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Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
Relationships
Families
Communication Networks
Road Maps
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Graph Algorithms

• A graph G = (V,E) consists of a set of vertices V, and a set
of edges E, such that each edge in E is a connection
between a pair of vertices in V.

• Directed vs. Undirected

• Labeled graph, weighted graph

• Labels for edges vs. weights for edges

• Multiple edges, loops

• Cycle, Circuit, path, simple path, tours

• Bipartite, acyclic, connected

• Rooted tree, unrooted tree, free tree

A Tree Proof
Definition: A free tree is a connected, undirected graph
that has no cycles.
Theorem: If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof: By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis: The theorem is true for a tree
having n − 1 vertices.
Inductive Step:

I If T has n vertices, then T contains a vertex of degree 1.
I Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
I By IH, T ′ has n − 2 edges.
I Thus, T has n − 1 edges.
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A Tree Proof

This is close to a satisfactory definition for free tree. There are
several equivalent definitions for free trees, with similar proofs
to relate them.

Why do we know that some vertex has degree 1? Because the
definition says that the Free Tree has no cycles.

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:
1 Eulerian tours

Traverse each edge exactly once
2 Depth-first search

Keeps vertices on a stack
3 Breadth-first search

Keeps vertices on a queue
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Graph Traversals

a vertex may be visited multiple times



Eulerian Tours

A circuit that contains every edge exactly once.
Example: f

c
e

b
a

d

Tour: b a f c d e.

Example:
f

c
e

b
a

d

g

No Eulerian tour. How can you tell for sure?
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Eulerian Tours

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

Eulerian Tour Proof

Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof: By induction on m.
Base Case:
Inductive Hypothesis:
Inductive Step:

I Start with an arbitrary vertex and follow a path until you
return to the vertex.

I Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

I By IH, each connected component has an Eulerian tour.
I Combine the tours to get a tour of the entire graph.
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Eulerian Tour Proof

Base case: 0 edges and 1 vertex fits the theorem.
IH: The theorem is true for < m edges.
Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V|+ |E|).
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Depth First Search

no notes

Depth First Search Example

(a) (b)

A B

D

F

A B

C

D

F

E

C

E
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Depth First Search Example

The directions are imposed by the traversal. This is the Depth
First Search Tree.



DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof: Consider the first time an edge (v ,w) is examined,
with v the current vertex.

If w is unmarked, then (v ,w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v ,w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .
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DFS Tree

Results: No “cross edges.” That is, no edges connecting
vertices sideways in the tree.

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2014 10 / 60

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

20
14

-0
3-

19

CS 5114

DFS for Directed Graphs

no notes

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof:
1 Suppose a DFS produces a back edge (v ,w).

I v and w are in the same DFS tree, w an ancestor of v .
I (v ,w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

I Do a DFS on G.
I Let w be the vertex of C with smallest DFS number.
I Let (v ,w) be the edge of C coming into w .
I v is a descendant of w in a DFS tree.
I Therefore, (v ,w) is a back edge.
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Directed Cycles

See earlier lemma.

Breadth First Search

Like DFS, but replace stack with a queue.
Visit vertex’s neighbors before going deeper in tree.
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Breadth First Search

no notes



Breadth First Search Algorithm

void BFS(Graph G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED) {
G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}
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Breadth First Search Algorithm

no notes

Breadth First Search Example

(a) (b)

B

C

A

C

B

DD

F

EE

A

F

Non-tree edges connect vertices at levels differing by 0 or 1.
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Breadth First Search Example

We know this because if an edge had connected to a deeper
level, then that target node would have been placed on the
queue when the edge was encountered.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.

J1 J2

J3 J4

J5 J7

J6
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Topological Sort

no notes

Topological Sort Algorithm

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper

}
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}
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Topological Sort Algorithm

Prints in reverse order.



Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2’s count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for v
for (Edge w = each neighbor of v) {

Count[G.v2(w)]--; // One less prereq
if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));

}}}
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Queue-based Topological Sort

no notes

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:
Find the shortest path between two specified vertices.
Find the shortest path from vertex S to all other vertices.
Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.
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Shortest Paths Problems

no notes

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
If there is no such edge, then w(A, B) =∞.
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Shortest Paths Definitions

w(A, D) = 20; d(A, D) = 10 (through ACBD).

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.

CS 5114: Theory of Algorithms Spring 2014 20 / 60

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.20

14
-0

3-
19

CS 5114

Single Source Shortest Paths

no notes



Dijkstra’s Algorithm Example

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18
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Dijkstra’s Algorithm Example

no notes

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > (D[v] + G.weight(w)))
D[G.v2(w)] = D[v] + G.weight(w);

}
}
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Dijkstra’s Algorithm: Array (1)

no notes

Dijkstra’s Algorithm: Array (2)

// Get mincost vertex
int minVertex(Graph G, int* D) {
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: Θ(|V|2 + |E|) = Θ(|V|2).
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Dijkstra’s Algorithm: Array (2)

no notes

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable
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Dijkstra’s Algorithm: Priority Queue (1)

no notes



Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.
Total cost: Θ((|V|+ |E|) log |V|).
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Dijkstra’s Algorithm: Priority Queue (2)

no notes

All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v ).
Could run Dijkstra’s Algorithm |V| times.
Better is Floyd’s Algorithm.
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .

∞
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∞

∞

1 7
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All Pairs Shortest Paths

Multiple runs of Dijkstra’s algorithm Cost:
|V ||E | log |V | = |V |3 log |V | for dense graph.

The issue driving the concept of “k paths” is how to efficiently
check all the paths without computing any path more than once.

0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a 2
or 1 path. Everything is a 4 path.

Floyd’s Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}
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Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.
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Key Theorem for MST
Let V1, V2 be an arbitrary, non-trivial partition of V . Let
(v1, v2), v1 ∈ V1, v2 ∈ V2, be the cheapest edge between V1

and V2. Then (v1, v2) is in some MST of G.
Proof:

Let T be an arbitrary MST of G.
If (v1, v2) is in T , then we are done.
Otherwise, adding (v1, v2) to T creates a cycle C.
At least one edge (u1,u2) of C other than (v1, v2) must
be between V1 and V2.
c(u1,u2) ≥ c(v1, v2).
Let T ′ = T ∪ {(v1, v2)} − {(u1,u2)}.
Then, T ′ is a spanning tree of G and c(T ′) ≤ c(T ).
But c(T ) is minimum cost.

Therefore, c(T ′) = c(T ) and T ′ is a MST containing (v1, v2).
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Key Theorem for MST

There can only be multiple MSTs when there are edges with
equal cost.

Key Theorem Figure
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Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; int V[G.n()]; // Distances
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) {
D[G.v2(w)] = G.weight(w); // Update dist
V[G.v2(w)] = v; // who came from

}}}
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Prim’s MST Algorithm (2)

int minVertex(Graph G, int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

This is an example of a greedy algorithm.
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Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
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Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }

while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) { // Update D
D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert dist in heap

}
}}
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