
Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?

CS 5114: Theory of Algorithms Spring 2014 179 / 245

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?20
14

-0
3-

18

CS 5114

Searching Linked Lists

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

CS 5114: Theory of Algorithms Spring 2014 180 / 245

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

20
14

-0
3-

18

CS 5114

“Perfect” Skip List

What is the access time? log n.
We can insert/delete in log n time as well.

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

CS 5114: Theory of Algorithms Spring 2014 181 / 245

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

20
14

-0
3-

18

CS 5114

Building a Skip List

no notes

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?
CS 5114: Theory of Algorithms Spring 2014 182 / 245

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?

20
14

-0
3-

18

CS 5114

Skip List Analysis (1)

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.

Close to log n.

log n.

log n.

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

CS 5114: Theory of Algorithms Spring 2014 183 / 245

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

20
14

-0
3-

18

CS 5114

Skip List Analysis (2)

About the same.

On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
Chance of worst case is then 2/n!.

CS 5114: Theory of Algorithms Spring 2014 184 / 245

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
Chance of worst case is then 2/n!.

20
14

-0
3-

18

CS 5114

Probabilistic Quicksort

This principle is why, for example, the Skip List data structure
has much more reliable performance than a BST. The BST’s
performance depends on the input data. The Skip List’s
performance depends entirely on chance. For random data, the
two are essentially identical. But you can’t trust data to be
random.

Random Number Generators

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
Linear congruential method:

I Pick a seed r(1). Then,

r(i) = (r(i − 1)× b) mod t .

Must pick good values for b and t .
Resulting numbers must be in the range:
What happens if r(i) = r(j)?

CS 5114: Theory of Algorithms Spring 2014 185 / 245

Random Number Generators

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
Linear congruential method:

I Pick a seed r(1). Then,

r(i) = (r(i − 1)× b) mod t .

Must pick good values for b and t .
Resulting numbers must be in the range:
What happens if r(i) = r(j)?20

14
-0

3-
18

CS 5114

Random Number Generators

Lots of “commercial” random number generators have poor
performance because they don’t get the numbers right.
Must be in range 0 to t − 1.

They generate the same number, which leads to a cycle of
length |j − i |.

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1,6,10,8,9,2,12,7,3,5,4,11,1 · · ·
r(i) = 7r(i − 1) mod 13 =

· · · 1,7,10,5,9,11,12,6,3,8,4,2,1 · · ·
r(i) = 5r(i − 1) mod 13 =

· · · 1,5,12,8,1 · · ·
· · · 2,10,11,3,2 · · ·
· · · 4,7,9,6,4 · · ·
· · · 0,0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1

CS 5114: Theory of Algorithms Spring 2014 186 / 245

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1,6,10,8,9,2,12,7,3,5,4,11,1 · · ·
r(i) = 7r(i − 1) mod 13 =

· · · 1,7,10,5,9,11,12,6,3,8,4,2,1 · · ·
r(i) = 5r(i − 1) mod 13 =

· · · 1,5,12,8,1 · · ·
· · · 2,10,11,3,2 · · ·
· · · 4,7,9,6,4 · · ·
· · · 0,0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1

20
14

-0
3-

18

CS 5114

Random Number Generators (cont)

no notes

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
Relationships
Families
Communication Networks
Road Maps

CS 5114: Theory of Algorithms Spring 2014 187 / 245

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
Relationships
Families
Communication Networks
Road Maps

20
14

-0
3-

18

CS 5114

Graph Algorithms

• A graph G = (V,E) consists of a set of vertices V, and a set
of edges E, such that each edge in E is a connection
between a pair of vertices in V.

• Directed vs. Undirected

• Labeled graph, weighted graph

• Labels for edges vs. weights for edges

• Multiple edges, loops

• Cycle, Circuit, path, simple path, tours

• Bipartite, acyclic, connected

• Rooted tree, unrooted tree, free tree

A Tree Proof
Definition: A free tree is a connected, undirected graph
that has no cycles.
Theorem: If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof: By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis: The theorem is true for a tree
having n − 1 vertices.
Inductive Step:

I If T has n vertices, then T contains a vertex of degree 1.
I Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
I By IH, T ′ has n − 2 edges.
I Thus, T has n − 1 edges.

CS 5114: Theory of Algorithms Spring 2014 188 / 245

A Tree Proof
Definition: A free tree is a connected, undirected graph
that has no cycles.
Theorem: If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof: By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis: The theorem is true for a tree
having n − 1 vertices.
Inductive Step:

I If T has n vertices, then T contains a vertex of degree 1.
I Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
I By IH, T ′ has n − 2 edges.
I Thus, T has n − 1 edges.

20
14

-0
3-

18

CS 5114

A Tree Proof

This is close to a satisfactory definition for free tree. There are
several equivalent definitions for free trees, with similar proofs
to relate them.

Why do we know that some vertex has degree 1? Because the
definition says that the Free Tree has no cycles.

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:
1 Eulerian tours

Traverse each edge exactly once
2 Depth-first search

Keeps vertices on a stack
3 Breadth-first search

Keeps vertices on a queue

CS 5114: Theory of Algorithms Spring 2014 189 / 245

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:
1 Eulerian tours

Traverse each edge exactly once
2 Depth-first search

Keeps vertices on a stack
3 Breadth-first search

Keeps vertices on a queue20
14

-0
3-

18

CS 5114

Graph Traversals

a vertex may be visited multiple times

Eulerian Tours

A circuit that contains every edge exactly once.
Example: f

c
e

b
a

d

Tour: b a f c d e.

Example:
f

c
e

b
a

d

g

No Eulerian tour. How can you tell for sure?

CS 5114: Theory of Algorithms Spring 2014 190 / 245

Eulerian Tours

A circuit that contains every edge exactly once.
Example: f

c
e

b
a

d

Tour: b a f c d e.

Example:
f

c
e

b
a

d

g

No Eulerian tour. How can you tell for sure?20
14

-0
3-

18

CS 5114

Eulerian Tours

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

Eulerian Tour Proof

Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof: By induction on m.
Base Case:
Inductive Hypothesis:
Inductive Step:

I Start with an arbitrary vertex and follow a path until you
return to the vertex.

I Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

I By IH, each connected component has an Eulerian tour.
I Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2014 191 / 245

Eulerian Tour Proof

Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof: By induction on m.
Base Case:
Inductive Hypothesis:
Inductive Step:

I Start with an arbitrary vertex and follow a path until you
return to the vertex.

I Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

I By IH, each connected component has an Eulerian tour.
I Combine the tours to get a tour of the entire graph.

20
14

-0
3-

18

CS 5114

Eulerian Tour Proof

Base case: 0 edges and 1 vertex fits the theorem.
IH: The theorem is true for < m edges.
Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V|+ |E|).
CS 5114: Theory of Algorithms Spring 2014 192 / 245

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V|+ |E|).

20
14

-0
3-

18

CS 5114

Depth First Search

no notes

Depth First Search Example

(a) (b)

A B

D

F

A B

C

D

F

E

C

E

CS 5114: Theory of Algorithms Spring 2014 193 / 245

Depth First Search Example

(a) (b)

A B

D

F

A B

C

D

F

E

C

E

20
14

-0
3-

18

CS 5114

Depth First Search Example

The directions are imposed by the traversal. This is the Depth
First Search Tree.

DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof: Consider the first time an edge (v ,w) is examined,
with v the current vertex.

If w is unmarked, then (v ,w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v ,w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .

CS 5114: Theory of Algorithms Spring 2014 194 / 245

DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof: Consider the first time an edge (v ,w) is examined,
with v the current vertex.

If w is unmarked, then (v ,w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v ,w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .

20
14

-0
3-

18

CS 5114

DFS Tree

Results: No “cross edges.” That is, no edges connecting
vertices sideways in the tree.

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2014 195 / 245

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

20
14

-0
3-

18

CS 5114

DFS for Directed Graphs

no notes

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof:
1 Suppose a DFS produces a back edge (v ,w).

I v and w are in the same DFS tree, w an ancestor of v .
I (v ,w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

I Do a DFS on G.
I Let w be the vertex of C with smallest DFS number.
I Let (v ,w) be the edge of C coming into w .
I v is a descendant of w in a DFS tree.
I Therefore, (v ,w) is a back edge.

CS 5114: Theory of Algorithms Spring 2014 196 / 245

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof:
1 Suppose a DFS produces a back edge (v ,w).

I v and w are in the same DFS tree, w an ancestor of v .
I (v ,w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

I Do a DFS on G.
I Let w be the vertex of C with smallest DFS number.
I Let (v ,w) be the edge of C coming into w .
I v is a descendant of w in a DFS tree.
I Therefore, (v ,w) is a back edge.

20
14

-0
3-

18

CS 5114

Directed Cycles

See earlier lemma.

