
Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.
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Summation: Guess and Test

no notes

Summation Example

S(n) =
n∑

i=0

i2.

Guess that S(n) is a polynomial ≤ n3.
Equivalently, guess that it has the form
S(n) = an3 + bn2 + cn + d .

For n = 0 we have S(n) = 0 so d = 0.
For n = 1 we have a + b + c + 0 = 1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.
Solving these equations yields a = 1

3 ,b = 1
2 , c = 1

6

Now, prove the solution with induction.
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Summation Example

This is Manber Problem 2.5.

We need to prove by induction since we don’t know that the
guessed form is correct. All that we know without doing the
proof is that the form we guessed models some low-order
points on the equation properly.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate
intermediate terms.

G(n) =
n∑

i=0

ar i = a + ar + ar 2 + · · ·+ ar n

Shift by multiplying by r .

rG(n) = ar + ar 2 + · · ·+ ar n + ar n+1

Subtract.

G(n)− rG(n) = G(n)(1− r) = a− ar n+1

G(n) =
a− ar n+1

1− r
r 6= 1
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Technique 2: Shifted Sums

We often solve summations in this way – by multiplying by
something or subtracting something. The big problem is that it
can be a bit like finding a needle in a haystack to decide what
“move” to make. We need to do something that gives us a new
sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
an easier summation.

Shift by multiplying by r is a reasonable guess in this example
since the terms differ by a factor of r .

Example 3.3

G(n) =
n∑

i=1

i2i = 1× 2 + 2× 22 + 3× 23 + · · ·+ n × 2n

Multiply by 2.

2G(n) = 1× 22 + 2× 23 + 3× 24 + · · ·+ n × 2n+1

Subtract (Note:
∑n

i=1 2i = 2n+1 − 2)

2G(n)−G(n) = n2n+1 − 2n · · · 22 − 2
G(n) = n2n+1 − 2n+1 + 2

= (n − 1)2n+1 + 2
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Example 3.3

no notes



Recurrence Relations

A (math) function defined in terms of itself.
Example: Fibonacci numbers:
F (n) = F (n − 1) + F (n − 2) general case
F (1) = F (2) = 1 base cases

There are always one or more general cases and one or
more base cases.
We will use recurrences for time complexity of recursive
(computer) functions.
General format is T (n) = E(T ,n) where E(T ,n) is an
expression in T and n.

I T (n) = 2T (n/2) + n

Alternately, an upper bound: T (n) ≤ E(T ,n).
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Recurrence Relations

We won’t spend a lot of time on techniques... just enough to be
able to use them.

Solving Recurrences

We would like to find a closed form solution for T (n) such
that:

T (n) = Θ(f (n))

Alternatively, find lower bound
Not possible for inequalities of form T (n) ≤ E(T ,n).

Methods:
Guess (and test) a solution
Expand recurrence
Theorems
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Solving Recurrences

Note that “finding a closed form” means that we have f (n) that
doesn’t include T .

Can’t find lower bound for the inequality because you do not
know enough... you don’t know how much bigger E(T ,n) is
than T (n), so the result might not be Ω(T (n)).

Guessing is useful for finding an asymptotic solution. Use
induction to prove the guess correct.

Guessing
T (n) = 2T (n/2) + 5n2 n ≥ 2
T (1) = 7

Note that T is defined only for powers of 2.

Guess a solution: T (n) ≤ c1n3 = f (n)
T (1) = 7 implies that c1 ≥ 7

Inductively, assume T (n/2) ≤ f (n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c1(n/2)3 + 5n2

≤ c1(n3/4) + 5n2

≤ c1n3 if c1 ≥ 20/3.
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Guessing

For Big-oh, not many choices in what to guess.

7× 13 = 7

Because 20
4·3n3 + 5n2 = 20

3 n3 when n = 1, and as n grows, the
right side grows even faster.

Guessing (cont)

Therefore, if c1 = 7, a proof by induction yields:
T (n) ≤ 7n3

T (n) ∈ O(n3)

Is this the best possible solution?
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Guessing (cont)

No - try something tighter.



Guessing (cont)

Guess again.
T (n) ≤ c2n2 = g(n)

T (1) = 7 implies c2 ≥ 7.

Inductively, assume T (n/2) ≤ g(n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c2(n/2)2 + 5n2

= c2(n2/2) + 5n2

≤ c2n2 if c2 ≥ 10

Therefore, if c2 = 10, T (n) ≤ 10n2. T (n) = O(n2).

Is this the best possible upper bound?
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Guessing (cont)

Because 10
2 n2 + 5n2 = 10n2 for n = 1, and the right hand side

grows faster.

Yes this is best, since T (n) can be as bad as 5n2.

Guessing (cont)

Now, reshape the recurrence so that T is defined for all
values of n.
T (n) ≤ 2T (bn/2c) + 5n2 n ≥ 2

For arbitrary n, let 2k−1 < n ≤ 2k .

We have already shown that T (2k ) ≤ 10(2k )2.

T (n) ≤ T (2k ) ≤ 10(2k )2

= 10(2k/n)2n2 ≤ 10(2)2n2

≤ 40n2

Hence, T (n) = O(n2) for all values of n.

Typically, the bound for powers of two generalizes to all n.
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Guessing (cont)

no notes

Expanding Recurrences

Usually, start with equality version of recurrence.

T (n) = 2T (n/2) + 5n2

T (1) = 7

Assume n is a power of 2; n = 2k .
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Expanding Recurrences

no notes

Expanding Recurrences (cont)

T (n) = 2T (n/2) + 5n2

= 2(2T (n/4) + 5(n/2)2) + 5n2

= 2(2(2T (n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT (1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · ·+ 2 · 5(n/2)2 + 5n2

= 7n + 5
k−1∑
i=0

n2/2i = 7n + 5n2
k−1∑
i=0

1/2i

= 7n + 5n2(2− 1/2k−1)

= 7n + 5n2(2− 2/n).

This it the exact solution for powers of 2. T (n) = Θ(n2).
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Expanding Recurrences (cont)

no notes



Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a,b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.
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Divide and Conquer Recurrences

no notes

Divide and Conquer Recurrences
(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k ) + cnk

= amT (1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.
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Divide and Conquer Recurrences (cont)

n = bm ⇒ m = logbn.

Set a = blogb a. Switch order of logs, giving
(blogb n)logb a = nlogb a.

D & C Recurrences (cont)

(1) r < 1.

m∑
i=0

r i < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1.
m∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)
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D & C Recurrences (cont)
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r i < 1/(1− r), a constant.
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D & C Recurrences (cont)

When r = 1, since r = bk/a = 1, we get a = bk .
Recall that k = logba.

D & C Recurrences (Case 3)

(3) r > 1.
m∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam∑ r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk )
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D & C Recurrences (Case 3)

no notes



Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk ) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3,b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).
CS 5114: Theory of Algorithms Spring 2014 47 / 51

Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk ) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3,b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

20
14

-0
1-

28

CS 5114

Summary

We simplify by approximating summations.

Examples

Mergesort: T (n) = 2T (n/2) + n.
21/2 = 1, so T (n) = Θ(n log n).
Binary search: T (n) = T (n/2) + 2.
20/1 = 1, so T (n) = Θ(log n).
Insertion sort: T (n) = T (n − 1) + n.
Can’t apply the theorem. Sorry!
Standard Matrix Multiply (recursively):
T (n) = 8T (n/2) + n2.
22/8 = 1/2 so T (n) = Θ(nlog2 8) = Θ(n3).
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Examples

[
c11 c12
c21 c22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
In the straightforward implementation, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

So the recursion is 8 calls of half size, and the additions take
Θ(n2) work.

Useful log Notation

If you want to take the log of (log n), it is written log log n.
(log n)2 can be written log2 n.
Don’t get these confused!
log∗ n means “the number of times that the log of n must
be taken before n ≤ 1.

I For example, 65536 = 216 so log∗ 65536 = 4 since
log 65536 = 16, log 16 = 4, log 4 = 2, log 2 = 1.
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Useful log Notation

no notes

Amortized Analysis

Consider this variation on STACK:

void init(STACK S);
element examineTop(STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m1 calls to push, m2 calls to pop:
Naive worst case: m1 + m2 · n = m1 + m2 ·m1.
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Amortized Analysis

no notes



Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)
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Alternate Analysis

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this – we won’t go into this much,
but we use Amortized Analysis implicitly sometimes.


