
Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)

CS 5114: Theory of Algorithms Spring 2014 51 / 1

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)

20
14

-0
1-

30

CS 5114

Alternate Analysis

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this – we won’t go into this much,
but we use Amortized Analysis implicitly sometimes.

Creative Design of Algorithms by
Induction

Analogy: Induction↔ Algorithms

Begin with a problem:
“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances.

Example: Sorting
Q contains all finite sequences of integers.

CS 5114: Theory of Algorithms Spring 2014 52 / 1

Creative Design of Algorithms by
Induction

Analogy: Induction↔ Algorithms

Begin with a problem:
“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances.

Example: Sorting
Q contains all finite sequences of integers.

20
14

-0
1-

30

CS 5114

Creative Design of Algorithms by Induction

Now that we have completed the tool review, we will do two
things:

1. Survey algorithms in application areas

2. Try to understand how to create efficient algorithms

This chapter is about the second. The remaining chapters do
the second in the context of the first.

I← A is reasonably obvious – we often use induction to prove
that an algorithm is correct. The intellectual claim of Manber is
that I→ A gives insight into problem solving.

Solving Q

First step:
Parameterize problem by size: Q(n)

Example: Sorting
Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:
Q(1),Q(2), ...,Q(n)

Algorithm: Solve for an instance in Q(n) by solving
instances in Q(i), i < n and combining as necessary.

CS 5114: Theory of Algorithms Spring 2014 53 / 1

Solving Q

First step:
Parameterize problem by size: Q(n)

Example: Sorting
Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:
Q(1),Q(2), ...,Q(n)

Algorithm: Solve for an instance in Q(n) by solving
instances in Q(i), i < n and combining as necessary.

20
14

-0
1-

30

CS 5114

Solving Q

This is a “meta” algorithm – An algorithm for finding algorithms!

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem: ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

CS 5114: Theory of Algorithms Spring 2014 54 / 1

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem: ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

20
14

-0
1-

30

CS 5114

Induction

The goal is using Strong Induction.
Correctness is proved by induction.
Example: Sorting

• Sort n − 1 items, add nth item (insertion sort)

• Sort 2 sets of n/2, merge together (mergesort)

• Sort values < x and > x (quicksort)

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9], [5,7], [0,3], [4,8], [6,10], [7,8], [0,5], [1,3], [6,8]

0 1 2 3 4 5 6 7 8 9 10

CS 5114: Theory of Algorithms Spring 2014 55 / 1

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9], [5,7], [0,3], [4,8], [6,10], [7,8], [0,5], [1,3], [6,8]

0 1 2 3 4 5 6 7 8 9 10

20
14

-0
1-

30

CS 5114

Interval Containment

no notes

Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
Mark [6,9] since [6,9] ⊆ [6,10]

CS 5114: Theory of Algorithms Spring 2014 56 / 1

Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
Mark [6,9] since [6,9] ⊆ [6,10]

20
14

-0
1-

30

CS 5114

Interval Containment (cont)

[5,7] ⊆ [4,8]
[0,3] ⊆ [0,5]
[7,8] ⊆ [6,10]
[1,3] ⊆ [0,5]
[6,8] ⊆ [6,10]

[6,9] ⊆ [6,10]

Interval Containment (cont)

Q(n): Instances of n intervals
Base case: Q(1) is easy.
Inductive Hypothesis: For n > 1, we know how to
solve an instance in Q(n − 1).
Induction step: Solve for Q(n).

I Solve for first n − 1 intervals, applying inductive
hypothesis.

I Check the nth interval against intervals i = 1,2, · · ·
I If interval i contains interval n, mark interval n. (stop)
I If interval n contains interval i , mark interval i .

Analysis:
T (n) = T (n − 1) + cn
T (n) = Θ(n2)

CS 5114: Theory of Algorithms Spring 2014 57 / 1

Interval Containment (cont)

Q(n): Instances of n intervals
Base case: Q(1) is easy.
Inductive Hypothesis: For n > 1, we know how to
solve an instance in Q(n − 1).
Induction step: Solve for Q(n).

I Solve for first n − 1 intervals, applying inductive
hypothesis.

I Check the nth interval against intervals i = 1,2, · · ·
I If interval i contains interval n, mark interval n. (stop)
I If interval n contains interval i , mark interval i .

Analysis:
T (n) = T (n − 1) + cn
T (n) = Θ(n2)

20
14

-0
1-

30

CS 5114

Interval Containment (cont)

Base case: Nothing is contained

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.
CS 5114: Theory of Algorithms Spring 2014 58 / 1

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.

20
14

-0
1-

30

CS 5114

“Creative” Algorithm

In the example, the nth interval is [7,8].
Every other interval has left endpoint to left, or right endpoint to
right.
We must keep track of the current right-most endpont.

“Creative” Solution Induction
Induction Hypothesis: Can solve for Q(n − 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n − 1 segments.

Induction Step: (to solve Q(n))
Sort by left endpoints
Solve for first n − 1 intervals recursively, remembering
R.
If the rightmost endpoint of nth interval is ≤ R, then
mark the nth interval.
Else R← right endpoint of nth interval.

Analysis: Θ(n log n) + Θ(n).
Lesson: Preprocessing, often sorting, can help sometimes.

CS 5114: Theory of Algorithms Spring 2014 59 / 1

“Creative” Solution Induction
Induction Hypothesis: Can solve for Q(n − 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n − 1 segments.

Induction Step: (to solve Q(n))
Sort by left endpoints
Solve for first n − 1 intervals recursively, remembering
R.
If the rightmost endpoint of nth interval is ≤ R, then
mark the nth interval.
Else R← right endpoint of nth interval.

Analysis: Θ(n log n) + Θ(n).
Lesson: Preprocessing, often sorting, can help sometimes.

20
14

-0
1-

30

CS 5114

“Creative” Solution Induction

We strengthened the induction hypothesis. In algorithms, this
does cost something.
We must sort.
Analysis: Time for sort + constant time per interval.

Maximal Induced Subgraph

Problem: Given a graph G = (V ,E) and an integer k , find a
maximal induced subgraph H = (U,F) such that all vertices
in H have degree ≥ k .
Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

1

2

3

4

5

6 7

Solution:

CS 5114: Theory of Algorithms Spring 2014 60 / 1

Maximal Induced Subgraph

Problem: Given a graph G = (V ,E) and an integer k , find a
maximal induced subgraph H = (U,F) such that all vertices
in H have degree ≥ k .
Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

1

2

3

4

5

6 7

Solution:

20
14

-0
1-

30

CS 5114

Maximal Induced Subgraph

Induced subgraph: U is a subset of V , F is a subset of E such
that both ends of e ∈ E are members of U.
Solution is: U = {1,3,4,5}

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.

Theorem: ∀s, k > 0, we can solve an instance in Q(s, k).

Analysis: Should be able to implement algorithm in time
Θ(|V |+ |E |).

CS 5114: Theory of Algorithms Spring 2014 61 / 1

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.

Theorem: ∀s, k > 0, we can solve an instance in Q(s, k).

Analysis: Should be able to implement algorithm in time
Θ(|V |+ |E |).

20
14

-0
1-

30

CS 5114

Max Induced Subgraph Solution

Base Case: s = 1 H is the empty graph.
Induction Hypothesis: Assume s > 1. we can solve instances
of Q(s − 1, k).
Induction Step: Show that we can solve an instance of
G(V ,E) in Q(s, k). Two cases:

(1) Every vertex in G has degree ≥ k . H = G is the only solution.

(2) Otherwise, let v ∈ V have degree < k . G − v is an instance
of Q(s − 1, k) which we know how to solve.

By induction, the theorem follows.
Visit all edges to generate degree counts for the vertices. Any
vertex with degree below k goes on a queue. Pull the vertices
off the queue one by one, and reduce the degree of their
neighbors. Add the neighbor to the queue if it drops below k .

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem: If we can ask questions of the form “does person i
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?

CS 5114: Theory of Algorithms Spring 2014 62 / 1

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem: If we can ask questions of the form “does person i
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?20
14

-0
1-

30

CS 5114

Celebrity Problem

no notes

Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


A celebrity has all 0’s in his row and all 1’s in his column.

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do better?
CS 5114: Theory of Algorithms Spring 2014 63 / 1

Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


A celebrity has all 0’s in his row and all 1’s in his column.

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do better?

20
14

-0
1-

30

CS 5114

Celebrity Problem (cont)

The celebrity in this example is 4.

Efficient Celebrity Algorithm

Appeal to induction:
If we have an n × n matrix, how can we reduce it to an
(n − 1)× (n − 1) matrix?

What are ways to select the n’th person?

CS 5114: Theory of Algorithms Spring 2014 64 / 1

Efficient Celebrity Algorithm

Appeal to induction:
If we have an n × n matrix, how can we reduce it to an
(n − 1)× (n − 1) matrix?

What are ways to select the n’th person?

20
14

-0
1-

30

CS 5114

Efficient Celebrity Algorithm

This induction implies that we go backwards. Natural thing to
try: pick arbitrary n’th person.
Assume that we can solve for n − 1. What happens when we
add nth person?

• Celebrity candidate in n − 1 – just ask two questions.

• Celebrity is n – must check 2(n − 1) positions. O(n2).

• No celebrity. Again, O(n2).

So we will have to look for something special. Who can we
eliminate? There are only two choices: A celebrity or a
non-celebrity. It doesn’t make sense to eliminate a celebrity. Is
there an easy way to guarentee that we eliminate a
non-celeberity?

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

Strike one row and one column.
1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

CS 5114: Theory of Algorithms Spring 2014 65 / 1

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

Strike one row and one column.
1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

20
14

-0
1-

30

CS 5114

Efficient Celebrity Algorithm (cont)

no notes

Celebrity Algorithm

Algorithm:
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis:
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


CS 5114: Theory of Algorithms Spring 2014 66 / 1

Celebrity Algorithm

Algorithm:
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis:
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1

20
14

-0
1-

30

CS 5114

Celebrity Algorithm

no notes

