CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2014

Copyright © 2014 by Clifford A. Shaffer

String Matching

Let $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}, m \leq n$, be two strings of characters.

Problem: Given two strings A and B, find the first occurrence (if any) of B in A.

- Find the smallest k such that, for all $i, 1 \leq i \leq m$, $a_{k+i}=b_{i}$.

String Matching Worst Case

Brute force isn't too bad for small patterns and large alphabets.
However, try finding: yуyуyх
in: yyyyyyyyyyyyyyyx
Alternatively, consider searching for: xyyyyy

String Matching Example

String Matching Example

```
```

```
A= xyxxyxyxyyxyxyxyyxyxyxx }\quadB=\mathrm{ xyxyyxyxyxx
```

```
A= xyxxyxyxyyxyxyxyyxyxyxx }\quadB=\mathrm{ xyxyyxyxyxx
```

```
A= xyxxyxyxyyxyxyxyyxyxyxx }\quadB=\mathrm{ xyxyyxyxyxx
    x y x x y x y x y y x y x y x y y x y x y x x
    x y x x y x y x y y x y x y x y y x y x y x x
    x y x x y x y x y y x y x y x y y x y x y x x
    x y x y
    x y x y
    x y x y
        X
        X
        X
            x y
            x y
            x y
            x y x y y
            x y x y y
            x y x y y
                    x y x y y x y x y x x
                    x y x y y x y x y x x
                    x y x y y x y x y x x
                    x y x
                    x y x
                    x y x
                    x
                    x
                    x
                            x y x y y
                            x y x y y
                            x y x y y
                            x y x y y x y x y x x
                            x y x y y x y x y x x
                            x y x y y x y x y x x
    O(mn) comparisons.
    O(mn) comparisons.
    O(mn) comparisons.
```

 x
    ```
                        x
```

 x
 x
    ```
                            x
```

 x
    ```
~ CS 5114
\(\underset{\sim}{\tilde{N}}\)
\(\dot{J}\)
\(\stackrel{\sim}{\sim}\)

Title page
Students should be familiar with inductive proofs, recursion, data structures, and programming at the CS3114 level.

\section*{Finding a Better Algorithm}

Find \(B=\) xyxyyxyxyxx in
\(A=\) xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.
```

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix until third x
xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix
xyxyyxyxyxx -- success!

```

\section*{Knuth-Morris-Pratt Algorithm}
- Key to success:
- Preprocess \(B\) to create a table of information on how far to slide \(B\) when a mismatch is encountered.
- Notation: \(B(i)\) is the first \(i\) characters of \(B\).
- For each character:
- We need the maximum suffix of \(B(i)\) that is equal to a prefix of \(B\).
- next \((i)=\) the maximum \(j(0<j<i-1)\) such that \(b_{i-j} b_{i-j+1} \cdots b_{i-1}=B(j)\), and 0 if no such \(j\) exists.
- We define \(\operatorname{next}(1)=-1\) to distinguish it.
- \(\operatorname{next}(2)=0\). Why?

\section*{Computing the table}
\(B=\)
\begin{tabular}{rrrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
x & y & x & y & y & x & y & x & y & x & x \\
-1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{tabular}
- The third line is the "next" table.
- At each position ask "If I fail here, how many letters before me are good?"

\section*{How to Compute Table?}
- By induction.
- Base cases: next(1) and next(2) already determined.
- Induction Hypothesis: Values have been computed up to \(\operatorname{next}(i-1)\).
- Induction Step: For next \((i)\) : at most next \((i-1)+1\).
- When? \(b_{i-1}=b_{\text {next }(i-1)+1}\).
- That is, largest suffix can be extended by \(b_{i-1}\).
- If \(b_{i-1} \neq b_{\text {next( }(i-1)+1}\), then need new suffix.
- But, this is just a mismatch, so use next table to compute where to check.
> \(\sim_{N}^{\infty} \operatorname{CS} 5114\)

Finding a Better Algorthm

 mansems. \(5=5\)

Not only can we skip down several letters if we track the potential prefix, we don't need even to repeat the check of the prefix letters - just start that many characters down.


In all cases other than \(B[1]\) we compare current \(A\) value to appropriate \(B\) value. The test told us there was no match at that position. If \(B[1]\) does not match a character of \(A\), that character is completely rejected. We must slide \(B\) over it.

Why? All that we know is that the 2nd letter failed to match. There is no value \(j\) such that \(0<j<i-1\). Conceptually, compare beginning of \(B\) to current character.

no notes


Induction step: Each step can only improve by 1.

While this is complex to understand, it is efficient to implement.

\section*{Complexity of KMP Algorithm}
- A character of \(A\) may be compared against many characters of \(B\).
- For every mismatch, we have to look at another position in the table.
- How many backtracks are possible?
- If mismatch at \(b_{k}\), then only \(k\) mismatches are possible.
- But, for each mismatch, we had to go forward a character to get to \(b_{k}\).
- Since there are always \(n\) forward moves, the total cost is \(\mathrm{O}(n)\).


Note: -x means don't actually compute on that character.

\section*{Boyer-Moore String Match Algorithm}
- Similar to KMP algorithm
- Start scanning \(B\) from end of \(B\).
- When we get a mismatch, we can shift the pattern to the right until that character is seen again.
- Ex: If " \(Z\) " is not in B, can move \(m\) steps to right when encountering " \(Z\) ".
- If " \(Z\) " in \(B\) at position \(i\), move \(m-i\) steps to the right.
- This algorithm might make less than \(n\) comparisons.
- Example: Find abc in
xbycabc
abc
abc
abc

\section*{Probabilistic Algorithms}

All algorithms discussed so far are deterministic.
Probabilistic algorithms include steps that are affected by random events.

Example: Pick one number in the upper half of the values in a set.
(1) Pick maximum: \(n-1\) comparisons.
(2) Pick maximum from just over \(1 / 2\) of the elements: \(n / 2\) comparisons.

Can we do better? Not if we want a guarantee.

\section*{Probabilistic Algorithm}
- Pick 2 numbers and choose the greater.
- This will be in the upper half with probability \(3 / 4\).
- Not good enough? Pick more numbers!
- For \(k\) numbers, greatest is in upper half with probability \(1-2^{-k}\).
- Monte Carlo Algorithm: Good running time, result not guaranteed.
- Las Vegas Algorithm: Result guaranteed, but not the running time.

\section*{Searching Linked Lists}

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
- Comparisons?
- "Work?"

What if we add additional pointers?

\section*{"Perfect" Skip List}


\section*{Building a Skip List}

Pick the node size at random (from a suitable probability distribution).


\section*{Skip List Analysis (1)}

What distribution do we want for the node depths?
```

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;
}

```

What is the worst cost to search in the "perfect" Skip List?
What is the average cost to search in the "perfect" Skip List?
What is the cost to insert?
What is the average cost in the "typical" Skip List?

Skip List Analysis (2)

How does this differ from a BST?
- Simpler or more complex?
- More or less efficient?
- Which relies on data distribution, which on basic laws of probability?

Skip List Analysisis (1)

Exponential decay. 1 link half of the time, 2 links one quarter, 3 links one eighth, and so on.
\(\log n\).

Close to \(\log n\).
\(\log n\).
\(\log n\).


Skip Lsst Analyssis (2)



About the same.

On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on chance.```

