
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 22

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
2-

20

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

Order Statistics

Definition: Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.
What if list is not sorted?
Problem: Find the maximum element.
Change the model: Count exact number of
comparisons
Solution:

CS 5114: Theory of Algorithms Spring 2014 2 / 22

Order Statistics

Definition: Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.
What if list is not sorted?
Problem: Find the maximum element.
Change the model: Count exact number of
comparisons
Solution:20

14
-0

2-
20

CS 5114

Order Statistics

Finding max: Compare element n to the maximum of the
previous n − 1 elements. Cost: n − 1 comparisons. This is
optimal since you must look at every element to be sure that it
is not the maximum.

Two problems

Find the max and the min
Find (max and) the second biggest value

Is one of these harder than the other?

CS 5114: Theory of Algorithms Spring 2014 3 / 22

Two problems

Find the max and the min
Find (max and) the second biggest value

Is one of these harder than the other?

20
14

-0
2-

20

CS 5114

Two problems

Of course both can be done in Θ(n) time, but we want to count
exact number of comparisons.

Both can also be done by finding max, then finding min or
second max. So both can be done in 2n-1 comparisons.

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals?

Simple algorithm:
Find the best.
Discard it.
Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

CS 5114: Theory of Algorithms Spring 2014 4 / 22

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals?

Simple algorithm:
Find the best.
Discard it.
Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

20
14

-0
2-

20

CS 5114

Finding the Second Best

As we discuss this problem, we consider exact counts, not
asymptotics.

Not necessarily – the best 2 could compete in the first round!
Note that we ignore variations in performance, the outcome
between two players will always be the same.

2n − 3.

To know, need a lower bound on the problem.
Naive: ≈ n might work. Clearly not optimal here! But, tighten
lower bound.



Lower Bound for Second (1)

Lower bound:
Anyone who lost to anyone who is not the max cannot
be second.
So, the only candidates are those who lost to max.
Find_max might compare max to n − 1 others.
Thus, we might need n − 2 additional comparisons to
find second.
Wrong!

CS 5114: Theory of Algorithms Spring 2014 5 / 22

Lower Bound for Second (1)

Lower bound:
Anyone who lost to anyone who is not the max cannot
be second.
So, the only candidates are those who lost to max.
Find_max might compare max to n − 1 others.
Thus, we might need n − 2 additional comparisons to
find second.
Wrong!20

14
-0

2-
20

CS 5114

Lower Bound for Second (1)

What is wrong with this argument?
It relies on the behavior of a particular algorithm.

Lower Bound for Second (2)
The previous argument exhibits the necessity fallacy:

Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: d3n/2e − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

CS 5114: Theory of Algorithms Spring 2014 6 / 22

Lower Bound for Second (2)
The previous argument exhibits the necessity fallacy:

Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: d3n/2e − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

20
14

-0
2-

20

CS 5114

Lower Bound for Second (2)

In particular, it is not necessary that the max element compare
with n − 1 others, even in the worst case.
bn/2c − 1 + dn/2e − 1 ... +1 = n − 1.
Worst case: dn/2e − 1 elements, since winner need not
compete again.
+1.
Cost of d3n/2e − 2 just closed half of the gap between our old
lower bound and our old algorithm – pretty good progress!
4: about 5/4.
8: n − 1 + dn/8e − 1 = d9n/8e − 2.
What if we do this recursively?
f (n) = 2f (n/2) + 2; f (1) = 0 which is 3n/2− 2, which is no
better than halves. So recursive divide & conquer (in a naive
way) does not work! Quarters would be better!

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.
The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

I a single node, if m = 0, or
I two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

CS 5114: Theory of Algorithms Spring 2014 7 / 22

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.
The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

I a single node, if m = 0, or
I two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

20
14

-0
2-

20

CS 5114

Binomial Trees (1)

but, we want as few of these as possible.

Binomial Trees (2)

Algorithm:
Build the tree.
Compare the dlog ne children of the root for second.

Cost?

CS 5114: Theory of Algorithms Spring 2014 8 / 22

Binomial Trees (2)

Algorithm:
Build the tree.
Compare the dlog ne children of the root for second.

Cost?

20
14

-0
2-

20

CS 5114

Binomial Trees (2)

n + dlog ne − 2.



Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.

CS 5114: Theory of Algorithms Spring 2014 9 / 22

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.20
14

-0
2-

20

CS 5114

Adversarial Lower Bounds Proof (1)

no notes

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.
When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.
The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:
Hangman.
Search an unordered list.

CS 5114: Theory of Algorithms Spring 2014 10 / 22

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.
When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.
The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:
Hangman.
Search an unordered list.

20
14

-0
2-

20

CS 5114

Adversarial Lower Bounds Proof (2)

Adversary maintains dictionary, and can give any answer that
conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.

Lower Bound for Second Best

At least n − 1 values must lose at least once.
At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

CS 5114: Theory of Algorithms Spring 2014 11 / 22

Lower Bound for Second Best

At least n − 1 values must lose at least once.
At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

20
14

-0
2-

20

CS 5114

Lower Bound for Second Best

What does your intuition tell you as a lower bound for k? Ω(n)?
Ω(log n)? Ω(c)?

Adversarial Lower Bound

Call the strength of element L[i ] the number of elements L[i ]
is (known to be) bigger than.

If L[i ] has strength a, and L[j ] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?
Minimize the rate at which any element improves.
Do this by making the stronger element always win.
Is this legal?

CS 5114: Theory of Algorithms Spring 2014 12 / 22

Adversarial Lower Bound

Call the strength of element L[i ] the number of elements L[i ]
is (known to be) bigger than.

If L[i ] has strength a, and L[j ] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?
Minimize the rate at which any element improves.
Do this by making the stronger element always win.
Is this legal?

20
14

-0
2-

20

CS 5114

Adversarial Lower Bound

The winner has now proved stronger than a + b+ the one who
just lost.

Yes. The adversary cannot “fix” the fight to give contradictory
answers. But, it can give answers consistent with some legal
input.



Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.
From the algorithm’s point of view, the best outcome is
that an element doubles in strength.
This happens when a = b.
All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + dlog ne − 2 comparisons.

CS 5114: Theory of Algorithms Spring 2014 13 / 22

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.
From the algorithm’s point of view, the best outcome is
that an element doubles in strength.
This happens when a = b.
All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + dlog ne − 2 comparisons.

20
14

-0
2-

20

CS 5114

Lower Bound (Cont.)

Need to get the final strength up to n − 1.
These k losers are candidates for 2nd place.

Min and Max
Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires 2n − 3
comparisons.

Solution: By induction.

Base cases:
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
CS 5114: Theory of Algorithms Spring 2014 14 / 22

Min and Max
Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires 2n − 3
comparisons.

Solution: By induction.

Base cases:
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.

20
14

-0
2-

20

CS 5114

Min and Max

We are adding items n and n − 1.

Conceptually: ? compares for n − 2 elements, plus one
compare for last two items, plus cost to join the partial solutions.

Min and Max (2)

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
Find min and max of elements n − 1 and n (1 compare).
Combine these two with n − 2 elements (2 compares).
Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?
CS 5114: Theory of Algorithms Spring 2014 15 / 22

Min and Max (2)

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
Find min and max of elements n − 1 and n (1 compare).
Combine these two with n − 2 elements (2 compares).
Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

20
14

-0
2-

20

CS 5114

Min and Max (2)

Total work is about 3n/2 comparisons.

It doesn’t get any better if we split the sequence into two
halves. The recurrence is:

T (n) =

{
1 n = 2
2T (n/2) + 2 n > 2

This is 3/2n − 2 for n a power of 2.

The Lower Bound (1)

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:
Novices: not tested.
Winners: Won at least once, never lost.
Losers: Lost at least once, never won.
Moderates: Both won and lost at least once.

CS 5114: Theory of Algorithms Spring 2014 16 / 22

The Lower Bound (1)

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:
Novices: not tested.
Winners: Won at least once, never lost.
Losers: Lost at least once, never won.
Moderates: Both won and lost at least once.

20
14

-0
2-

20

CS 5114

The Lower Bound (1)

no notes



The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

CS 5114: Theory of Algorithms Spring 2014 17 / 22

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?20
14

-0
2-

20

CS 5114

The Lower Bound (2)

Moderates – Can’t be min or max.

Initial: (n, 0, 0, 0).

Final: (0, 1, 1, n-2).

We must go from the initial state to the final state to solve the
problem.
So, we can analyze how this gets done.

Lower Bound (3)

Every algorithm must go from (n,0,0,0) to (0,1,1,n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

CS 5114: Theory of Algorithms Spring 2014 18 / 22

Lower Bound (3)

Every algorithm must go from (n,0,0,0) to (0,1,1,n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

20
14

-0
2-

20

CS 5114

Lower Bound (3)

That gets rid of 4 types of comparisons.

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)

CS 5114: Theory of Algorithms Spring 2014 19 / 22

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)20
14

-0
2-

20

CS 5114

Lower Bound (3)

no notes

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: dn/2e are required.

CS 5114: Theory of Algorithms Spring 2014 20 / 22

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: dn/2e are required.

20
14

-0
2-

20

CS 5114

Adversarial Argument

Minimize information gained.

Adversary will just make the winner win – No new information is
provided.

This provides an algorithm.



K th Smallest Element

Problem: Find the k th smallest element from sequence S.

(Also called selection.)

Solution: Find min value and discard (k times).
If k is large, find n − k max values.

Cost: O(min(k ,n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).

CS 5114: Theory of Algorithms Spring 2014 21 / 22

K th Smallest Element

Problem: Find the k th smallest element from sequence S.

(Also called selection.)

Solution: Find min value and discard (k times).
If k is large, find n − k max values.

Cost: O(min(k ,n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).20

14
-0

2-
20

CS 5114

K th Smallest Element

no notes

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑
i=1

(f (i − 1))

Average case cost: O(n) time.

CS 5114: Theory of Algorithms Spring 2014 22 / 22

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑
i=1

(f (i − 1))

Average case cost: O(n) time.20
14

-0
2-

20

CS 5114

Better K th Smallest Algorithm

Like Quicksort, it is possible for this to take O(n2) time!!
It is possible to guarentee average case O(n) time.


