$\begin{array}{ll}\text { I CS } 5114 \\ \text { İ } \\ \text { İ } \\ \text { İ } & L_{\text {Maximum Subsequence Solution }}\end{array}$
no notes

New Induction Hypothesis: We can find SUM(n-1) and TRAILINGSUM($n-1$) for any sequence of $n-1$ integers.

Base case:

$\operatorname{SUM}(1)=\operatorname{TRAILINGSUM}(1)=\operatorname{Max}\left(0, x_{1}\right)$.

Induction step:
$\operatorname{SUM}(\mathrm{n})=\operatorname{Max}\left(\right.$ SUM $(\mathrm{n}-1)$, TRAILINGSUM $\left.(\mathrm{n}-1)+x_{n}\right)$.
$\operatorname{TRAILINGSUM}(\mathrm{n})=\operatorname{Max}\left(0, \operatorname{TRAILINGSUM}(\mathrm{n}-1)+x_{n}\right)$.

Maximum Subsequence Solution (cont)

Analysis:

Important Lesson: If we calculate and remember some additional values as we go along, we are often able to obtain a more efficient algorithm.
This corresponds to strengthening the induction hypothesis so that we compute more than the original problem (appears
to) require.
How do we find sequence as opposed to sum?

The Knapsack Problem

Problem:

- Given an integer capacity K and n items such that item i has an integer size k_{i}, find a subset of the n items whose sizes exactly sum to K, if possible.
- That is, find $S \subseteq\{1,2, \cdots, n\}$ such that

$$
\sum_{i \in S} k_{i}=K
$$

Example:
Knapsack capacity $K=163$.
10 items with sizes

$$
4,9,15,19,27,44,54,68,73,101
$$

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of items n, we parameterize by both n and by K.
$P(n, K)$ is the problem with n items and capacity K.
First consider the decision problem: Is there a subset S ?

Induction Hypothesis:
We know how to solve $P(n-1, K)$.

$$
\mathrm{O}(n) . T(n)=T(n-1)+2 .
$$

Remember position information as well.

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

$$
S=\{9,27,54,73\}
$$

Now, try solving for $K=164$. An answer is:

$$
S=\{19,44,101\} .
$$

There is no relationship between these solutions!

Is there a subset S such that $\sum S_{i}=K$?

Knapsack Induction

Induction Hypothesis:
We know how to solve $P(n-1, K)$.
Solving $P(n, K)$:

- If $P(n-1, K)$ has a solution, then it is also a solution for $P(n, K)$.
- Otherwise, $P(n, K)$ has a solution iff $P\left(n-1, K-k_{n}\right)$ has a solution.

So what should the induction hypothesis really be?

Knapsack: New Induction

- New Induction Hypothesis:

We know how to solve $P(n-1, k), 0 \leq k \leq K$.

- To solve $P(n, K)$:

If $P(n-1, K)$ has a solution, Then $P(n, K)$ has a solution.
Else If $P\left(n-1, K-k_{n}\right)$ has a solution, Then $P(n, K)$ has a solution.
Else $P(n, K)$ has no solution.

Algorithm Complexity

- Resulting algorithm complexity:
$T(n)=2 T(n-1)+c \quad n \geq 2$
$T(n)=\Theta\left(2^{n}\right) \quad$ by expanding sum.
- But, there are only $n(K+1)$ problems defined.
- It must be that problems are being re-solved many times by this algorithm. Don't do that.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:

- Store an $n \times(K+1)$ matrix to contain solutions for all the $P(i, k)$.
- Fill in the table row by row.
- Alternately, fill in table using logic above.

Analysis:

$T(n)=\Theta(n K)$.
Space needed is also $\Theta(n K)$.

But... I don't know how to solve $P\left(n-1, K-k_{n}\right)$ since it is not in my induction hypothesis! So, we must strengthen the induction hypothesis.

New Induction Hypothesis

We know how to solve $P(n-1, k), 0 \leq k \leq K$.

Need to solve two subproblems: $P(n-1, k)$ and $P\left(n-1, k-k_{n}\right)$.

Problem: Can't use Theorem 3.4 in this form.

Example

$K=10$, with 5 items having size $9,2,7,4,1$.

	0	1	2	3	4	5	6	7	8	9	10
$k_{1}=9$	0	-	-	-	-	-	-	-	-	1	-
$k_{2}=2$	0	-	1	-	-	-	-	-	-	0	-
$k_{3}=7$	0	-	0	-	-	-	-	1	-	$1 / 0$	-
$k_{4}=4$	0	-	0	-	1	-	1	0	-	0	-
$k_{5}=1$	0	1	0	1	0	1	0	$1 / 0$	1	0	1

Key:

- No solution for $P(i, k)$
O Solution(s) for $P(i, k)$ with i omitted.
I Solution(s) for $P(i, k)$ with i included.
I / O Solutions for $P(i, k)$ both with i included and with i omitted.

Solution Graph

Find all solutions for $P(5,10)$.

The result is an n-level DAG.

Dynamic Programming

This approach of storing solutions to subproblems in a table is called dynamic programming.

It is useful when the number of distinct subproblems is not too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single entry.

Most useful for optimization problems.

Fibonacci Sequence

```
int Fibr(int n) {
    if (n <= 1) return 1; // Base case
    return Fibr (n-1) + Fibr(n-2); // Recursion
}
```

- Cost is Exponential. Why?
- If we could eliminate redundancy, cost would be greatly reduced.

Example

Example: $M(3,9)$ contains O because $P(2,9)$ has a solution.
It contains / because $P(2,2)=P(2,9-7)$ has a solution.
How can we find a solution to $P(5,10)$ from M ?
How can we find all solutions for $P(5,10)$?

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and retrieving) subproblem solutions.

no notes

Essentially, we are making as many function calls as the value of the Fibonacci sequence itself. It is roughly (though not quite) two function calls of size $n-1$ each.

Fibonacci Sequence (cont)

- Keep a table


```
int Fibrt(int n, int* Values) {
    // Assume Values has at least n slots, and
    // all slots are initialized to 0
    if (n <= 1) return 1; // Base case
    if (Values[n] == 0) // Compute and store
        Values[n] = Fibrt(n-1, Values) +
            Fibrt(n-2, Values);
    return Values[n];
}
```

- Cost?
- We don't need table, only last 2 values.
- Key is working bottom up.

