Lower Bound Analysis

$\log n-(1$ or 2$)$.

$$
\log n!\geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}} \geq \frac{1}{2}(n \log n-n)
$$

- So, $\log n!=\Theta(n \log n)$.
- Using the decision tree model, what is the average depth of a node?
- This is also $\Theta(\log n!)$.

A Search Model (1)

Problem:
Given:

- A list L, of n elements
- A search key X

Solve: Identify one element in L which has key value X, if any exist.

Model:

- The key values for elements in L are unique.
- One comparison determines $<,=,>$.
- Comparison is our only way to find ordering information.
- Every comparison costs the same.

A Search Model (2)

Goal: Solve the problem using the minimum number of comparisons.

- Cost model: Number of comparisons.
- (Implication) Access to every item in L costs the same (array).

Is this a reasonable model and goal?

Linear Search

General algorithm strategy: Reduce the problem.

- Compare X to the first element.
- If not done, then solve the problem for $n-1$ elements.

Position linear_search(L, lower, upper, X) \{
if L [lower] $=X$ then return lower;
else if lower $=$ upper then

```
        return -1;
```

 else
 return linear_search(L, lower+1, upper, X);
 \}

What equation represents the worst case cost?

$$
f(n)= \begin{cases}1 & n=1 \\ f(n-1)+1 & n>1\end{cases}
$$

Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem is n comparisons.

Proof: By contradiction.

- Assume an algorithm A exists that requires only $n-1$ (or less) comparisons of X with elements of L.
- Since there are n elements of L, A must have avoided comparing X with $L[i]$ for some value i.
- We can feed the algorithm an input with X in position i.
- Such an input is legal in our model, so the algorithm is incorrect.

Is this proof correct?

Fixing the Proof (1)

Error \#1: An algorithm need not consistently skip position i.
Fix:

- On any given run of the algorithm, some element i gets skipped.
- It is possible that X is in position i at that time.

Fixing the Proof (2)

Error \#2: Must allow comparisons between elements of L.
Fix:

- Include the ability to "preprocess" L.
- View L as initially consisting of n "pieces."
- A comparison can join two pieces (without involving X).
- The total of these comparisons is k.
- We must have at least $n-k$ pieces.
- A comparison of X against a piece can reject the whole piece.
- This requires $n-k$ comparisons.
- The total is still at least n comparisons.

Average Cost

How many comparisons does linear search do on average?
We must know the probability of occurrence for each possible input.
(Must X be in L ?)
Ignore everything except the position of X in L. Why?
What are the $n+1$ events?

$$
\mathbf{P}(X \notin L)=1-\sum_{i=1}^{n} \mathbf{P}(X=L[i]) .
$$

> $\wedge^{-C S} 5114$ $\stackrel{\rightharpoonup}{\grave{1}}$
$\stackrel{\rightharpoonup}{+}$
$\stackrel{\rightharpoonup}{+}$
$\stackrel{\rightharpoonup}{N}$ LLower Bound on Problem

Be careful about assumptions on how an algorithm might (must) behave.
After all, where do new, clever algorithms come from? From different behavior than was previously assumed!

no notes

no notes

No, X might not be in $L!$ What is this probability?

The actual values of other elements is irrelevent to the search routine.
$L[1], L[2], \ldots, L[n]$ and not found.

Assume that array bounds are 1..n.

Average Cost Equation

Let $k_{i}=i$ be the number of comparisons when $X=L[i]$.
Let $k_{0}=n$ be the number of comparisons when $X \notin L$.
Let p_{i} be the probability that $X=L[i]$.
Let p_{0} be the probability that $X \notin L[i]$ for any i.

$$
\begin{aligned}
f(n) & =k_{0} p_{0}+\sum_{i=1}^{n} k_{i} p_{i} \\
& =n p_{0}+\sum_{i=1}^{n} i p_{i}
\end{aligned}
$$

What happens to the equation if we assume all p_{i} 's are equal (except p_{0})?

Computation

$$
\begin{aligned}
f(n) & =p_{0} n+\sum_{i=1}^{n} i p \\
& =p_{0} n+p \sum_{i=1}^{n} i \\
& =p_{0} n+p \frac{n(n+1)}{2} \\
& =p_{0} n+\frac{1-p_{0}}{n} \frac{n(n+1)}{2} \\
& =\frac{n+1+p_{0}(n-1)}{2}
\end{aligned}
$$

Depending on the value of $p_{0}, \frac{n+1}{2} \leq f(n) \leq n$.

Problems with Average Cost

- Average cost is usually harder to determine than worst cost.
- We really need also to know the variance around the average.
- Our computation is only as good as our knowledge (guess) on distribution.

Sorted List

Change the model: Assume that the elements are in ascending order.

Is linear search still optimal? Why not?
Optimization: Use linear search, but test if the element is greater than X. Why?

Observation: If we look at $L[5]$ and find that X is bigger, then we rule out $L[1]$ to $L[4]$ as well.

More is Better: If we look at $L[n]$ and find that X is bigger, then we know in one test that X is not in L. Great!

- What is wrong here?

$$
p=\frac{1-p_{0}}{n}
$$

Show a graph of p_{0} vs. cost for $0 \leq p_{0} \leq 1$, with y axis going from 0 to n.

Example: Quicksort variance is rather low. For this linear search, the variances is higher (normal curve).

$\stackrel{\sim}{\top}$ CS 5114	Sornad Lst
	A
) $\square_{\text {Sorted List }}$	\%amamememe
$\stackrel{\square}{\circ}$	\%amemilitux
N	ㄴunsummex

We have more information a priori.

Can quit early.

What is best, worst, average cost? $1, n, n / 2$, respectively.
Effectively eliminates case of x not on list.
If we find that x is smaller, we only rule out one element.
Cost is 1 either way, but we don't get much information in worst case.
Small probability for big information, but big probability for small information.

Algorithm:

- From the beginning of the array, start making jumps of size k, checking $L[k]$ then $L[2 k]$, and so on.
- So long as X is greater, keep jumping by k.
- If X is less, then use linear search on the last sublist of k elements.

This is called Jump Search.
What is the right amount to jump?

Analysis of Jump Search

- If $m k \leq n<(m+1) k$, then the total cost is at most $m+k-13$-way comparisons.

$$
f(n, k)=m+k-1=\left\lfloor\frac{n}{k}\right\rfloor+k-1 .
$$

- What should k be?

$$
\min _{1 \leq k \leq n}\left\{\left\lfloor\frac{n}{k}\right\rfloor+k-1\right\}
$$

- Take the derivative and solve for $f^{\prime}(x)=0$ to find the minimum.
- This is a minimum when $k=\sqrt{n}$.
- What is the worst case cost?
- Roughly $2 \sqrt{n}$.

Lessons

We want to balance the work done while selecting a sublist with the work done while searching a sublist.

In general, make subproblems of equal effort.
This is an example of divide and conquer
What if we extend this to three levels?

- We'd jump to get a sublist, then jump to get a sub-sublist, then do sequential search
- While it might make sense to do a two-level algorithm (like jump search), it almost never makes sense to do a three-level algorithm
- Instead, we resort to recursion

Binary Search

```
int binary(int K, int* array, int left, int right) {
    // Return position of element (if any) with value K
    int l = left-1;
    int r = right+1; // l and r beyond array bounds
    while (l+1 !=r) { // Stop when l and r meet
        int i = (l+r)/2; // Middle of remaining subarray
        if (K < array[i]) r = i; // In left half
        if (K == array[i]) return i; // Found it
        if (K > array[i]) l = i; // In right half
    }
    return UNSUCCESSFUL; // Search value not in array
}
```

Lower Bound (for Problem Worst Case)

How does n compare to \sqrt{n} compare to $\log n$?
Can we do better?
Model an algorithm for the problem using a decision tree.

- Consider only comparisons with X.
- Branch depending on the result of comparing X with L[i].
- There must be at least n leaf nodes in the tree. (Why?)
- Some path must be at least $\log n$ deep. (Why?)

Thus, binary search has optimal worst cost under this model.

Average Cost of Binary Search (1)

An estimate given these assumptions:

- X is in L.
- X is equally likely to be in any position.
- $n=2^{k}$ for some non-negative integer k.

Cost?

- One chance to hit in one probe.
- Two chances to hit in two probes.
- 2^{i-1} to hit in i probes.
- $i \leq k$.

Average cost is $\log n-1$.

Average Cost Lower Bound

- Use decision trees again.
- Total Path Length: Sum of the level for each node.
- The cost of an outcome is the level of the corresponding node plus 1.
- The average cost of the algorithm is the average cost of the outcomes (total path length $/ n$).
- What is the tree with the least average depth?
- This is equivalent to the tree that corresponds to binary search.
- Thus, binary search is optimal.

Interpolation Search

(Also known as Dictionary Search) Search L at a position
that is appropriate to the value of X.

$$
p=\frac{X-L[1]}{L[n]-L[1]}
$$

Repeat as necessary to recalculate p for future searches.

Assumption: A deterministic algorithm: For a given input, the algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any comparisons between elements in L, so such comparisons are useless.

There must be some point in the algorithm, for each position in the array, where only that position remains as the possible outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.

^ CS 5114 Average cost of Binary search (1)			
\%			
		Average Cost of Binary Search (1)	
			\%

no notes

(In worst case.)

Fill in tree row by row, left to right. So node i is at depth $\lfloor\log i\rfloor$.

That is, readjust for new array bounds.

Note that p is a fraction, so $\lfloor p n\rfloor$ is an index position between 0 and $n-1$.

Quadratic Binary Search

This is easier to analyze:

- Compute p and examine $L[[p n\rceil]$.
- If $X<L[[p n\rceil]$ then sequentially probe

$$
L[\lceil p n-i \sqrt{n}\rceil], i=1,2,3, \ldots
$$

until we reach a value less than or equal to X.

- Similar for $X>L[[p n\rceil]$.
- We are now within \sqrt{n} positions of X.
- ASSUME (for now) that this takes a constant number of comparisons.
- Now we have a sublist of size \sqrt{n}.
- Repeat the process recursively.
- What is the cost?

CS 5114: Theory of Algorithms
 QBS Probe Count (1)

Spring 2014
139/145

Cost is $\Theta(\log \log n)$ IF the number of probes on jump search is constant.

Number of comparisons needed is:

$$
\begin{aligned}
& \sum_{i=1}^{\sqrt{n}} i \mathbf{P} \text { (need exactly } i \text { probes) } \\
= & 1 \mathbf{P}_{1}+2 \mathbf{P}_{2}+3 \mathbf{P}_{3}+\cdots+\sqrt{n} \mathbf{P}_{\sqrt{n}}
\end{aligned}
$$

This is equal to:

$$
\left.\sum_{i=1}^{\sqrt{n}} \mathbf{P} \text { (need at least } i \text { probes }\right)
$$

QBS Probe Count (2)

$=1+\left(1-\mathbf{P}_{1}\right)+\left(1-\mathbf{P}_{1}-\mathbf{P}_{2}\right)+\cdots+\mathbf{P}_{\sqrt{n}}$
$=\left(\mathbf{P}_{1}+\ldots+\mathbf{P}_{\sqrt{n}}\right)+\left(\mathbf{P}_{2}+\ldots+\mathbf{P}_{\sqrt{n}}\right)+$ $\left(\mathbf{P}_{3}+\ldots+\mathbf{P}_{\sqrt{n}}\right)+\cdots$
$=1 \mathbf{P}_{1}+2 \mathbf{P}_{2}+3 \mathbf{P}_{3}+\cdots+\sqrt{n} \mathbf{P}_{\sqrt{n}}$

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

$$
\left.2+\sum_{i=3}^{\sqrt{n}} \mathbf{P} \text { (need at least } i \text { probes }\right)
$$

Useful fact (Čebyšev's Inequality):
The probability that we need probe i times $\left(\mathbf{P}_{i}\right)$ is:

$$
\mathbf{P}_{i} \leq \frac{p(1-p) n}{(i-2)^{2} n} \leq \frac{1}{4(i-2)^{2}}
$$

since $p(1-p) \leq 1 / 4$.
This assumes uniformly distributed data.

Original C's Inequality \leq the result of recognizing that $p(1-p) \leq 1 / 4$.

Important assumption!

QBS Probe Count (4)

Final result:

$$
2+\sum_{i=3}^{\sqrt{n}} \frac{1}{4(i-2)^{2}} \approx 2.4112
$$

Is this better than binary search?
What happened to our proof that binary search is optimal?

Comparison (1)

Let's compare $\log \log n$ to $\log n$.

n	$\log n$	$\log \log n$	Diff
16	4	2	2
256	8	3	2.7
$64 K$	16	4	4
2^{32}	32	5	6.4

Now look at the actual comparisons used.

- Binary search $\approx \log n-1$
- Interpolation search $\approx 2.4 \log \log n$

n	$\log n-1$	$2.4 \log \log n$	Diff
16	3	4.8	worse
256	7	7.2	\approx same
$64 K$	15	9.6	1.6
2^{32}	31	12	2.6

Comparison (2)

Not done yet! This is only a count of comparisons!

- Which is more expensive: calculating the midpoint or calculating the interpolation point?

Which algorithm is dependent on good behavior by the input?

no notes

Comparison (2)

Taking an interpolation point.

QBS

