
Lower Bound Analysis

log n! ≤ log nn = n log n.

log n! ≥ log
(n

2

) n
2
≥ 1

2
(n log n − n).

So, log n! = Θ(n log n).
Using the decision tree model, what is the average
depth of a node?
This is also Θ(log n!).
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Lower Bound Analysis

log n− (1 or 2).

A Search Model (1)

Problem:
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.
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A Search Model (1)

What if the key values are not unique? Probably the cost goes
down, not up. This is an assumption for analysis, not for
implementation.

We would have a slightly different model (though no asymptotic
change in cost) if our only comparison test was <. We would
have a very different model if our only comparison was = / 6=.

A comparison-based model.

String data might require comparisons with very different costs.

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.
(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?
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A Search Model (2)

• We are assuming that the # of comparisons is proportional to
runtime.

• Might not always share an array (assumption that all
accesses are equal). For example, linked lists.

• We assume there is no relationship between value X and its
position.

Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else

return linear_search(L, lower+1, upper, X);
}

What equation represents the worst case cost?
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Linear Search

f (n) =

{
1 n = 1
f (n − 1) + 1 n > 1



Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem
is n comparisons.

Proof: By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i ] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?
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Lower Bound on Problem

Be careful about assumptions on how an algorithm might
(must) behave.
After all, where do new, clever algorithms come from? From
different behavior than was previously assumed!

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.
It is possible that X is in position i at that time.
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Fixing the Proof (1)

no notes

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.
View L as initially consisting of n “pieces.”
A comparison can join two pieces (without involving X ).
The total of these comparisons is k .
We must have at least n − k pieces.
A comparison of X against a piece can reject the whole
piece.
This requires n − k comparisons.
The total is still at least n comparisons.
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Fixing the Proof (2)

no notes

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?)

Ignore everything except the position of X in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1−
n∑

i=1

P(X = L[i ]).
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Average Cost

No, X might not be in L! What is this probability?

The actual values of other elements is irrelevent to the search
routine.

L[1],L[2], ...,L[n] and not found.

Assume that array bounds are 1..n.



Average Cost Equation
Let ki = i be the number of comparisons when X = L[i ].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i ].
Let p0 be the probability that X /∈ L[i ] for any i .

f (n) = k0p0 +
n∑

i=1

kipi

= np0 +
n∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?
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Average Cost Equation

no notes

Computation

f (n) = p0n +
n∑

i=1

ip

= p0n + p
n∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1− p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.
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Computation

p =
1− p0

n
.
Show a graph of p0 vs. cost for 0 ≤ p0 ≤ 1, with y axis going
from 0 to n.

Problems with Average Cost

Average cost is usually harder to determine than worst
cost.
We really need also to know the variance around the
average.
Our computation is only as good as our knowledge
(guess) on distribution.
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Problems with Average Cost

Example: Quicksort variance is rather low. For this linear
search, the variances is higher (normal curve).

Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?
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Sorted List

We have more information a priori.

Can quit early.
What is best, worst, average cost? 1, n, n/2, respectively.
Effectively eliminates case of x not on list.

If we find that x is smaller, we only rule out one element.
Cost is 1 either way, but we don’t get much information in worst
case.
Small probability for big information, but big probability for small
information.



Jump Search

Algorithm:
From the beginning of the array, start making jumps of
size k , checking L[k ] then L[2k ], and so on.
So long as X is greater, keep jumping by k .
If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?
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Jump Search

no notes

Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋
+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋
+ k − 1

}
Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
I Roughly 2

√
n.
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Analysis of Jump Search

m is number of big steps, k is size of big step.

Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion
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Lessons

This could lead us to binary search. It could also lead us to
interpolation search.

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet
int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}
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Binary Search

f (n) =

{
1 n = 1
f (bn/2c) + 1 n > 1



Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i ].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this model.
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Lower Bound (for Problem Worst Case)

Assumption: A deterministic algorithm: For a given input, the
algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any
comparisons between elements in L, so such comparisons are
useless.

There must be some point in the algorithm, for each position in
the array, where only that position remains as the possible
outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.

Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

Average cost is log n − 1.
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Average Cost of Binary Search (1)

no notes

Average Cost Lower Bound

Use decision trees again.
Total Path Length: Sum of the level for each node.
The cost of an outcome is the level of the corresponding
node plus 1.
The average cost of the algorithm is the average cost of
the outcomes (total path length/n).
What is the tree with the least average depth?
This is equivalent to the tree that corresponds to binary
search.
Thus, binary search is optimal.
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Average Cost Lower Bound

(In worst case.)

Fill in tree row by row, left to right. So node i is at depth blog ic.

Interpolation Search

(Also known as Dictionary Search) Search L at a position

that is appropriate to the value of X .

p =
X − L[1]

L[n]− L[1]

Repeat as necessary to recalculate p for future searches.
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Interpolation Search

That is, readjust for new array bounds.

Note that p is a fraction, so bpnc is an index position between 0
and n − 1.



Quadratic Binary Search

This is easier to analyze:
Compute p and examine L[dpne].
If X < L[dpne] then sequentially probe

L[dpn − i
√

ne], i = 1,2,3, ...

until we reach a value less than or equal to X .
Similar for X > L[dpne].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?
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Quadratic Binary Search

This is following the induction in a different way than Binary
Search. Binary Search says break down list by (repeatedly)
splitting in half. Interpolation search says break down list by
(repeatedly) finding a square root-sized sublist.

We will come back and examine this assumption.

How many times can we take the square root of n?
Keep dividing the exponent by 2 until we reach 1 – that is, take
the log of the exponent.
What is the exponent? It is log n.
log log n is the number of times that we can take the square
root.

QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√

nP√n

This is equal to:
√

n∑
i=1

P(need at least i probes)
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QBS Probe Count (1)

no notes

QBS Probe Count (2)

√
n∑

i=1

P(need at least i probes)

= 1 + (1− P1) + (1− P1 − P2) + · · ·+ P√n

= (P1 + ... + P√n) + (P2 + ... + P√n) +

(P3 + ... + P√n) + · · ·
= 1P1 + 2P2 + 3P3 + · · ·+

√
nP√n
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QBS Probe Count (2)

√
n∑

i=1

P(need at least i probes)
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QBS Probe Count (2)

no notes

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1− p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1− p) ≤ 1/4.

This assumes uniformly distributed data.
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QBS Probe Count (3)

Original C’s Inequality ≤ the result of recognizing that
p(1− p) ≤ 1/4.

Important assumption!



QBS Probe Count (4)

Final result:

2 +

√
n∑

i=3

1
4(i − 2)2 ≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?
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QBS Probe Count (4)

The assumption of uniform distribution (resulting in constant
number of probes on average) is much stronger than the
assumptions used by the lower bounds proof.

Comparison (1)
Let’s compare log log n to log n.

n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6
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Comparison (1)

no notes

Comparison (2)

Not done yet! This is only a count of comparisons!
Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?
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Comparison (2)

Taking an interpolation point.

QBS


