solution SLN, or to report that there is no solution.

A reduction from problem $\mathbf{A}(\mathbf{I}, \mathbf{S L N})$ to problem $\mathbf{B}\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$ requires two transformations (functions) T, T '.
$\mathrm{T}: \mathbf{I} \Rightarrow \mathbf{I}^{\prime}$

- Maps instances of the first problem to instances of the second.
$\mathrm{T}^{\prime}: \mathbf{S L N}{ }^{\prime} \Rightarrow \mathbf{S L N}$
- Maps solutions of the second problem to solutions of the first.

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2014

Copyright © 2014 by Clifford A. Shaffer

O + + + N	ᄂReductions	Reoustions
		边

This example we have already seen.

NOT reduce CH to sorting - that just means that we can make CH as hard as sorting! Using sorting isn't necessarily the only way to solve the CH problem, perhaps there is a better way. So just knowing that sorting is ONE WAY to solve CH doesn't tell us anything about the cost of CH . On the other hand, by showing that we can use CH as a tool to solve sorting, we know that CH cannot be faster than sorting.
We argued that there is a lower bound of $\Omega(n \log n)$ on finding the convex hull since there is a lower bound of $\Omega(n \log n)$ on sorting

Reduction Notation
 Reduction Notation

- We denote names of problems with all capital letters.
- Ex: SORTING, CONVEX HULL
- What is a problem?
- A relation consisting of ordered pairs (I, SLN).
- I comes from the set of instances (allowed inputs).
- SLN is the solution to the problem for instance I.
- Example: SORTING = (I, SLN).
I is a finite subset of \mathcal{R}.
- Prototypical instance: $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- SLN is the sequence of reals from I in sorted order.

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a

Title page
Students should be familiar with inductive proofs, recursion, data structures, and programming at the CS3114 level.

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of finding a convex hull in two dimensions

- Use CH as a way to solve sorting

no notes

Black Box Reduction (2)

Black box idea:
(1) Start with an instance I of problem \mathbf{A}.
(2) Transform to an instance $\mathrm{I}^{\prime}=\mathrm{T}(\mathrm{I})$, an instance of problem B.
(3) Use a "black box" algorithm for B as a subroutine to find a solution SLN' for B.
(9) Transform to a solution $\left.\mathbf{S L N}=\mathrm{T}^{\prime}(\mathbf{S L N})^{\prime}\right)$, a solution to the original instance I for problem A.

Black Box Diagram

no notes

-

If (I, SLN) reduces to ($\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}$), write:
$(\mathbf{I}, \mathbf{S L N}) \leq\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$.
This notation suggests that ($\mathbf{I}, \mathbf{S L N}$) is no harder than (\mathbf{I}^{\prime}, SLN').

Examples:

- SORTING \leq CONVEX HULL

The time complexity of T and T' is important to the time complexity of the black box algorithm for (I, SLN).

If combined time complexity is $O(g(n))$, write:
$(\mathbf{I}, \mathbf{S L N}) \leq_{O(g(n))}\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$.

Reduction Example

SORTING = (I, SLN $)$
CONVEX HULL = (\mathbf{l}^{\prime}, SLN').
(1) $\mathbf{I}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(2) $\mathrm{T}(\mathbf{I})=\mathrm{I}^{\prime}=\left\{\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right), \ldots,\left(x_{n}, x_{n}^{2}\right)\right\}$.
(3) Solve CONVEX HULL for I' to give solution SLN' $=\left\{\left(x_{i[1]}, x_{i[1]}^{2}\right),\left(x_{i[2]}, x_{i[2]}^{2}\right), \ldots,\left(x_{i[n]}, x_{i[n]}^{2}\right)\right\}$.
(9) T' finds a solution to I from SLN' as follows:
(- Find $\left(x_{i[k]}, x_{[k]}^{2}\right)$ such that $x_{i[k]}$ is minimum.
(2) $\mathrm{Y}=x_{i[k]}, x_{i[k+1]}, \ldots, x_{i[n]}, x_{[[1]}, \ldots, x_{i[k-1]}$.

- For a reduction to be useful, T and T' must be functions that can be computed by algorithms.
- An algorithm for the second problem gives an algorithm for the first problem by steps $2-4$.
O) CS 5114

More Notation

Sorting is no harder than Convex Hull. Conversely, Convex Hull is at least as hard as Sorting.

If T or T ' is expensive, then we have proved nothing about the relative bounds.

no notes

Notation Warning

Example: $\operatorname{SORTING} \leq{ }_{O(n)}$ CONVEX HULL.
WARNING: \leq is NOT a partial order because it is NOT antisymmetric.

SORTING $\leq_{0(n)}$ CONVEX HULL.
CONVEX HULL $\leq_{O(n)}$ SORTING.
But, SORTING $=$ CONVEX HULL.

Notice o, not O.So, given good transformations, both problems take at least $\Omega\left(P_{1}\right)$ and at most $O\left(P_{2}\right)$.

Since it is a set, there are no duplicates.

Or, $R=\{1,4,2,3\}$
U is the sets.
V is the elements from all of the sets (union the sets).
E matches elements to sets.

SDR Example

$\{1\} \quad 1$
$\{1,2,4\}$
2
$\{2,3\}$
3
$\{1,3,4\}$
4

Need better figure here.

A solution to SDR is easily obtained from a maximum matching in G of size k.

Simple Polygon Lower Bound (1)

© CS 5114

- SIMPLE POLYGON: Given a set of n points in the plane, find a simple polygon with those points as vertices.
- SORTING $\leq_{o(n)}$ SIMPLE POLYGON.
- Instance of SORTING: $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$.
- In linear time, find $M=\max \left|x_{i}\right|$.
- Let C be a circle centered at the origin, of radius M.
- Instance of SIMPLE POLYGON:

$$
\left\{\left(x_{1}, \sqrt{M^{2}-x_{i}^{2}}\right), \cdots,\left(x_{n}, \sqrt{M^{2}-x_{n}^{2}}\right)\right\} .
$$

All these points fall on C in their sorted order.

- The only simple polygon having the points on C as vertices is the convex one.

Simple Polygon Lower Bound (2)

- As with CONVEX HULL, the sorted order is easily obtained from the solution to SIMPLE POLYGON.
- By the Lower Bound Theorem, SIMPLE POLYGON is $\Omega(n \log n)$.

Problem: Compute A^{2} where A is an $n \times n$ matrix.
MATRIX MULTIPLY $\leq_{O\left(n^{2}\right)}$ SQUARING.

$$
\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right]
$$

Need a figure here showing the curve.

Matrix Multiplication

Matrix multiplication can be reduced to a number of other problems.

In fact, certain special cases of MATRIX MULTIPLY are equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):

- Instance: a symmetric $n \times n$ matrix.

MATRIX MULTIPLY $\leq_{O\left(n^{2}\right)}$ SYM.

$$
\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & B^{T} \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
A B & 0 \\
0 & A^{\top} B^{T}
\end{array}\right]
$$

Matrix Squaring


```
Clearly SYM is not harder than MM. Is it easier? No...
So, having a good SYM would give a good MM. The other way of looking at it is that SYM is just as hard as MM.
```


no notes

Linear Programming (LP)

Maximize or minimize a linear function subject to linear constraints.
Variables: vector $\mathbf{X}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
Objective Function: $\mathbf{c} \cdot \mathbf{X}=\sum c_{i} x_{i}$.
Inequality Constraints: $\mathbf{A}_{\boldsymbol{i}} \cdot \mathbf{X} \leq b_{i} \quad 1 \leq i \leq k$.
Equality Constraints: $\mathbf{E}_{\mathbf{i}} \cdot \mathbf{X}=d_{i} \quad 1 \leq i \leq m$.
Non-negative Constraints: $x_{i} \geq 0$ for some is.

Use of LP

Reasons for considering LP:

- Practical algorithms exist to solve LP.
- Many real-world optimization problems are naturally stated as LP.
- Many optimization problems are reducible to LP.

Network Flow Reduction (1)

- Reduce NETWORK FLOW to LP.
- Let $x_{1}, x_{2}, \cdots, x_{n}$ be the flows through edges.
- Objective function: For $S=$ edges out of the source, maximize

$$
\sum_{i \in S} x_{i} .
$$

- Capacity constraints: $x_{i} \leq c_{i} \quad 1 \leq i \leq n$.
- Flow conservation:

For a vertex $v \in V-\{s, t\}$,
let $Y(v)=$ set of x_{i} for edges leaving v.
$Z(v)=$ set of x_{i} for edges entering v.

$$
\sum_{Z(V)} x_{i}-\sum_{Y(V)} x_{i}=0 .
$$

Network Flow Reduction (2)

Non-negative constraints: $x_{i} \geq 0 \quad 1 \leq i \leq n$.
Maximize: $x_{1}+x_{4}$ subject to:

$$
\begin{array}{r}
x_{1} \leq 4 \\
x_{2} \leq 3 \\
x_{3} \leq 2 \\
x_{4} \leq 5 \\
x_{5} \leq 7 \\
x_{1}+x_{3}-x_{2}=0 \\
x_{4}-x_{3}-x_{5}=0 \\
x_{1}, \cdots, x_{5} \geq 0
\end{array}
$$

Obviously, maximize the objective function by maximizing the X_{i} 's!! But we can't do that arbirarily because of the constraints.

Need graph:
Vertices: s, a, b, t.
Edges:

- $s \rightarrow$ a with capacity $c_{1}=4$.
- $a \rightarrow t$ with capacity $c_{2}=3$.
- $\mathrm{a} \rightarrow \mathrm{b}$ with capacity $\mathrm{C}_{3}=2$.
- $s \rightarrow \mathrm{~b}$ with capacity $\mathrm{c}_{4}=5$.
- $\mathrm{b} \rightarrow \mathrm{t}$ with capacity $\mathrm{C}_{5}=7$.

Matching

- Start with graph $G=(V, E)$.
- Let $x_{1}, x_{2}, \cdots, x_{n}$ represent the edges in E.
- $x_{i}=1$ means edge i is matched.
- Objective function: Maximize

$$
\sum_{i=1}^{n} x_{i} .
$$

- subject to: (Let $N(v)$ denote edges incident on v)

$$
\begin{aligned}
& \sum_{N(V)} x_{i} \leq 1 \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

- Integer constraints: Each x_{i} must be an integer.
- Integer constraints makes this INTEGER LINEAR PROGRAMMING (ILP).
Summary

NETWORK FLOW $\leq_{O(n)}$ LP.
MATCHING $\leq_{o(n)}$ ILP.

Summary of Reduction

Importance:

(1) Compare difficulty of problems.
(2) Prove new lower bounds.
(3) Black box algorithms for "new" problems in terms of (already solved) "old" problems.
(9) Provide insights.

Warning:

- A reduction does not provide an algorithm to solve a problem - only a transformation.
- Therefore, when you look for a reduction, you are not trying to solve either problem.

Another Warning

The notation $P_{1} \leq P_{2}$ is meant to be suggestive.
Think of P_{1} as the easier, P_{2} as the harder problem.

Always transform from instance of P_{1} to instance of P_{2}.
Common mistake: Doing the reduction backwards (from P_{2} to P_{1}).

DON'T DO THAT!

no notes

no notes

no notes

Common Problems used in Reductions
NETWORK FLOW

MATCHING
SORTING

LP
ILP
MATRIX MULTIPLICATION

SHORTEST PATHS

Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.
A problem is said to be tractable if an algorithm exists to solve it with polynomial time complexity: $O(p(n))$.

- It is said to be intractable if the best known algorithm requires exponential time.

Examples:

- Sorting: $O\left(n^{2}\right)$
- Convex Hull: $O\left(n^{2}\right)$
- Single source shortest path: $O\left(n^{2}\right)$
- All pairs shortest path: $O\left(n^{3}\right)$
- Matrix multiplication: $O\left(n^{3}\right)$

Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:
(1) A special kind of reduction.
(2) Nondeterminism.

Decision Problems

(I, S) such that $S(X)$ is always either "yes" or "no."

- Usually formulated as a question.

Example:

- Instance: A weighted graph $G=(V, E)$, two vertices s and t, and an integer K.

```
8 CS 5114
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l} 
O \\
\hline \\
+ \\
+ \\
+ \\
\hline \\
N
\end{tabular}} & \multirow[t]{3}{*}{\(\left\llcorner_{\text {Tractable Problems }}\right.\)} & Tractable Probems \\
\hline & & ander \\
\hline & & and \\
\hline
\end{tabular}

Log-polynomial is \(O(n \log n)\)
Like any simple rule of thumb for catagorizing, in some cases the distinction between polynomial and exponential could break down. For example, one can argue that, for practical problems, \(1.01^{n}\) is preferable to \(n^{25}\). But the reality is that very few polynomial-time algorithms have high degree, and exponential-time algorithms nearly always have a constant of 2 or greater. Nearly all algorithms are either low-degree polynomials or "real" exponentials, with very little in between.

no notes


Need a graph here.
- Question: Is there a path from \(s\) to \(t\) of length \(\leq K\) ? In this example, the answer is "yes."

\section*{Decision Problems (cont)}

Can also be formulated as a language recognition problem:
- Let \(L\) be the subset of \(I\) consisting of instances whose answer is "yes." Can we recognize \(L\) ?

The class of tractable problems \(\mathcal{P}\) is the class of languages or decision problems recognizable in polynomial time.

\section*{Polynomial Reducibility}

Reduction of one language to another language.
Let \(L_{1} \subset I_{1}\) and \(L_{2} \subset I_{2}\) be languages. \(L_{1}\) is
polynomially reducible to \(L_{2}\) if there exists a transformation
\(f: I_{1} \rightarrow I_{2}\), computable in polynomial time, such that
\(f(x) \in L_{2}\) if and only if \(x \in L_{1}\).
We write: \(L_{1} \leq_{p} L_{2}\) or \(L_{1} \leq L_{2}\).

\section*{Examples}
- CLIQUE \(\leq_{p}\) INDEPENDENT SET.
- An instance \(/\) of CLIQUE is a graph \(G=(V, E)\) and an integer \(K\).
- The instance \(I^{\prime}=f(I)\) of INDEPENDENT SET is the graph \(G^{\prime}=\left(V, E^{\prime}\right)\) and the integer \(K\), were an edge \((u, v) \in E^{\prime}\) iff \((u, v) \notin E\).
- \(f\) is computable in polynomial time.

\section*{Transformation Example}
- \(G\) has a clique of size \(\geq K\) iff \(G^{\prime}\) has an independent set of size \(\geq K\).
- Therefore, CLIQUE \(\leq_{p}\) INDEPENDENT SET.
- IMPORTANT WARNING: The reduction does not solve either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.


Or one decision problem to another.

Specialized case of reduction from Chapter 10.

no notes```

