Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.
Can we use binary search?

@ Comparisons?
@ “Work?”

What if we add additional pointers?

CS 5114: Theory of Algorithms Spring 2014 179/ 245

“Perfect” Skip List

[(5] [[l [[e] [ee] [e2] [e9]
o[FH I G A A T T I

o

[/]
5

[E

=
[Ts]

l
I [69]
B

ne
[T3]

=
[T&]

-

CS 5114: Theory of Algorithms Spring 2014 180/ 245

Building a Skip List

Pick the node size at random (from a suitable probability
distribution). T

CS 5114: Theory of Algorithms Spring 2014 181/245

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel (void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

What is the worst cost to search in the “perfect” Skip List?
What is the average cost to search in the “perfect” Skip List?
What is the cost to insert?

What is the average cost in the “typical” Skip List?

CS 5114: Theory of Algorithms Spring 2014 182/ 245

2014-03-18

2014-03-18

2014-03-18

2014-03-18

CcS 5114 Searching Linked Lists

Assme th it o, sored n ke

L Searching Linked Lists Zomime

o Wor

Iy TTp——

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

CS 5114

g
g
¢

ip List

|

L—Perfect” Skip List

Gnpapeas
B83R3RERY

HBEAREAAS
HEEE858]

fnmanaRasy
fEatacatnzatnEatny
Ty

What is the access time? log n.
We can insert/delete in log n time as well.

CS 5114

L Building a Skip List

no notes

CS 5114 Skip List Analysis (1)

Whatdstuton o we et for o noce degs?

L oapi s :
ST LSt ATl () I ——
Vnattm et e
e
P S

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.
Close to log n.
log n.

log n.

Skip List Analysis (2)

How does this differ from a BST?
@ Simpler or more complex?
@ More or less efficient?

@ Which relies on data distribution, which on basic laws of
probability?

CS 5114: Theory of Algorithms Spring 2014 183 /245

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
@ Chance of worst case is then 2/n!.

CS 5114: Theory of Algorithms Spring 2014 184 /245

Random Number Generators

@ Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
@ Linear congruential method:
» Pick a seed r(1). Then,

r(i) = (r(i—1) x b) mod t.

@ Must pick good values for b and t.
@ Resulting numbers must be in the range:
@ What happens if r(i) = r(j)?

CS 5114: Theory of Algorithms Spring 2014 185/245

Random Number Generators (cont)

Some examples:
r(i) = 6r(i—1)mod13=
-.-1,6,10,8,9,2,12,7,3,5,4,11,1 -
r(i) = 7r(i—1)mod13=
-..1,7,10,5,9,11,12,6,3,8,4,2,1 - - -
r(i) = 5r(i—1)mod 13 =
voa B, 12,8, aco
..2,10,11,3,2---
--4,7,9,6,4---
2o, @aoo

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i — 1) mod 23" — 1
Spring 2014 186245

CS 5114

Skip List Analysis (2)

How dos this it rom 2 BST?

L_Skip List Analysis (2)

2014-03-18

About the same.
On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.

CS 5114 Probabilistic Quicksort
Quicksort rns it votlean gy srctred s

LProbabiIislic Quicksort soton: ezt

(Cranceof wost csa s e 2/

2014-03-18

This principle is why, for example, the Skip List data structure
has much more reliable performance than a BST. The BST’s
performance depends on the input data. The Skip List's
performance depends entirely on chance. For random data, the
two are essentially identical. But you can't trust data to be
random.

CS 5114

Random Number Generators.

LRandom Number Generators

2014-03-18

Lots of “commercial” random number generators have poor

performance because they don’t get the numbers right.
Must be inrange 0 to ¢t — 1.

They generate the same number, which leads to a cycle of
length |j — i].

CS 5114

Random Number Generators (cont)

Som sxamies:
-

LRandom Number Generators (cont)

2014-03-18

T st onocaponds o h sart vaeof h s
Sugoestod ganeror: ()~ 1600711 1) mod 21

no notes

oo CS5114 Graph Algorithms
for)
H 3 LGra h Algorithms
p
Graph Algorithms =
. . . e A graph G = (V,E) consists of a set of vertices V, and a set
Graphs are useful for representing a variety of concepts: of edges E, such that each edge in E is a connection
@ Data Structures between a pair of vertices in V.
@ Relationships o Directed vs. Undirected
@ Families !
o e Labeled graph, weighted graph
@ Communication Networks
@ Road Maps o Labels for edges vs. weights for edges
e Multiple edges, loops
e Cycle, Circuit, path, simple path, tours
e Bipartite, acyclic, connected
Somgzote 167245 * Rooted tres, unrooted trae, free tree
o CS5114 ATree Proot
A Tree PI‘OOf ‘<r'_ LA Tree Proof
o
(9]
@ Definition: A free tree is a connected, undirected graph
that has no cyc!es. . . This is close to a satisfactory definition for free tree. There are
@ Theorem: If T is a free tree having n vertices, then T several equivalent definitions for free trees, with similar proofs
has exactly n — 1 edges. to relate them.
@ Proof: By induction on n.
@ Base Case: n= 1. T consists of 1 vertex and 0 edges. Why do we know that some vertex has degree 1? Because the
@ Inductive Hypothesis: The theorem is true for a tree definition says that the Free Tree has no cycles.
having n — 1 vertices.
@ Inductive Step:
» If T has n vertices, then T contains a vertex of degree 1.
» Remove that vertex and its incident edge to obtain 77, a
free tree with n — 1 vertices.
» By IH, T" has n— 2 edges.
» Thus, T has n— 1 edges.
oo CS5114 Graph Traversals
for)
3 LGra h Traversals
p
Graph Traversals =
Various problems require a way to traverse a graph — that is, a vertex may be visited multiple times
visit each vertex and edge in a systematic way.
Three common traversals:
@ Eulerian tours
Traverse each edge exactly once
@ Depth-first search
Keeps vertices on a stack
@ Breadth-first search
Keeps vertices on a queue
oo CS5114 Eulerian Tours.
O’I) B s
H 3 LEuIerian Tours T
Eulerian Tours = =g
A circuit that contains every edge exactly once. Why no tour? Because some vertices have odd degree.
Example: f
A @ All even nodes is a necessary condition. Is it sufficient?
b g

Tour:bafcde.

Example:

g
No Eulerian tour. How can you tell for sure?

CS 5114: Theory of Algorithms Spring 2014 190/ 245

CS 5114 Eulerian Tour Proof

LEuIerian Tour Proof

Eulerian Tour Proof

2014-03-18

@ Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.

@ Proof: By induction on m.

@ Base Case:

@ Inductive Hypothesis:

@ Inductive Step:

» Start with an arbitrary vertex and follow a path until you
return to the vertex.

» Remove this circuit. What remains are connected
components Gy, Go, ..., Gk each with nodes of even
degree and < m edges.

» By IH, each connected component has an Eulerian tour.

» Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2014 191/245

Base case: 0 edges and 1 vertex fits the theorem.

IH: The theorem is true for < m edges.

Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.

CS 51 14 Depth First Search

LDepth First Search

2014-03-18

Depth First Search

Cost a(V|+ €),

void DFS(Graph G, int v) { // Depth first search no notes
PreVisit (G, v); // Take appropriate action
G.setMark (v, VISITED);
for (Edge w = each neighbor of v)
if (G.getMark (G.v2(w)) == UNVISITED)
DFS (G, G.v2(w));
PostVisit (G, Vv); // Take appropriate action

Initial call: DFs (G, r) where r is the root of the DFS.

Cost: ©(|V| + [E|).

CS 5114: Theory of Algorithms Spring 2014 192 /245

CS 5114 Depth First Search Example

ol o) Q o)

LDepth First Search Example :u :
(CJ ©

Depth First Search Example

2014-03-18

The directions are imposed by the traversal. This is the Depth

Q‘>\ @)/ First Search Tree.

(b)

CS 5114: Theory of Algorithms Spring 2014 193 /245

CS 5114 DFS Tree

T ————
w0 ot DES umbers

DFS Tree

If we number the vertices in the order that they are marked,
we get DFS numbers.

L DFS Tree

2014-03-18

Results: No “cross edges.” That is, no edges connecting

Lemma 7.2: Every edge e € E is either in the DFS tree T, vertices sideways in the tree.
or connects two vertices of G, one of which is an ancestor of
the otherin T.

Proof: Consider the first time an edge (v, w) is examined,
with v the current vertex.
@ If wis unmarked, then (v, w)isin T.
@ If wis marked, then w has a smaller DFS number than
v AND (v, w) is an unexamined edge of w.
@ Thus, w is still on the stack. That is, w is on a path from
v.

CS 5114: Theory of Algorithms Spring 2014 194 /245

CS 5114 DFS for Directed Graphs

LDFS for Directed Graphs

2014-03-18

DFS for Directed Graphs

@ Main problem: A connected graph may not give a single no notes

DFS tree. @ ©—=0

@ Forward edges: (1, 3)

@ Back edges: (5, 1) ® EF=—0—O
@ Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
@ Solution: Maintain a list of unmarked vertices.

» Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2014 195/ 245

CS 5114 Directed Cycles

LDirected Cycles

Directed Cycles

2014-03-18

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge. See earlier lemma.

Proof:

@ Suppose a DFS produces a back edge (v, w).
» v and w are in the same DFS tree, w an ancestor of v.
> (v, w) and the path in the tree from w to v form a

directed cycle.

@ Suppose G has a directed cycle C.
» DoaDFSon G.
» Let w be the vertex of C with smallest DFS number.
> Let (v, w) be the edge of C coming into w.
» v is a descendant of w in a DFS tree.
» Therefore, (v, w) is a back edge.

CS 5114: Theory of Algorithms Spring 2014 196 /245

