
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 186

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
2-

28

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

String Matching

Let A = a1a2 · · · an and B = b1b2 · · · bm, m ≤ n, be two
strings of characters.

Problem: Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i ,1 ≤ i ≤ m,
ak+i = bi .

CS 5114: Theory of Algorithms Spring 2014 2 / 186

String Matching

Let A = a1a2 · · · an and B = b1b2 · · · bm, m ≤ n, be two
strings of characters.

Problem: Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i ,1 ≤ i ≤ m,
ak+i = bi .

20
14

-0
2-

28

CS 5114

String Matching

no notes

String Matching Example
A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.
CS 5114: Theory of Algorithms Spring 2014 3 / 186

String Matching Example
A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.

20
14

-0
2-

28

CS 5114

String Matching Example

O(mn) comparisons in worst case.

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

CS 5114: Theory of Algorithms Spring 2014 4 / 186

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

20
14

-0
2-

28

CS 5114

String Matching Worst Case

Our example was a little pessimistic... but it wasn’t worst case!

In the second example, we can quickly reject a position - no
backtracking.



Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix until third x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!

CS 5114: Theory of Algorithms Spring 2014 5 / 186

Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix until third x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!20
14

-0
2-

28

CS 5114

Finding a Better Algorithm

Not only can we skip down several letters if we track the
potential prefix, we don’t need even to repeat the check of the
prefix letters – just start that many characters down.

Knuth-Morris-Pratt Algorithm

Key to success:
I Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

I We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · · bi−1 = B(j), and 0 if no such j exists.
We define next(1) = −1 to distinguish it.
next(2) = 0. Why?

CS 5114: Theory of Algorithms Spring 2014 6 / 186

Knuth-Morris-Pratt Algorithm

Key to success:
I Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

I We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · · bi−1 = B(j), and 0 if no such j exists.
We define next(1) = −1 to distinguish it.
next(2) = 0. Why?

20
14

-0
2-

28

CS 5114

Knuth-Morris-Pratt Algorithm

In all cases other than B[1] we compare current A value to
appropriate B value. The test told us there was no match at
that position. If B[1] does not match a character of A, that
character is completely rejected. We must slide B over it.

Why? All that we know is that the 2nd letter failed to match.
There is no value j such that 0 < j < i − 1. Conceptually,
compare beginning of B to current character.

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.
At each position ask “If I fail here, how many letters
before me are good?”

CS 5114: Theory of Algorithms Spring 2014 7 / 186

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.
At each position ask “If I fail here, how many letters
before me are good?”20

14
-0

2-
28

CS 5114

Computing the table

no notes

How to Compute Table?

By induction.
Base cases: next(1) and next(2) already determined.
Induction Hypothesis: Values have been computed up
to next(i − 1).
Induction Step: For next(i): at most next(i − 1) + 1.

I When? bi−1 = bnext(i−1)+1.
I That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.
But, this is just a mismatch, so use next table to
compute where to check.

CS 5114: Theory of Algorithms Spring 2014 8 / 186

How to Compute Table?

By induction.
Base cases: next(1) and next(2) already determined.
Induction Hypothesis: Values have been computed up
to next(i − 1).
Induction Step: For next(i): at most next(i − 1) + 1.

I When? bi−1 = bnext(i−1)+1.
I That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.
But, this is just a mismatch, so use next table to
compute where to check.

20
14

-0
2-

28

CS 5114

How to Compute Table?

Induction step: Each step can only improve by 1.

While this is complex to understand, it is efficient to implement.



Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

I For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?
If mismatch at bk , then only k mismatches are possible.
But, for each mismatch, we had to go forward a
character to get to bk .
Since there are always n forward moves, the total cost is
O(n).

CS 5114: Theory of Algorithms Spring 2014 9 / 186

Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

I For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?
If mismatch at bk , then only k mismatches are possible.
But, for each mismatch, we had to go forward a
character to get to bk .
Since there are always n forward moves, the total cost is
O(n).20

14
-0

2-
28

CS 5114

Complexity of KMP Algorithm

no note

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.
CS 5114: Theory of Algorithms Spring 2014 10 / 186

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.

20
14

-0
2-

28

CS 5114

Example Using Table

no note

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in
xbycabc
abc

abc
abc

CS 5114: Theory of Algorithms Spring 2014 11 / 186

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in
xbycabc
abc

abc
abc

20
14

-0
2-

28

CS 5114

Boyer-Moore String Match Algorithm

Better for larger alphabets.

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee.
CS 5114: Theory of Algorithms Spring 2014 12 / 186

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee.

20
14

-0
2-

28

CS 5114

Probabilistic Algorithms

no notes



Probabilistic Algorithm

Pick 2 numbers and choose the greater.
This will be in the upper half with probability 3/4.
Not good enough? Pick more numbers!
For k numbers, greatest is in upper half with probability
1− 2−k .
Monte Carlo Algorithm: Good running time, result not
guaranteed.
Las Vegas Algorithm: Result guaranteed, but not the
running time.

CS 5114: Theory of Algorithms Spring 2014 13 / 186

Probabilistic Algorithm

Pick 2 numbers and choose the greater.
This will be in the upper half with probability 3/4.
Not good enough? Pick more numbers!
For k numbers, greatest is in upper half with probability
1− 2−k .
Monte Carlo Algorithm: Good running time, result not
guaranteed.
Las Vegas Algorithm: Result guaranteed, but not the
running time.20

14
-0

2-
28

CS 5114

Probabilistic Algorithm

Pick k big enough and the chance for failure becomes less than
the chance that the machine will crash (i.e., probability of even
getting an answer from a deterministic algorithm).

Rather have no answer than a wrong answer? If k is big
enough, the probability of a wrong answer is less than any
calamity with finite probability – with this probability
independent of n.

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?

CS 5114: Theory of Algorithms Spring 2014 14 / 186

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?20
14

-0
2-

28

CS 5114

Searching Linked Lists

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

CS 5114: Theory of Algorithms Spring 2014 15 / 186

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

20
14

-0
2-

28

CS 5114

“Perfect” Skip List

What is the access time? log n.
We can insert/delete in log n time as well.

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

CS 5114: Theory of Algorithms Spring 2014 16 / 186

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

20
14

-0
2-

28

CS 5114

Building a Skip List

no notes



Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?
CS 5114: Theory of Algorithms Spring 2014 17 / 186

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?

20
14

-0
2-

28

CS 5114

Skip List Analysis (1)

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.

Close to log n.

log n.

log n.

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

CS 5114: Theory of Algorithms Spring 2014 18 / 186

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

20
14

-0
2-

28

CS 5114

Skip List Analysis (2)

About the same.

On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.


