
Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).
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Maximum Subsequence Solution

no notes

Maximum Subsequence Solution
(cont)

Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?
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Maximum Subsequence Solution (cont)

O(n). T (n) = T (n − 1) + 2.
Remember position information as well.

The Knapsack Problem

Problem:
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1,2, · · · ,n} such that∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101
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The Knapsack Problem

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

S = {9,27,54,73}

Now, try solving for K = 164. An answer is:

S = {19,44,101}.

There is no relationship between these solutions!

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n,K ) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve P(n − 1,K ).
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Knapsack Algorithm Approach

Is there a subset S such that
∑

Si = K ?



Knapsack Induction

Induction Hypothesis:
We know how to solve P(n − 1,K ).

Solving P(n,K ):
If P(n − 1,K ) has a solution, then it is also a solution for
P(n,K ).
Otherwise, P(n,K ) has a solution iff P(n − 1,K − kn)
has a solution.

So what should the induction hypothesis really be?
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Knapsack Induction

But... I don’t know how to solve P(n − 1,K − kn) since it is not
in my induction hypothesis! So, we must strengthen the
induction hypothesis.

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

Knapsack: New Induction

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

To solve P(n,K ):
If P(n − 1,K ) has a solution,

Then P(n,K ) has a solution.
Else If P(n − 1,K − kn) has a solution,

Then P(n,K ) has a solution.
Else P(n,K ) has no solution.
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Knapsack: New Induction

Need to solve two subproblems: P(n − 1, k) and
P(n − 1, k − kn).

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

But, there are only n(K + 1) problems defined.
I It must be that problems are being re-solved many times

by this algorithm. Don’t do that.
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Algorithm Complexity

Problem: Can’t use Theorem 3.4 in this form.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).
Fill in the table row by row.
Alternately, fill in table using logic above.

Analysis:
T (n) = Θ(nK ).
Space needed is also Θ(nK ).
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Efficient Algorithm Implementation

To solve P(i , k) look at entry in the table.
If it is marked, then OK.
Otherwise solve recursively.
Initially, fill in all P(i ,0).



Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.
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Example

Example: M(3, 9) contains O because P(2,9) has a solution.
It contains I because P(2,2) = P(2,9− 7) has a solution.
How can we find a solution to P(5,10) from M?
How can we find all solutions for P(5,10)?

Solution Graph

Find all solutions for P(5,10).

M(1, 0)

M(3, 9)

M(2, 2)

M(4, 9)

M(5, 10)

M(2, 9)

M(1, 9)

The result is an n-level DAG.
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Solution Graph

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and
retrieving) subproblem solutions.

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.
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Dynamic Programming

no notes

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?
If we could eliminate redundancy, cost would be greatly
reduced.
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Fibonacci Sequence

Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
two function calls of size n − 1 each.



Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

I Key is working bottom up.
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Fibonacci Sequence (cont)

no notes


