Summation: Guess and Test

$\sim_{N}^{\infty} \operatorname{CS} 5114$
LSummation: Guess and Test

Technique 1: Guess the solution and use induction to test.
Technique 1a: Guess the form of the solution, and use simultaneous equations to generate constants. Finally, use induction to test.

Summation Example

$$
S(n)=\sum_{i=0}^{n} i^{2}
$$

Guess that $S(n)$ is a polynomial $\leq n^{3}$.
Equivalently, guess that it has the form
$S(n)=a n^{3}+b n^{2}+c n+d$.
For $n=0$ we have $S(n)=0$ so $d=0$.
For $n=1$ we have $a+b+c+0=1$.
For $n=2$ we have $8 a+4 b+2 c=5$.
For $n=3$ we have $27 a+9 b+3 c=14$.
Solving these equations yields $a=\frac{1}{3}, b=\frac{1}{2}, c=\frac{1}{6}$
Now, prove the solution with induction.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate intermediate terms.

$$
G(n)=\sum_{i=0}^{n} a r^{i}=a+a r+a r^{2}+\cdots+a r^{n}
$$

Shift by multiplying by r.

$$
r G(n)=a r+a r^{2}+\cdots+a r^{n}+a r^{n+1}
$$

Subtract.

$$
\begin{aligned}
G(n)-r G(n) & =G(n)(1-r)=a-a r^{n+1} \\
G(n) & =\frac{a-a r^{n+1}}{1-r} \quad r \neq 1
\end{aligned}
$$

Example 3.3

$$
G(n)=\sum_{i=1}^{n} i 2^{i}=1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+n \times 2^{n}
$$

Multiply by 2.

$$
2 G(n)=1 \times 2^{2}+2 \times 2^{3}+3 \times 2^{4}+\cdots+n \times 2^{n+1}
$$

Subtract (Note: $\sum_{i=1}^{n} 2^{i}=2^{n+1}-2$)

$$
\begin{aligned}
2 G(n)-G(n) & =n 2^{n+1}-2^{n} \cdots 2^{2}-2 \\
G(n) & =n 2^{n+1}-2^{n+1}+2 \\
& =(n-1) 2^{n+1}+2
\end{aligned}
$$

Recurrence Relations

- A (math) function defined in terms of itself.
- Example: Fibonacci numbers:
$F(n)=F(n-1)+F(n-2)$ general case
$F(1)=F(2)=1$
base cases
- There are always one or more general cases and one or more base cases.
- We will use recurrences for time complexity of recursive (computer) functions.
- General format is $T(n)=E(T, n)$ where $E(T, n)$ is an expression in T and n.
- $T(n)=2 T(n / 2)+n$
- Alternately, an upper bound: $T(n) \leq E(T, n)$.

Solving Recurrences

We would like to find a closed form solution for $T(n)$ such that:

$$
T(n)=\Theta(f(n))
$$

Alternatively, find lower bound

- Not possible for inequalities of form $T(n) \leq E(T, n)$.

Methods:

- Guess (and test) a solution
- Expand recurrence
- Theorems

Guessing

$T(n)=2 T(n / 2)+5 n^{2} \quad n \geq 2$
$T(1)=7$
Note that T is defined only for powers of 2 .
Guess a solution: $T(n) \leq c_{1} n^{3}=f(n)$
$T(1)=7$ implies that $c_{1} \geq 7$
Inductively, assume $T(n / 2) \leq f(n / 2)$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+5 n^{2} \\
& \leq 2 c_{1}(n / 2)^{3}+5 n^{2} \\
& \leq c_{1}\left(n^{3} / 4\right)+5 n^{2} \\
& \leq c_{1} n^{3} \text { if } c_{1} \geq 20 / 3 .
\end{aligned}
$$

Guessing (cont)

Therefore, if $c_{1}=7$, a proof by induction yields:
$T(n) \leq 7 n^{3}$
$T(n) \in O\left(n^{3}\right)$
Is this the best possible solution?

Recurrence Relations

We won't spend a lot of time on techniques... just enough to be able to use them.

Note that "finding a closed form" means that we have $f(n)$ that doesn't include T.

Can't find lower bound for the inequality because you do not know enough... you don't know how much bigger $E(T, n)$ is than $T(n)$, so the result might not be $\Omega(T(n))$.

Guessing is useful for finding an asymptotic solution. Use induction to prove the guess correct.

For Big-oh, not many choices in what to guess.
$7 \times 1^{3}=7$

Because $\frac{20}{4 \cdot 3} n^{3}+5 n^{2}=\frac{20}{3} n^{3}$ when $n=1$, and as n grows, the right side grows even faster.

No - try something tighter.

Guessing (cont)

Guess again.

$$
T(n) \leq c_{2} n^{2}=g(n)
$$

$T(1)=7$ implies $c_{2} \geq 7$.
Inductively, assume $T(n / 2) \leq g(n / 2)$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+5 n^{2} \\
& \leq 2 c_{2}(n / 2)^{2}+5 n^{2} \\
& =c_{2}\left(n^{2} / 2\right)+5 n^{2} \\
& \leq c_{2} n^{2} \text { if } c_{2} \geq 10
\end{aligned}
$$

Therefore, if $C_{2}=10, \quad T(n) \leq 10 n^{2} . \quad T(n)=O\left(n^{2}\right)$.
Is this the best possible upper bound?

Because $\frac{10}{2} n^{2}+5 n^{2}=10 n^{2}$ for $n=1$, and the right hand side grows faster.

Yes this is best, since $T(n)$ can be as bad as $5 n^{2}$.

Guessing (cont)

Now, reshape the recurrence so that T is defined for all values of n.
$T(n) \leq 2 T(\lfloor n / 2\rfloor)+5 n^{2} \quad n \geq 2$
For arbitrary n, let $2^{k-1}<n \leq 2^{k}$.
We have already shown that $T\left(2^{k}\right) \leq 10\left(2^{k}\right)^{2}$.

$$
\begin{aligned}
T(n) & \leq T\left(2^{k}\right) \leq 10\left(2^{k}\right)^{2} \\
& =10\left(2^{k} / n\right)^{2} n^{2} \leq 10(2)^{2} n^{2} \\
& \leq 40 n^{2}
\end{aligned}
$$

Hence, $T(n)=\mathrm{O}\left(n^{2}\right)$ for all values of n.
Typically, the bound for powers of two generalizes to all n.

Expanding Recurrences

Usually, start with equality version of recurrence.

$$
\begin{aligned}
& T(n)=2 T(n / 2)+5 n^{2} \\
& T(1)=7
\end{aligned}
$$

Assume n is a power of $2 ; n=2^{k}$.

Expanding Recurrences (cont)

$T(n)=2 T(n / 2)+5 n^{2}$
$=2\left(2 T(n / 4)+5(n / 2)^{2}\right)+5 n^{2}$
$=2\left(2\left(2 T(n / 8)+5(n / 4)^{2}\right)+5(n / 2)^{2}\right)+5 n^{2}$
$=2^{k} T(1)+2^{k-1} \cdot 5\left(n / 2^{k-1}\right)^{2}+2^{k-2} \cdot 5\left(n / 2^{k-2}\right)^{2}$ $+\cdots+2 \cdot 5(n / 2)^{2}+5 n^{2}$
$=7 n+5 \sum_{i=0}^{k-1} n^{2} / 2^{i}=7 n+5 n^{2} \sum_{i=0}^{k-1} 1 / 2^{i}$
$=7 n+5 n^{2}\left(2-1 / 2^{k-1}\right)$
$=7 n+5 n^{2}(2-2 / n)$.
This it the exact solution for powers of 2. $T(n)=\Theta\left(n^{2}\right)$.

Divide and Conquer Recurrences

These have the form:

$$
\begin{aligned}
& T(n)=a T(n / b)+c n^{k} \\
& T(1)=c
\end{aligned}
$$

... where a, b, c, k are constants.
A problem of size n is divided into a subproblems of size n / b, while $c n^{k}$ is the amount of work needed to combine the solutions.

Divide and Conquer Recurrences

 (cont)Expand the sum; $n=b^{m}$.

$$
\begin{aligned}
T(n) & =a\left(a T\left(n / b^{2}\right)+c(n / b)^{k}\right)+c n^{k} \\
& =a^{m} T(1)+a^{m-1} c\left(n / b^{m-1}\right)^{k}+\cdots+a c(n / b)^{k}+c n^{k} \\
& =c a^{m} \sum_{i=0}^{m}\left(b^{k} / a\right)^{i}
\end{aligned}
$$

$a^{m}=a^{\log _{b} n}=n^{\log _{b} a}$
The summation is a geometric series whose sum depends on the ratio

$$
r=b^{k} / a
$$

There are 3 cases.

CS 5114: Theory of Algorithms
 D \& C Recurrences (cont)

(1) $r<1$.

$$
\begin{gathered}
\sum_{i=0}^{m} r^{i}<1 /(1-r), \quad \text { a constant. } \\
T(n)=\Theta\left(a^{m}\right)=\Theta\left(n^{\log _{b} a}\right) .
\end{gathered}
$$

(2) $r=1$.

$$
\begin{gathered}
\sum_{i=0}^{m} r^{i}=m+1=\log _{b} n+1 \\
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)=\Theta\left(n^{k} \log n\right)
\end{gathered}
$$

D \& C Recurrences (Case 3)

(3) $r>1$.

$$
\sum_{i=0}^{m} r^{i}=\frac{r^{m+1}-1}{r-1}=\Theta\left(r^{m}\right)
$$

So, from $T(n)=c a^{m} \sum r^{i}$,

$$
\begin{aligned}
T(n) & =\Theta\left(a^{m} r^{m}\right) \\
& =\Theta\left(a^{m}\left(b^{k} / a\right)^{m}\right) \\
& =\Theta\left(b^{k m}\right) \\
& =\Theta\left(n^{k}\right)
\end{aligned}
$$

$n=b^{m} \Rightarrow m=\log _{b} n$.
Set $a=b^{\log _{b} a}$. Switch order of logs, giving $\left(b^{\log _{b} \eta}\right)^{\log _{b} a}=n^{\log _{b} a}$.

When $r=1$, since $r=b^{k} / a=1$, we get $a=b^{k}$. Recall that $k=\log _{b} a$.

Summary

Theorem 3.4:

$$
T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{k} \\ \Theta\left(n^{k} \log n\right) & \text { if } \mathrm{a}=\mathrm{b}^{k} \\ \Theta\left(n^{k}\right) & \text { if } \mathrm{a}<\mathrm{b}^{k}\end{cases}
$$

Apply the theorem:
$T(n)=3 T(n / 5)+8 n^{2}$.
$a=3, b=5, c=8, k=2$.
$b^{k} / a=25 / 3$.

Case (3) holds: $T(n)=\Theta\left(n^{2}\right)$.

Examples

- Mergesort: $T(n)=2 T(n / 2)+n$.
$2^{1} / 2=1$, so $T(n)=\Theta(n \log n)$.
- Binary search: $T(n)=T(n / 2)+2$.
$2^{0} / 1=1$, so $T(n)=\Theta(\log n)$.
- Insertion sort: $T(n)=T(n-1)+n$.

Can't apply the theorem. Sorry!

- Standard Matrix Multiply (recursively):
$T(n)=8 T(n / 2)+n^{2}$.
$2^{2} / 8=1 / 2$ so $T(n)=\Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)$.

Useful log Notation

- If you want to take the \log of $(\log n)$, it is written $\log \log n$.
- $(\log n)^{2}$ can be written $\log ^{2} n$.
- Don't get these confused!
- $\log ^{*} n$ means "the number of times that the log of n must be taken before $n \leq 1$.
- For example, $65536=2^{16}$ so $\log ^{*} 65536=4$ since $\log 65536=16, \log 16=4, \log 4=2, \log 2=1$.

Amortized Analysis

Consider this variation on STACK:
void init(STACK S);
element examineTop (STACK S);
void push (element x, STACK S);
void pop(int k, STACK S);
... where pop removes k entries from the stack.
"Local" worst case analysis for pop:
$\mathrm{O}(n)$ for n elements on the stack.
Given m_{1} calls to push, m_{2} calls to pop:
Naive worst case: $m_{1}+m_{2} \cdot n=m_{1}+m_{2} \cdot m_{1}$.

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:
Cannot pop more elements than get pushed onto the stack.
After many pushes, a single pop has high potential.
Once that potential has been expended, it is not available for future pop operations.

The cost for m_{1} pushes and m_{2} pops:

$$
m_{1}+\left(m_{2}+m_{1}\right)=O\left(m_{1}+m_{2}\right)
$$

Actual number of (constant time) push calls + (Actual number of pop calls + Total potential for the pops)

CLR has an entire chapter on this - we won't go into this much, but we use Amortized Analysis implicitly sometimes.

