
Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).

CS 5114: Theory of Algorithms Spring 2014 71 / 91

Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).20

14
-0

2-
04

CS 5114

Maximum Subsequence Solution

no notes

Maximum Subsequence Solution
(cont)

Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?

CS 5114: Theory of Algorithms Spring 2014 72 / 91

Maximum Subsequence Solution
(cont)

Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?20
14

-0
2-

04

CS 5114

Maximum Subsequence Solution (cont)

O(n). T (n) = T (n − 1) + 2.
Remember position information as well.

The Knapsack Problem

Problem:
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1,2, · · · ,n} such that∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101

CS 5114: Theory of Algorithms Spring 2014 73 / 91

The Knapsack Problem

Problem:
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1,2, · · · ,n} such that∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101

20
14

-0
2-

04

CS 5114

The Knapsack Problem

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

S = {9,27,54,73}

Now, try solving for K = 164. An answer is:

S = {19,44,101}.

There is no relationship between these solutions!

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n,K ) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve P(n − 1,K ).

CS 5114: Theory of Algorithms Spring 2014 74 / 91

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n,K ) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve P(n − 1,K ).20

14
-0

2-
04

CS 5114

Knapsack Algorithm Approach

Is there a subset S such that
∑

Si = K ?



Knapsack Induction

Induction Hypothesis:
We know how to solve P(n − 1,K ).

Solving P(n,K ):
If P(n − 1,K ) has a solution, then it is also a solution for
P(n,K ).
Otherwise, P(n,K ) has a solution iff P(n − 1,K − kn)
has a solution.

So what should the induction hypothesis really be?

CS 5114: Theory of Algorithms Spring 2014 75 / 91

Knapsack Induction

Induction Hypothesis:
We know how to solve P(n − 1,K ).

Solving P(n,K ):
If P(n − 1,K ) has a solution, then it is also a solution for
P(n,K ).
Otherwise, P(n,K ) has a solution iff P(n − 1,K − kn)
has a solution.

So what should the induction hypothesis really be?

20
14

-0
2-

04

CS 5114

Knapsack Induction

But... I don’t know how to solve P(n − 1,K − kn) since it is not
in my induction hypothesis! So, we must strengthen the
induction hypothesis.

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

Knapsack: New Induction

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

To solve P(n,K ):
If P(n − 1,K ) has a solution,

Then P(n,K ) has a solution.
Else If P(n − 1,K − kn) has a solution,

Then P(n,K ) has a solution.
Else P(n,K ) has no solution.

CS 5114: Theory of Algorithms Spring 2014 76 / 91

Knapsack: New Induction

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

To solve P(n,K ):
If P(n − 1,K ) has a solution,

Then P(n,K ) has a solution.
Else If P(n − 1,K − kn) has a solution,

Then P(n,K ) has a solution.
Else P(n,K ) has no solution.20

14
-0

2-
04

CS 5114

Knapsack: New Induction

Need to solve two subproblems: P(n − 1, k) and
P(n − 1, k − kn).

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

But, there are only n(K + 1) problems defined.
I It must be that problems are being re-solved many times

by this algorithm. Don’t do that.

CS 5114: Theory of Algorithms Spring 2014 77 / 91

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

But, there are only n(K + 1) problems defined.
I It must be that problems are being re-solved many times

by this algorithm. Don’t do that.

20
14

-0
2-

04

CS 5114

Algorithm Complexity

Problem: Can’t use Theorem 3.4 in this form.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).
Fill in the table row by row.
Alternately, fill in table using logic above.

Analysis:
T (n) = Θ(nK ).
Space needed is also Θ(nK ).

CS 5114: Theory of Algorithms Spring 2014 78 / 91

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).
Fill in the table row by row.
Alternately, fill in table using logic above.

Analysis:
T (n) = Θ(nK ).
Space needed is also Θ(nK ).

20
14

-0
2-

04

CS 5114

Efficient Algorithm Implementation

To solve P(i , k) look at entry in the table.
If it is marked, then OK.
Otherwise solve recursively.
Initially, fill in all P(i ,0).



Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.
CS 5114: Theory of Algorithms Spring 2014 79 / 91

Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.

20
14

-0
2-

04

CS 5114

Example

Example: M(3, 9) contains O because P(2,9) has a solution.
It contains I because P(2,2) = P(2,9− 7) has a solution.
How can we find a solution to P(5,10) from M?
How can we find all solutions for P(5,10)?

Solution Graph

Find all solutions for P(5,10).

M(1, 0)

M(3, 9)

M(2, 2)

M(4, 9)

M(5, 10)

M(2, 9)

M(1, 9)

The result is an n-level DAG.

CS 5114: Theory of Algorithms Spring 2014 80 / 91

Solution Graph

Find all solutions for P(5,10).

M(1, 0)

M(3, 9)

M(2, 2)

M(4, 9)

M(5, 10)

M(2, 9)

M(1, 9)

The result is an n-level DAG.

20
14

-0
2-

04

CS 5114

Solution Graph

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and
retrieving) subproblem solutions.

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.

CS 5114: Theory of Algorithms Spring 2014 81 / 91

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.20
14

-0
2-

04

CS 5114

Dynamic Programming

no notes

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?
If we could eliminate redundancy, cost would be greatly
reduced.

CS 5114: Theory of Algorithms Spring 2014 82 / 91

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?
If we could eliminate redundancy, cost would be greatly
reduced.20

14
-0

2-
04

CS 5114

Fibonacci Sequence

Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
two function calls of size n − 1 each.



Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

I Key is working bottom up.
CS 5114: Theory of Algorithms Spring 2014 83 / 91

Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

I Key is working bottom up.

20
14

-0
2-

04

CS 5114

Fibonacci Sequence (cont)

no notes


