
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 1

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
4-

09

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

CS 5114: Theory of Algorithms Spring 2014 2 / 1

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

20
14

-0
4-

09

CS 5114

Reductions

This example we have already seen.

NOT reduce CH to sorting – that just means that we can make
CH as hard as sorting! Using sorting isn’t necessarily the only
way to solve the CH problem, perhaps there is a better way. So
just knowing that sorting is ONE WAY to solve CH doesn’t tell
us anything about the cost of CH. On the other hand, by
showing that we can use CH as a tool to solve sorting, we know
that CH cannot be faster than sorting.

Reduction Notation

We denote names of problems with all capital letters.
I Ex: SORTING, CONVEX HULL

What is a problem?
I A relation consisting of ordered pairs (I, SLN).
I I comes from the set of instances (allowed inputs).
I SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

I Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.

CS 5114: Theory of Algorithms Spring 2014 3 / 1

Reduction Notation

We denote names of problems with all capital letters.
I Ex: SORTING, CONVEX HULL

What is a problem?
I A relation consisting of ordered pairs (I, SLN).
I I comes from the set of instances (allowed inputs).
I SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

I Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.20
14

-0
4-

09

CS 5114

Reduction Notation

no notes

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

CS 5114: Theory of Algorithms Spring 2014 4 / 1

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

20
14

-0
4-

09

CS 5114

Black Box Reduction (1)

no notes

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.

CS 5114: Theory of Algorithms Spring 2014 5 / 1

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.20
14

-0
4-

09

CS 5114

Black Box Reduction (2)

no notes

Black Box Diagram

I

I’

Problem A:

Problem B

SLN

Transform 2

Transform 1

SLN’

CS 5114: Theory of Algorithms Spring 2014 6 / 1

Black Box Diagram

I

I’

Problem A:

Problem B

SLN

Transform 2

Transform 1

SLN’

20
14

-0
4-

09

CS 5114

Black Box Diagram

no notes

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

CS 5114: Theory of Algorithms Spring 2014 7 / 1

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

20
14

-0
4-

09

CS 5114

More Notation

Sorting is no harder than Convex Hull. Conversely, Convex Hull
is at least as hard as Sorting.

If T or T’ is expensive, then we have proved nothing about the
relative bounds.

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

CS 5114: Theory of Algorithms Spring 2014 8 / 1

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

20
14

-0
4-

09

CS 5114

Reduction Example

no notes

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.

CS 5114: Theory of Algorithms Spring 2014 9 / 1

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.20
14

-0
4-

09

CS 5114

Notation Warning

no notes

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

CS 5114: Theory of Algorithms Spring 2014 10 / 1

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

20
14

-0
4-

09

CS 5114

Bounds Theorems

Notice o, not O.So, given good transformations, both problems
take at least Ω(P1) and at most O(P2).

System of Distinct Representatives
(SDR)

Instance: Sets S1,S2, · · · ,Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1,2,4}, {2,3}, {1,3,4}.
Solution: R = {1,2,3,4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1,S2, · · · ,Sk of SDR, transform it
to an instance G = (U,V ,E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1,S2, · · · ,Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

CS 5114: Theory of Algorithms Spring 2014 11 / 1

System of Distinct Representatives
(SDR)

Instance: Sets S1,S2, · · · ,Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1,2,4}, {2,3}, {1,3,4}.
Solution: R = {1,2,3,4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1,S2, · · · ,Sk of SDR, transform it
to an instance G = (U,V ,E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1,S2, · · · ,Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

20
14

-0
4-

09

CS 5114

System of Distinct Representatives (SDR)

Since it is a set, there are no duplicates.

Or, R = {1,4,2,3}

U is the sets.
V is the elements from all of the sets (union the sets).
E matches elements to sets.

SDR Example

{1} 1

{1,2,4} 2

{2,3} 3

{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

CS 5114: Theory of Algorithms Spring 2014 12 / 1

SDR Example

{1} 1

{1,2,4} 2

{2,3} 3

{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

20
14

-0
4-

09

CS 5114

SDR Example

Need better figure here.

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

I In linear time, find M = max |xi |.
I Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,
√

M2 − x2
i), · · · , (xn,

√
M2 − x2

n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

CS 5114: Theory of Algorithms Spring 2014 13 / 1

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

I In linear time, find M = max |xi |.
I Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,
√

M2 − x2
i), · · · , (xn,

√
M2 − x2

n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

20
14

-0
4-

09

CS 5114

Simple Polygon Lower Bound (1)

Need a figure here showing the curve.

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.
By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

CS 5114: Theory of Algorithms Spring 2014 14 / 1

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.
By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

20
14

-0
4-

09

CS 5114

Simple Polygon Lower Bound (2)

no notes

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.[
0 A

AT 0

] [
0 BT

B 0

]
=

[
AB 0
0 AT BT

]
CS 5114: Theory of Algorithms Spring 2014 15 / 1

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.[
0 A

AT 0

] [
0 BT

B 0

]
=

[
AB 0
0 AT BT

]20
14

-0
4-

09

CS 5114

Matrix Multiplication

Clearly SYM is not harder than MM. Is it easier? No...

So, having a good SYM would give a good MM. The other way
of looking at it is that SYM is just as hard as MM.

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[
0 A
B 0

]2

=

[
AB 0
0 BA

]

CS 5114: Theory of Algorithms Spring 2014 16 / 1

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[
0 A
B 0

]2

=

[
AB 0
0 BA

]

20
14

-0
4-

09

CS 5114

Matrix Squaring

no notes

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.

CS 5114: Theory of Algorithms Spring 2014 17 / 1

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.20
14

-0
4-

09

CS 5114

Linear Programming (LP)

Example of a “super problem” that many problems can reduce
to.

Objective function defeinse what we want to minimize.

Ai is a vector – k vectors give the k b’s.

Not all of the constraint types are used for every problem.

Use of LP

Reasons for considering LP:
Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

CS 5114: Theory of Algorithms Spring 2014 18 / 1

Use of LP

Reasons for considering LP:
Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

20
14

-0
4-

09

CS 5114

Use of LP

no notes

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize ∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .∑
Z (V)

xi −
∑
Y (V)

xi = 0.

CS 5114: Theory of Algorithms Spring 2014 19 / 1

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize ∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .∑
Z (V)

xi −
∑
Y (V)

xi = 0.

20
14

-0
4-

09

CS 5114

Network Flow Reduction (1)

Obviously, maximize the objective function by maximizing the
Xi ’s!! But we can’t do that arbirarily because of the constraints.

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4
x2 ≤ 3
x3 ≤ 2
x4 ≤ 5
x5 ≤ 7

x1 + x3 − x2 = 0
x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 0

CS 5114: Theory of Algorithms Spring 2014 20 / 1

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4
x2 ≤ 3
x3 ≤ 2
x4 ≤ 5
x5 ≤ 7

x1 + x3 − x2 = 0
x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 020
14

-0
4-

09

CS 5114

Network Flow Reduction (2)

Need graph:
Vertices: s, a, b, t.

Edges:

• s→ a with capacity c1 = 4.

• a→ t with capacity c2 = 3.

• a→ b with capacity c3 = 2.

• s→ b with capacity c4 = 5.

• b→ t with capacity c5 = 7.

Matching

Start with graph G = (V ,E).
Let x1, x2, · · · , xn represent the edges in E .

I xi = 1 means edge i is matched.
Objective function: Maximize

n∑
i=1

xi .

subject to: (Let N(v) denote edges incident on v)∑
N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

CS 5114: Theory of Algorithms Spring 2014 21 / 1

Matching

Start with graph G = (V ,E).
Let x1, x2, · · · , xn represent the edges in E .

I xi = 1 means edge i is matched.
Objective function: Maximize

n∑
i=1

xi .

subject to: (Let N(v) denote edges incident on v)∑
N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

20
14

-0
4-

09

CS 5114

Matching

no notes

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

CS 5114: Theory of Algorithms Spring 2014 22 / 1

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

20
14

-0
4-

09

CS 5114

Summary

no notes

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

CS 5114: Theory of Algorithms Spring 2014 23 / 1

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

20
14

-0
4-

09

CS 5114

Summary of Reduction

no notes

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!

CS 5114: Theory of Algorithms Spring 2014 24 / 1

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!20
14

-0
4-

09

CS 5114

Another Warning

no notes

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS
CS 5114: Theory of Algorithms Spring 2014 25 / 1

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS

20
14

-0
4-

09

CS 5114

Common Problems used in Reductions

no notes

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

CS 5114: Theory of Algorithms Spring 2014 26 / 1

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

20
14

-0
4-

09

CS 5114

Tractable Problems

Log-polynomial is O(n log n)

Like any simple rule of thumb for catagorizing, in some cases
the distinction between polynomial and exponential could break
down. For example, one can argue that, for practical problems,
1.01n is preferable to n25. But the reality is that very few
polynomial-time algorithms have high degree, and
exponential-time algorithms nearly always have a constant of 2
or greater. Nearly all algorithms are either low-degree
polynomials or “real” exponentials, with very little in between.

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

CS 5114: Theory of Algorithms Spring 2014 27 / 1

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

20
14

-0
4-

09

CS 5114

Tractable Problems (cont)

no notes

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

CS 5114: Theory of Algorithms Spring 2014 28 / 1

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

20
14

-0
4-

09

CS 5114

Decision Problems

Need a graph here.

Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 29 / 1

Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

20
14

-0
4-

09

CS 5114

Decision Problems (cont)

Following our graph example: It is possible to translate from a
graph to a string representation, and to define a subset of such
strings as corresponding to graphs with a path from s to t . This
subset defines a language to “recognize.”

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

CS 5114: Theory of Algorithms Spring 2014 30 / 1

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

20
14

-0
4-

09

CS 5114

Polynomial Reducibility

Or one decision problem to another.

Specialized case of reduction from Chapter 10.

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 31 / 1

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

20
14

-0
4-

09

CS 5114

Examples

no notes

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

CS 5114: Theory of Algorithms Spring 2014 32 / 1

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

20
14

-0
4-

09

CS 5114

Transformation Example

Need a graph here.

If nodes in G′ are independent, then no connections. Thus, in
G they all connect.

