independent set
of size > K.
@ Therefore, CLIQUE <, INDEPENDENT SET.

@ IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

CS 5114: Theory of Algorithms Spring 2014 8/1



Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(chy, chy, ..., chj)
returns one of the choices chy, chy, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

CS 5114: Theory of Algorithms Spring 2014



Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(chy, chy, ..., chj)
returns one of the choices chy, chy, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.

CS 5114: Theory of Algorithms Spring 2014 9/1



Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE (Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)
if (nd-choice (YES, NO) == YES) then {
S = union (S, Vv);
size = size + 1;
}
if (size < K) then
REJECT; // S is too small
for (u in S)
for (v in S)
if ((u <> v) && ((u, v) not in E))
REJECT; // S is missing an edge
ACCEPT;
}

10/1



Nondeterministic Acceptance

® (G, K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.

@ Definition of acceptance by a nondeterministic
algorithm:

» An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

CS 5114: Theory of Algorithms Spring 2014 11/1



Nondeterministic Acceptance

® (G, K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.

@ Definition of acceptance by a nondeterministic
algorithm:

» An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

@ An unrealistic model of computation.

» There are an exponential number of possible choices,
but only one must accept for the instance to be accepted.

CS 5114: Theory of Algorithms Spring 2014 11/1



Nondeterministic Acceptance

® (G, K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accepit.

@ Definition of acceptance by a nondeterministic
algorithm:

» An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

@ An unrealistic model of computation.

» There are an exponential number of possible choices,
but only one must accept for the instance to be accepted.

@ Nondeterminism is a useful concept

» It provides insight into the nature of certain hard
problems.

CS 5114: Theory of Algorithms Spring 2014 11/1



Class NP

@ The class of languages accepted by a nondeterministic
algorithm in polynomial time is called N'P.

@ There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.

@ Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.

CS 5114: Theory of Algorithms Spring 2014 12/1



Class N'P(cont)

Alternative Interpretation:

@ NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.

@ If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

CS 5114: Theory of Algorithms Spring 2014 13/1



How to Get Famous

Clearly, P c N'P.

Extra Credit Problem:
@ Prove or disprove: P = N'P.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.

CS 5114: Theory of Algorithms Spring 2014 14/1



NP-completeness

A theory based on identifying problems that are as hard as
any problems in N'P.

The next best thing to knowing whether P= NP or not.

A decision problem A is A'P-hard if every problem in NP is
polynomially reducible to A, that is, for all

Be NP, B<,A

A decision problem A is N'P-complete if Ac NP and Ais
NP-hard.

CS 5114: Theory of Algorithms Spring 2014 15/1




Satisfiability

Let E be a Boolean expression over variables xi, xo, - - - , X,
in conjunctive normal form (CNF), that is, an AND of ORs.

E = (Xs + X7 + Xg + X10) - (X2 + X3) - (X1 + X3 + Xg).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):

@ Instance: A Boolean expression E over variables
X1, X0, -+, Xy in CNF.
@ Question: Is E satisfiable?

CS 5114: Theory of Algorithms Spring 2014 16/1



Satisfiability

Let E be a Boolean expression over variables xi, xo, - - - , X,
in conjunctive normal form (CNF), that is, an AND of ORs.

E = (Xs + X7 + Xg + X10) - (X2 + X3) - (X1 + X3 + Xg).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):

@ Instance: A Boolean expression E over variables
X1, X0, -+, Xy in CNF.
@ Question: Is E satisfiable?

Cook’s Theorem: SAT is N'P-complete.
Spring 2014 16/1




Proof Sketch

SAT € N'P:
@ A non-deterministic algorithm guesses a truth
assignment for xq, xo, - - - , X, and checks whether E is

true in polynomial time.
@ It accepts iff there is a satisfying assignment for E.

CS 5114: Theory of Algorithms Spring 2014 17/1



Proof Sketch

SAT € N'P:
@ A non-deterministic algorithm guesses a truth
assignment for xq, xo, - - - , X, and checks whether E is

true in polynomial time.
@ It accepts iff there is a satisfying assignment for E.

SAT is N'P-hard:
@ Start with an arbitrary problem B € N'P.
@ We know there is a polynomial-time, nondeterministic
algorithm to accept B.
@ Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X.

CS 5114: Theory of Algorithms Spring 2014 17/1



Implications

(1) Since SAT is N'P-complete, we have not defined an
empty concept.

] 5 =
CS 5114: Theory of Algorithms

Spring 2014 18/1



Implications
(1) Since SAT is N'P-complete, we have not defined an
empty concept.

(2) If SAT € P, then P= N'P.

] 5 =
CS 5114: Theory of Algorithms

Spring 2014

18/1



Implications

(1) Since SAT is N'P-complete, we have not defined an
empty concept.

(2) If SAT € P, then P= N'P.

(3) If P= A'P, then SAT € P.

CS 5114: Theory of Algorithms Spring 2014 18/1



Implications

(1) Since SAT is N'P-complete, we have not defined an
empty concept.

(2) If SAT € P, then P= NP.
(3) If P= AP, then SAT € P.

(4) If Ae NP and B is N'P-complete, then B <, A implies A
is N'P-complete.

CS 5114: Theory of Algorithms Spring 2014 18/1



Implications

(1) Since SAT is N'P-complete, we have not defined an
empty concept.

(2) If SAT € P, then P= NP.
(3) If P= AP, then SAT € P.

(4) If Ae NP and B is N'P-complete, then B <, A implies A

is N'P-complete.

Proof:
@ Let C e NP.
@ Then C <, B since B is N'P-complete.
@ Since B <, Aand <, is transitive, C <, A.
@ Therefore, A is N'P-hard and, finally, N"P-complete.

Spring 2014 18/1



Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is N'P-complete.

(a) Show A € N'P.
(b) Pick an N'P-complete problem B and show B <, A.

CS 5114: Theory of Algorithms Spring 2014 19/1



NP-completeness Proof Template

To show that decision problem B is N'P-complete:
Q@ Bc NP

» Give a polynomial time, non-deterministic algorithm that
accepts B.
@ Given an instance X of B, guess evidence Y.
@ Check whether Y is evidence that X € B. If so, accept
X.

CS 5114: Theory of Algorithms Spring 2014 20/1



NP-completeness Proof Template

To show that decision problem B is N'P-complete:
Q@ Bc NP

» Give a polynomial time, non-deterministic algorithm that
accepts B.

@ Given an instance X of B, guess evidence Y.
@ Check whether Y is evidence that X € B. If so, accept
X

@ Bis N'P-hard.

» Choose a known N’P-complete problem, A.

» Describe a polynomial-time transformation T of an
arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

» Show that X € Aif and only if T(X) € B.

CS 5114: Theory of Algorithms Spring 2014 20/1



3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?
A special case of SAT.

One might hope that 3SAT is easier than SAT.

CS 5114: Theory of Algorithms Spring 2014 21/1



3SAT is N'P-complete

(1) 3SAT e N'P.

procedure nd-3SAT (E) {
for (1 = 1 to n)
x[1] = nd-choice (TRUE, FALSE) ;
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)
ACCEPT;
else
REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

CS 5114: Theory of Algorithms Spring 2014

22/1



Proving 3SAT N 'P-hard

@ Choose SAT to be the known N'P-complete problem.
» We need to show that SAT <, 3SAT.

@ Let E=C;: Cy--- Ck be any instance of SAT.

Strategy: Replace any clause C; that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci=y1 +yo+---+ y;where yq,-- -, y; are literals.
(@j=1
@ Replace (y;) with
itv+w)-i+v+w) - (i +v+w) (i +vV+Ww)

where v and w are new variables.
Spring 2014 23/1



Proving 3SAT N'P-hard (cont)

(b)j=2

@ Replace (y1 + y2) with (y1 + ¥ + 2) - (1 + Y2 + Z) where

Z is a new variable.
(€)j>3
@ Relace (yy + y2 + - - + y;) with
Wityet+tzi) (Vs + 2z +2) (Va+ 22+ 2Z3) - - -
(Y2 +Zi—a + Zj-3) - (Yj=1 + ¥ + Z=s)
where z1, 2, - - - , Zj_3 are new variables.

@ After replacements made for each C;, a Boolean
expression E’ results that is an instance of 3SAT.

@ The replacement clearly can be done by a
polynomial-time deterministic algorithm.

CS 5114: Theory of Algorithms Spring 2014

24/1



Proving 3SAT N'P-hard (cont)

(3) Show E is satisfiable iff E’ is satisfiable.
@ Assume E has a satisfying truth assignment.
@ Then that extends to a satisfying truth assignment for
cases (a) and (b).
@ In case (c), assume y,, is assigned “true”.
@ Then assign z;,t < m— 2, true and z,t > m— 1, false.
@ Then all the clauses in case (c) are satisfied.

CS 5114: Theory of Algorithms Spring 2014 25/1



Proving 3SAT N'P-hard (cont)

@ Assume E’ has a satisfying assignment.
@ By restriction, we have truth assignment for E.

(a) yy is necessarily true.

(b) y1 + y» is necessarily true.
(c) Proof by contradiction:

* If y1,y0,--- .y are all false, then zy, 25, - - - , zj_3 are all
true.
* But then (y;_1 + yj—» + Z_3) is false, a contradiction.

We conclude SAT < 3SAT and 3SAT is N'P-complete.

CS 5114: Theory of Algorithms Spring 2014

26/1



Tree of Reductions

A

will do done
CLIQUE 3SAT
donel Manber GJ
IND_SET 3COLOR 3DM

TM 5 GJ GJ

anber
VERTEX X3C PARITION
COVER .
Manber will do
GJ

KNAPSACK
HAM_CIR ]S)](E)’IL\AINATING

Reductions go down the tree.

Proofs that each problem € NP are straightforward.

CS 5114: Theory of Algorithms Spring 2014

27/1



Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:
@ If any N"P-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is N'P-complete.

Observation: If we find a problem is N"P-complete, then we
should do something other than try to find a P-time
algorithm.

CS 5114: Theory of Algorithms Spring 2014 28/1



SAT <, CLIQUE

(1) Easy to show CLIQUE in N'P.
(2) An instance of SAT is a Boolean expression

B=Ci-Co Cn,
where
Transform this to an instance of CLIQUE G = (V, E) and K.
V={vlijl <i<m1<j<ki}

Two vertices v[is, j1] and v[k, o] are adjacent in G if iy # b
AND EITHER y|i, j1] and y[io, jo] are the same literal
OR y[i, j1] and y[k, )] have different underlying variables.
K =m.
Spring 2014 29/1



SAT <, CLIQUE (cont)
Example: B=(x +y +(2))- X+y +2) - (y +2).
K=3.

(3) B is satisfiable iff G has clique of size > K.
@ B is satisfiable implies there is a truth assignment such
that y|[i, ji] is true for each i.
@ But then v[i, ji] must be in a clique of size K = m.
@ If G has a clique of size > K, then the clique must have
size exactly K and there is one vertex v|i, jj] in the clique
for each i.
@ There is a truth assignment making each y[i, ji] true.
That truth assignment satisfies B.
We conclude that CLIQUE is N/'P-hard, therefore
NP-complete.
Spring 2014 30/1



Co-NP

@ Note the asymmetry in the definition of N'P.
» The non-determinism can identify a clique, and you can
verify it.
» But what if the correct answer is “NO”? How do you
verify that?
@ Co-N'P: The complements of problems in A'P.
» |s a boolean expression always false?
» Is there no clique of size k?

@ It seems unlikely that N’P= co-NP.

CS 5114: Theory of Algorithms Spring 2014 31/1



Is N'P-complete = N'P?

@ It has been proved that if P# NP, then N'P-complete #
NP.
@ The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in N'P.
» GRAPH ISOMORPHISM: Are two graphs isomorphic?
» COMPOSITE NUMBERS: For positive integer K, are

there integers m, n > 1 such that K = mn?
» LINEAR PROGRAMMING

CS 5114: Theory of Algorithms Spring 2014 32/1



PARTITION <, KNAPSACK

PARTITION is a special case of KNAPSACK in which

assuming > s(a) is even.

Assuming PARTITION is N'P-complete, KNAPSACK is
NP-complete.

CS 5114: Theory of Algorithms Spring 2014 33/1



“Practical” Exponential Problems

@ What about our O(KN) dynamic prog algorithm?

CS 5114: Theory of Algorithms Spring 2014 34/1



“Practical” Exponential Problems

@ What about our O(KN) dynamic prog algorithm?
@ Input size for KNAPSACK is O(N log K)
» Thus O(KN) is exponential in Nlog K.
@ The dynamic programming algorithm counts through
numbers 1,--- | K. Takes exponential time when
measured by number of bits to represent K.

CS 5114: Theory of Algorithms Spring 2014 34/1



“Practical” Exponential Problems

@ What about our O(KN) dynamic prog algorithm?
@ Input size for KNAPSACK is O(N log K)
» Thus O(KN) is exponential in Nlog K.

@ The dynamic programming algorithm counts through
numbers 1,--- | K. Takes exponential time when
measured by number of bits to represent K.

@ If Kis “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.

@ An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2014 34 /1




“Practical” Problems (cont)

@ Lesson: While KNAPSACK is N'P-complete, it is often
not that hard.

@ Many N'P-complete problems have no pseudo-
polynomial time algorithm unless P= NP.

CS 5114: Theory of Algorithms Spring 2014 35/1



