
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 48

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
4-

14

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

CS 5114: Theory of Algorithms Spring 2014 2 / 48

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

20
14

-0
4-

14

CS 5114

Tractable Problems

Log-polynomial is O(n log n)

Like any simple rule of thumb for catagorizing, in some cases
the distinction between polynomial and exponential could break
down. For example, one can argue that, for practical problems,
1.01n is preferable to n25. But the reality is that very few
polynomial-time algorithms have high degree, and
exponential-time algorithms nearly always have a constant of 2
or greater. Nearly all algorithms are either low-degree
polynomials or “real” exponentials, with very little in between.

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

CS 5114: Theory of Algorithms Spring 2014 3 / 48

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

20
14

-0
4-

14

CS 5114

Tractable Problems (cont)

no notes

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

CS 5114: Theory of Algorithms Spring 2014 4 / 48

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

20
14

-0
4-

14

CS 5114

Decision Problems

Need a graph here.



Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 5 / 48

Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

20
14

-0
4-

14

CS 5114

Decision Problems (cont)

Following our graph example: It is possible to translate from a
graph to a string representation, and to define a subset of such
strings as corresponding to graphs with a path from s to t . This
subset defines a language to “recognize.”

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

CS 5114: Theory of Algorithms Spring 2014 6 / 48

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

20
14

-0
4-

14

CS 5114

Polynomial Reducibility

Or one decision problem to another.

Specialized case of reduction from Chapter 10.

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 7 / 48

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

20
14

-0
4-

14

CS 5114

Examples

no notes

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

CS 5114: Theory of Algorithms Spring 2014 8 / 48

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

20
14

-0
4-

14

CS 5114

Transformation Example

Need a graph here.

If nodes in G′ are independent, then no connections. Thus, in
G they all connect.



Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.

CS 5114: Theory of Algorithms Spring 2014 9 / 48

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.

20
14

-0
4-

14

CS 5114

Nondeterminism

no notes

Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}
CS 5114: Theory of Algorithms Spring 2014 10 / 48

Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}

20
14

-0
4-

14

CS 5114

Nondeterministic CLIQUE Algorithm

What makes this different than random guessing is that all
choices happen “in parallel.”

Nondeterministic Acceptance

(G,K ) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

I An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
I There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

I It provides insight into the nature of certain hard
problems.

CS 5114: Theory of Algorithms Spring 2014 11 / 48

Nondeterministic Acceptance

(G,K ) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

I An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
I There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

I It provides insight into the nature of certain hard
problems.

20
14

-0
4-

14

CS 5114

Nondeterministic Acceptance

no notes

Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.
There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.
Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.

CS 5114: Theory of Algorithms Spring 2014 12 / 48

Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.
There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.
Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.20

14
-0

4-
14

CS 5114

Class NP

Note that Towers of Hanoi is not in NP.



Class NP(cont)

Alternative Interpretation:
NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.
If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

CS 5114: Theory of Algorithms Spring 2014 13 / 48

Class NP(cont)

Alternative Interpretation:
NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.
If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

20
14

-0
4-

14

CS 5114

Class NP(cont)

This is worded a bit loosely. Specifically, we assume that we
can get the answer fast enough – that is, in polynomial time
non-deterministically.

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:
Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.

CS 5114: Theory of Algorithms Spring 2014 14 / 48

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:
Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.20

14
-0

4-
14

CS 5114

How to Get Famous

no notes

NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.

CS 5114: Theory of Algorithms Spring 2014 15 / 48

NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.

20
14

-0
4-

14

CS 5114

NP-completeness

A is not permitted to be harder than NP. For example, Tower of
Hanoi is not in NP. It requires exponential time to verify a set
of moves.

Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.
CS 5114: Theory of Algorithms Spring 2014 16 / 48

Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.

20
14

-0
4-

14

CS 5114

Satisfiability

Is there a truth assignment for the variables that makes E true?

Cook won a Turing award for this work.



Proof Sketch
SAT ∈ NP:

A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .

CS 5114: Theory of Algorithms Spring 2014 17 / 48

Proof Sketch
SAT ∈ NP:

A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .

20
14

-0
4-

14

CS 5114

Proof Sketch

The proof of this last step is usually several pages long. One
approach is to develop a nondeterministic Turing Machine
program to solve an arbitrary problem B in NP.

Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.

CS 5114: Theory of Algorithms Spring 2014 18 / 48

Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.

20
14

-0
4-

14

CS 5114

Implications

no notes

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.
(a) Show A ∈ NP.
(b) Pick an NP-complete problem B and show B ≤p A.

CS 5114: Theory of Algorithms Spring 2014 19 / 48

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.
(a) Show A ∈ NP.
(b) Pick an NP-complete problem B and show B ≤p A.

20
14

-0
4-

14

CS 5114

Implications (cont)

Proving A ∈ NP is usually easy.

Don’t get the reduction backwards!

NP-completeness Proof Template

To show that decision problem B is NP-complete:
1 B ∈ NP

I Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .
2 B is NP-hard.

I Choose a known NP-complete problem, A.
I Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

I Show that X ∈ A if and only if T (X ) ∈ B.

CS 5114: Theory of Algorithms Spring 2014 20 / 48

NP-completeness Proof Template

To show that decision problem B is NP-complete:
1 B ∈ NP

I Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .
2 B is NP-hard.

I Choose a known NP-complete problem, A.
I Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

I Show that X ∈ A if and only if T (X ) ∈ B.

20
14

-0
4-

14

CS 5114

NP-completeness Proof Template

B ∈ NP is usually the easy part.

The first two steps of the NP-hard proof are usually the
hardest.



3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

CS 5114: Theory of Algorithms Spring 2014 21 / 48

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.20
14

-0
4-

14

CS 5114

3-SATISFIABILITY (3SAT)

What about 2SAT? This is in P.

Effectively a 2-coloring graph problem. Join 2 vertices if they
are in same clause, also join xi and xi . Then, try to 2-color the
graph with a DFS.

How to solve 1SAT? Answer is “yes” iff xi and xi are not both in
list for any i .

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

CS 5114: Theory of Algorithms Spring 2014 22 / 48

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

20
14

-0
4-

14

CS 5114

3SAT is NP-complete

no notes

Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
I We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.
CS 5114: Theory of Algorithms Spring 2014 23 / 48

Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
I We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.

20
14

-0
4-

14

CS 5114

Proving 3SAT NP-hard

SAT is the only choice that we have so far!

Replacing (y1) with (y1 + y1 + y1) seems like a reasonable
alternative. But some of the theory behind the definitions
rejects clauses with duplicated literals.

Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · ·+ yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.
After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.

CS 5114: Theory of Algorithms Spring 2014 24 / 48

Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · ·+ yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.
After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.

20
14

-0
4-

14

CS 5114

Proving 3SAT NP-hard (cont)

no notes



Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.
Assume E has a satisfying truth assignment.
Then that extends to a satisfying truth assignment for
cases (a) and (b).
In case (c), assume ym is assigned “true”.
Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.
Then all the clauses in case (c) are satisfied.

CS 5114: Theory of Algorithms Spring 2014 25 / 48

Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.
Assume E has a satisfying truth assignment.
Then that extends to a satisfying truth assignment for
cases (a) and (b).
In case (c), assume ym is assigned “true”.
Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.
Then all the clauses in case (c) are satisfied.20

14
-0

4-
14

CS 5114

Proving 3SAT NP-hard (cont)

no notes

Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

F If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

F But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.

CS 5114: Theory of Algorithms Spring 2014 26 / 48

Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

F If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

F But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.20
14

-0
4-

14

CS 5114

Proving 3SAT NP-hard (cont)

no notes

Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

Manber

Manber

done

GJ
will do

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.

CS 5114: Theory of Algorithms Spring 2014 27 / 48

Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

Manber

Manber

done

GJ
will do

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.20
14

-0
4-

14

CS 5114

Tree of Reductions

Refer to handout of NP-complete problems

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.

CS 5114: Theory of Algorithms Spring 2014 28 / 48

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.

20
14

-0
4-

14

CS 5114

Perspective

Hundreds of problems, from many fields, have been shown to
be NP-complete.

More on this observation later.


