

- If T has n vertices, then T contains a vertex of degree 1.
- Remove that vertex and its incident edge to obtain T', a free tree with n – 1 vertices.
- ► By IH, T' has n 2 edges.
- ► Thus, T has n 1 edges.

CS 5114: Theory of Algorithms

Spring 2014 3 / 60

Graph Traversals

Various problems require a way to **traverse** a graph – that is, visit each vertex and edge in a systematic way.

Three common traversals:

- Eulerian tours Traverse each edge exactly once
- Depth-first search Keeps vertices on a stack
- Breadth-first search Keeps vertices on a queue

CS 5114: Theory of Algorithms

a vertex may be visited multiple times

Graph Traversals

61-CS 2114

Eulerian Tours


```
for (Edge w = each neighbor of v)
    if (G.getMark(G.v2(w)) == UNVISITED)
    DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: DFS(G, r) where r is the **root** of the DFS.

Cost: $\Theta(|V| + |E|)$.

Depth First Search Example

Spring 2014 7 / 60

0 CS 5114	Eulerian To
Eulerian Tours	A detaul frat contains every edge es Example: Tour: b all c d e. Example: No Eulerian tour. How can you lei h

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

60-000 CS 5114 Eldrian Tour Proof Eldrian Tour Proof CS 5114 Eldrian Tour Proof CS 5114 State A control of the state of th

Base case: 0 edges and 1 vertex fits the theorem. **IH**: The theorem is true for < m edges. Always possible to find a circuit starting at any arbitrary is

CS 5114

Always possible to find a circuit starting at any arbitrary vertex, since each vertex has even degree.

<u></u>		Departmat dearen
2014-03-	Depth First Search	<pre>widd GYTEDRAGR 0; ist v) 1 // oppin ista annoin Partiality,) // Data parpopting and into 0.estNomeko, viritity) ist (Dign = ask scipture at v) ist (Dign = ask scipture at v) Parts, 0.v2(e)) Parts, 0.v2(e)) Parts, 0.v2(e)) parts, 0.v2(e)) parts, 0.v2(e))</pre>
		Initial call: DP3 (0, r) where r is the root of the DPS. Cost: O(N) + IE).
no no	ites	
တ CS 511	4	Depth First Search Example
÷.		0 0 0 0
2014-0	Depth First Search Example	

The directions are imposed by the traversal. This is the Depth First Search Tree.

DFS Tree

If we number the vertices in the order that they are marked, we get **DFS numbers**.

Lemma 7.2: Every edge $e \in E$ is either in the DFS tree T, or connects two vertices of G, one of which is an ancestor of the other in T.

Proof: Consider the first time an edge (v, w) is examined, with v the current vertex.

- If w is unmarked, then (v, w) is in T.
- If w is marked, then w has a smaller DFS number than v AND (v, w) is an unexamined edge of w.
- Thus, w is still on the stack. That is, w is on a path from V.

Lemma 7.4: Let G be a directed graph. G has a directed cycle iff every DFS of G produces a back edge.

Proof:

CS 5114: Theory of Algorithms

- Suppose a DFS produces a back edge (v, w).
 - v and w are in the same DFS tree, w an ancestor of v.
 - (v, w) and the path in the tree from w to v form a
 - directed cycle.
- Suppose G has a directed cycle C.
 - Do a DFS on G.
 - ▶ Let w be the vertex of C with smallest DFS number.
 - ► Let (*v*, *w*) be the edge of *C* coming into *w*.
 - v is a descendant of w in a DFS tree.

Therefore, (v, w) is a back edge.

Spring 2014

11/60

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex's neighbors before going deeper in tree.

מ	CS 5114
ZU 14-03-	DFS Tree

Results: No "cross edges." That is, no edges connecting vertices sideways in the tree.

စ္ ^{CS 5114}	DFS for Directed Graphs
DFS for Directed Graphs	Idear perblem: A connected graph may not give DPS team. Increased engane: (1, 1) Increased engane: (5, 1) Comm engane: (5, 1), (5, 7), (5, 5), (6, 1), (4, 2), Control of the second

no notes

See earlier lemma.

စ္ CS 5114	Breadth First Search
Breadth First Search	Like DFS, but replace shock with a queue. Viat verteck respirate before going deeper in tree.

no notes

Spring 2014 12 / 60

Breadth First Search Algorithm

```
void BFS(Graph G, int start) {
   Queue Q(G.n());
   Q.enqueue(start);
   G.setMark(start, VISITED);
   while (!Q.isEmpty()) {
      int v = Q.dequeue();
      PreVisit(G, v); // Take appropriate action
      for (Edge w = each neighbor of v)
        if (G.getMark(G.v2(w)) == UNVISITED) {
           G.setMark(G.v2(w), VISITED);
           Q.enqueue(G.v2(w));
        }
      PostVisit(G, v); // Take appropriate action
}
```

CS 5114: Theory of Algorithms Spring 2014 13 / 60 **Breadth First Search Example** (в` (В C (C) \bigcirc (D)F (a) (b) Non-tree edges connect vertices at levels differing by 0 or 1. CS 5114: Theory of Algorithms Spring 2014 14 / 60 **Topological Sort** Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites. (J7) CS 5114: Theory of Algorithms Spring 2014 15/60**Topological Sort Algorithm** void topsort(Graph G) { // Top sort: recursive for (int i=0; i<G.n(); i++) // Initialize Mark</pre> G.setMark(i, UNVISITED); for (i=0; i<G.n(); i++)</pre> // Process vertices if (G.getMark(i) == UNVISITED)

tophelp(G, i); // Call helper
}
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)
 if (G.getMark(G.v2(w)) == UNVISITED)
 tophelp(G, G.v2(w));
printout(v); // PostVisit for Vertex v

Spring 2014 16 / 60

CS 5114: Theory of Algorithms

CS 5114 Breadth First Search Algorithm

Breadth First Search Example

queue when the edge was encountered.

စ္ CS 5114

2014-03-

CS 5114 Topological Sort Topological Sort no notes

We know this because if an edge had connected to a deeper

level, then that target node would have been placed on the

CS 5114 - Topological Sort Algorithm

Prints in reverse order.

Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
<pre>Queue Q(G.n()); int Count[G.n()];</pre>
<pre>for (int v=0; v<g.n(); count[v]="0;</pre" v++)=""></g.n();></pre>
for (v=0; v <g.n(); edge<="" every="" process="" th="" v++)=""></g.n();>
for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2's count
for (v=0; v <g.n(); initialize="" queue<="" td="" v++)=""></g.n();>
if (Count[v] == 0) Q.enqueue(v);
<pre>while (!Q.isEmpty()) { // Process the vertices</pre>
<pre>int v = Q.dequeue();</pre>
<pre>printout(v); // PreVisit for v</pre>
for (Edge w = each neighbor of v) {
Count[G.v2(w)]; // One less prereq
if $(Count[G.v2(w)] == 0)$ Q.enqueue $(G.v2(w))$;
} } }
CS 5114: Theory of Algorithms Spring 2014 17 /

Shortest Paths Problems

Input: A graph with $\underline{\text{weights}}$ or $\underline{\text{costs}}$ associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:

CS 5114: Theory of Algorithms

- Find the shortest path between two specified vertices.
- Find the shortest path from vertex *S* to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the **weight** of the edge connecting A to B.

• If there is no such edge, then $w(A, B) = \infty$.

CS 5114: Theory of Algorithms

Spring 2014 19 / 60

Spring 2014

18/60

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex x.

Problem: Shortest path to a vertex already processed might go through *x*. Solution: Process vertices in order of distance from *s*.

6 CS 5114 CS 5114 CS 5114 COLUMN COLUMICOLUM COLUMN COLUMICOLUM COLUMN COLUMN COLUMN COLUMN COLUM

no notes

no notes

no notes

Dijkstra's Algorithm Example

Dijkstra's Algorithm: Array (1)

```
void Dijkstra(Graph G, int s) { // Use array
     int D[G.n()];
     for (int i=0; i<G.n(); i++) // Initialize</pre>
       D[i] = INFINITY;
     D[s] = 0;
     for (i=0; i<G.n(); i++) { // Process vertices</pre>
       int v = minVertex(G, D);
       if (D[v] == INFINITY) return; // Unreachable
       G.setMark(v, VISITED);
       for (Edge w = each neighbor of v)
         if (D[G.v2(w)] > (D[v] + G.weight(w)))
           D[G.v2(w)] = D[v] + G.weight(w);
     }
CS 5114: Theory of Algorithms
```

Dijkstra's Algorithm: Array (2)

```
// Get mincost vertex
int minVertex(Graph G, int* D) {
  int v; // Initialize v to an unvisited vertex;
  for (int i=0; i<G.n(); i++)</pre>
    if (G.getMark(i) == UNVISITED)
     { v = i; break; }
  for (i++; i<G.n(); i++) // Find smallest D val</pre>
    if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))</pre>
     v = i;
  return v;
}
```

Approach 1: Scan the table on each pass for closest vertex. Total cost: $\Theta(|V|^2 + |E|) = \Theta(|V|^2)$. CS 5114: Theory of Algorithms

Spring 2014 23 / 60

Spring 2014 22 / 60

Dijkstra's Algorithm: Priority Queue (1)

```
class Elem { public: int vertex, dist; };
   int key(Elem x) { return x.dist; }
   void Dijkstra(Graph G, int s) { // priority queue
     int v; Elem temp;
     int D[G.n()]; Elem E[G.e()];
     temp.dist = 0; temp.vertex = s; E[0] = temp;
     heap H(E, 1, G.e()); // Create the heap
     for (int i=0; i<G.n(); i++) D[i] = INFINITY;</pre>
     D[s] = 0;
     for (i=0; i<G.n(); i++) {
                                 // Get distances
       do { temp = H.removemin(); v = temp.vertex; }
        while (G.getMark(v) == VISITED);
       G.setMark(v, VISITED);
       if (D[v] == INFINITY) return; // Unreachable
CS 5114: Theory of Algorithms
                                       Spring 2014 24 / 60
```

19	CS 5114
014-03-	Dijkstra's Algorithm Example

no notes

တ္ CS 5114 Dijkstra's Algorithm: Array (2) 2014-03-Dijkstra's Algorithm: Array (2)

no notes

no notes

no notes

စ္ CS 5114

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:

- Input: An undirected, connected graph G.
- Output: The subgraph of G that
 - has minimum total cost as measured by summing the values for all of the edges in the subset, and
 - 2 keeps the vertices connected.

CS 5114: Theory of Algorithms

Spring 2014 28 / 60

Key Theorem for MST

Let V_1 , V_2 be an arbitrary, non-trivial partition of V. Let (v_1, v_2) , $v_1 \in V_1$, $v_2 \in V_2$, be the cheapest edge between V_1 and V_2 . Then (v_1, v_2) is in some MST of G. **Proof**:

- Let T be an arbitrary MST of G.
- If (v_1, v_2) is in *T*, then we are done.
- Otherwise, adding (*v*₁, *v*₂) to *T* creates a cycle *C*.
- At least one edge (*u*₁, *u*₂) of *C* other than (*v*₁, *v*₂) must be between *V*₁ and *V*₂.
- $c(u_1, u_2) \ge c(v_1, v_2).$
- Let $T' = T \cup \{(v_1, v_2)\} \{(u_1, u_2)\}.$
- Then, T' is a spanning tree of G and $c(T') \leq c(T)$.
- But c(T) is minimum cost.

Therefore, c(T') = c(T) and T' is a MST containing (v_1, v_2) .CS 5114: Theory of AlgorithmsSpring 201429 / 60

Key Theorem Figure

Prim's MST Algorithm (1)

<pre>void Prim(Graph G, int s) { // Prim</pre>	n's MST alg
int D[G.n()]; int V[G.n()]; // Dist	tances
for (int i=0; i <g.n(); i++)="" init<="" th=""><th>tialize</th></g.n();>	tialize
D[i] = INFINITY;	
D[s] = 0;	
for (i=0; i <g.n(); i++)="" proces<="" th="" {=""><th>ss vertices</th></g.n();>	ss vertices
<pre>int v = minVertex(G, D);</pre>	
G.setMark(v, VISITED);	
<pre>if (v != s) AddEdgetoMST(V[v], v);</pre>	
if (D[v] == INFINITY) return; //v u	unreachable
for (Edge $w = each neighbor of v$)	
if (D[G.v2(w)] > G.weight(w)) {	
D[G.v2(w)] = G.weight(w); // Ug	pdate dist
V[G.v2(w)] = v; // who	o came from
} } }	
CS 5114: Theory of Algorithms	Spring 2014 31 / 60

Prim's MST Algorithm (2)

```
int minVertex(Graph G, int* D) {
    int v; // Initialize v to any unvisited vertex
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
        { v = i; break; }
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}</pre>
```

Spring 2014 32 / 60

There can only be multiple MSTs when there are edges with equal cost.

no notes

no notes

CS 5114: Theory of Algorithms

Alternative Prim's Implementation (1)

Like Dijkstra's algorithm, can implement with priority queue.

Spring 2014 33 / 60

CS 5114: Theory of Algorithms

```
for (i=0; i<G.n(); i++) { // Now build MST</pre>
      do { temp = H.removemin(); v = temp.vertex; }
        while (G.getMark(v) == VISITED);
      G.setMark(v, VISITED);
      if (v != s) AddEdgetoMST(V[v], v);
      if (D[v] == INFINITY) return; // Unreachable
      for (Edge w = each neighbor of v)
        if (D[G.v2(w)] > G.weight(w)) { // Update D
          temp.distance = D[G.v2(w)];
          temp.vertex = G.v2(w);
          H.insert(temp); // Insert dist in heap
         }
   } }
CS 5114: Theory of Algorithms
                                           Spring 2014 34 / 60
```

19	CS 5114
2014-03-	Alternative Prim's Implementation (1)

no notes

CS 5114 Alternative Prim's Implementation (2) Alternative Prim's Implementation (2)

no notes