Average Cost (cont.)

n+2+n+2n+1
n+1 n+1 n

n+2n+1 3)

f(n+1) < 2(1+

n+ti n 2

— 2<1+(n+2) (,,%*15++%>>
= 2+2(n+2)(Hppt — 1)

= ©(nlogn).
Mergesort

List mergesort (List inlist) {
if (inlist.length() <= 1) return inlist;;
List 11 = half of the items from inlist;
List 12 = other half of the items from inlist;
return merge (mergesort (11), mergesort (12));

36 20 17 13 28 14 23 15

[20 36][13 17|[14 28|[15 23|

[13 17 20 36/[14 15 23 28]

[18 14 15 17 20 23 28 36|

CS 5114: Theory of Algorithms Spring 2014 104 /145

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort (Elemx A, Elemx temp,
int left, int right) {
int mid = (left+right)/2;
if (left == right) return; // List of one
mergesort (A, temp, left, mid); // Sort half
mergesort (A, temp, mid+1l, right);// Sort half
for (int i=left; i<=right; i++) // Copy to temp

temp[i] = A[i];

Mergesort Implementation (2)

// Do the merge operation back to array
int il = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (il == mid+1) // Left list exhausted
Alcurr] = temp[i2++];

else if (i2 > right) // Right list exhausted
Alcurr] = temp[il++];

else if (temp[il].key < temp[i2].key)
Alcurr] = temp[il++];

else Aflcurr] = temp[i2++];

H}

Mergesort cost:
Mergesort is good for sorting linked lists.
Spring 2014 106/ 145

CS 5114

LAverage Cost (cont.)

2014-02-12

Hn+1 = @(|Og n)

CS 5114

LMergeson

2014-02-12

no notes

CS 5114

LMergeson Implementation (1)

2014-02-12

This implementation requires a second array.

CS 5114

LMergeson Implementation (2)

2014-02-12

Mergesort cost: ©(nlog n)

Average Cost (cont,)

Mergesort

Mergesort Implementation (1)

Margosors ik o implament.

Mergesort Implementation (2)

Mergosor cost:
Margooragood for oring kst

Linked lists: Send records to alternating linked lists, mergesort

each, then merge.

o CS5114 o
g' e with the Heap Property:
: L Tk
< Heaps
Heaps z R
(3] maly e aiay bsed complets
Heap: Complete binary tree with the Heap Property: no notes
@ Min-heap: all values less than child values.
@ Max-heap: all values greater than child values.
The values in a heap are partially ordered.
Heap representation: normally the array based complete
binary tree representation.
o CS5114 Building the Heap
Building the H S :
< Building the Heap 5 %
uilding the Heap z
M @) s rge 52, 7.1 €1
This is a Max Heap
(2) (3) (4) (s) . .
How to get a good number of exchanges? By induction.
®© & 6 @ O @ 6 G Heapify the root’s subtrees, then push the root to the correct
@ level.
M ()
(2) (2) (5) ()
® & © O ONONONO,
®
(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).
o CS5114 citgoun
N
H 3 LS'ﬂdown
< i
Siftdown =
()
void heap::siftdown (int pos) { // Sift ELEM down no notes
assert ((pos >= 0) && (pos < n));
while (!isLeaf (pos)) {
int j = leftchild(pos);
if ((j<(n-1)) &&
(Heap[]j] .key < Heap[j+1l].key))
j++; // j now index of child with > value
if (Heap([pos].key >= Heap[j].key) return;
swap (Heap, pos, Jj);
pos = j; // Move down
}
}
o CS5114 BuildHeap
3 .
: 3 L BuildHeap
< ul
BuildHeap 5
o Ficogan
For fast heap construction: (i — 1) is number of steps down, n/2' is number of nodes at that
@ Work from high end of array to low end. level.
@ Call siftdown for each item.
o Don’t need to call si £tdown on leaf nodes The intuition for why this cost is ©(n) is important.
Fundamentally, the issue is that nearly all nodes in a tree are
void heap::buildheap () // Heapify contents close to the bottom, and we are (worst case) pushing all nodes
{ for (int i=n/2-1; i>=0; i--) siftdown(i); } down to the bottom. So most nodes have nowhere to go,

. leading to low cost.
Cost for heap construction:

logn

N
> - 1)z ~n.
i

CS 5114: Theory of Algorithms Spring 2014 110/ 145

Heapsort

Heapsort uses a max-heap.

void heapsort (Elem A, int n) { // Heapsort
heap H(A, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort
H.removemax (); // Value placed at end of heap
}

Cost of Heapsort:

Cost of finding k largest elements:
Spring 20147 #1/145

Binsort

A simple, efficient sort:

for (i=0; i<n; i++)
Blkey (A[i])] = A[i];

Ways to generalize:
@ Make each bin the head of a list.
@ Allow more keys than records.

void binsort (ELEM *A, int n) {
list B[MaxKeyValue];
for (i=0; i<n; i++) Blkey(A[i])].append(A[i]);
for (i=0; i<MaxKeyValue; i++)
for (each element in order in B[i])
output (B[i].currValue());
}

Cost:
Radix Sort
Initial List: 27 91 1 97 17 23 84 28 72 5 67 25
First pass Second pass
(on right digit) (on left digit)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 I g 1 g S o VA
8 8
C 9
Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28
Result of secondpass: 1 5 17 23 25 27 28 67 72 84 91 97

Radix Sort Algorithm (1)

void radix (Elem* A, Elem* B, int n, int k, int r,
int* count) {
// Count[i] stores number of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtokx=r) {
for (int j=0; Jj<r; Jj++) count[j] = 0; // Init

// Count # of records for each bin this pass
for (j=0; j<n; Jj++)
count [(key (A[]J]) /rtok)$r]l++;

//Index B: count[j] is index of j’s last slot
for (3=1; J<r; Jj++)
count [j] = count[j-1l]+count[j];

CS 5114: Theory of Algorithms Spring 2014 114/145

2014-02-12

2014-02-12

2014-02-12

2014-02-12

CS 5114

LHeapsort

Cost of Heapsort: ©(nlog n)
Cost of finding k largest elements: ©(k log n+ n).

e Time to build heap: ©(n).

e Time to remove least element: ©(log n).

Compare Heapsort to sorting with BST:

e BST is expensive in space (overhead), potential bad balance,
BST does not take advantage of having all records available
in advance.

e Heap is space efficient, balanced, and building initial heap is
efficient.

CS 5114 Binsort

LBinsort

Cost:

The simple version only works for a permutation of 0to n — 1,
but it is truly O(n)!

Support duplicatesl.e., larger key spaceCost might look like
o(n).

Oops! It is ctually, ©(n = Maxkeyvalue).

Maxkeyvalue could be O(n?) or worse.

CS 5114 e
LRadix Sort
no notes

CS 5114 Radix Sort Algorithm (1)

L Radix Sort Algorithm (1)

no notes

CS 5114

Radix Sort Algorithm (2)

LRadix Sort Algorithm (2)

2014-02-12

Radix Sort Algorithm (2)

Cost (k- 1)

Howdo n kand rolas?

r can be viewed as a constant.
// Put recs into bins working from bottom k > log n if there are n distinct keys.

//Bins fill from bottom so j counts downwards
for (j=n-1; 3>=0; j-—-)
B[--count [(key (A[]])/rtok)%r]l] = A[]];
for (j=0; 3j<n; Jj++) A[j] = B[Jjl; // Copy B—>A
}

Cost: ©(nk + rk).

How do n, k and r relate?

CS 5114: Theory of Algorithms Spring 2014 115/145

CS 5114

Radix Sort Example

L Radix Sort Example

2014-02-12

Radix Sort Example

Inital Input: Aray A [27]91] 1 [o7[17]23]84]28]72] 5 [67] 5]

no notes

0123456789

Fistpass valoes orOount. [[2 | 2 o4t]o]

0 1 2 6
B (DJE]E [7Tn[ez]re]

End of Pass 1: Array A. [91] 1 [72]28] 4] 5 [25]27]o7]17]67 28]
01234 5678 9100

0 1 2 3 45 6 7 8 9
s o can (4T T4 o o [o 4 T+]:]

0

123 456 7
Count array:
oramays. (2131 7]7[7|7]8]9|10]12

End of Pass 2: Array A [1]5 [17[23]25]27]28]67[72[84]01]o7]
0123456780101

CS 5114: Theory of Algorithms Spring 2014 116/145

CS 5114 Sorting Lower Bound

W1 prove ower b for a sl soring
agorins

Sortng s (g,

Sorting Lower Bound

LSorting Lower Bound

2014-02-12

Want to prove a lower bound for all possible sorting

algorithms. no notes

Sorting is O(nlog n).
Sorting I/O takes Q(n) time.
Will now prove Q(nlog n) lower bound.

Form of proof:
@ Comparison based sorting can be modeled by a binary
tree.
@ The tree must have Q(n!) leaves.
@ The tree must be Q(nlog n) levels deep.

CS 5114: Theory of Algorithms Spring 2014 117 /145

CS 5114

Decision Trees.

LDecision Trees

Decision Trees

XYZ
XYZ YZX
XZY ZXY
YXz zvx no notes
Yes " pr1]<Apo]? \No

(Y<X?)

2014-02-12

@ There are n! permutations, and at least 1 node for each.
@ A tree with n nodes has at least log n levels.
@ Where is the worst case in the decision tree?

CS 5114: Theory of Algorithms Spring 2014 118/145

CS 5114

LLower Bound Analysis

2014-02-12

Lower Bound Analysis

log n— (1 or 2).
log n' <logn” = nlogn.

log n! > log (g)E > %(nlog n—n).
@ So, logn! = ©(nlog n).

@ Using the decision tree model, what is the average
depth of a node?

@ This is also ©(log n!).

CS 5114 Theory of Algorithms

