Graph Proof (cont)

$\mathbb{N}^{\operatorname{CS} 5114}$

There are two cases:
(1) $S(H) \cup\{v\}$ is independent.

Then $S(G)=S(H) \cup\{v\}$.
(2) $S(H) \cup\{v\}$ is not independent.

Let $w \in S(H)$ such that $(w, v) \in E$. Every vertex in $N(v)$ can be reached by w with path of length ≤ 2. So, set $S(G)=S(H)$.

By Strong Induction, the theorem holds for all G.

Fibonacci Numbers

Define Fibonacci numbers inductively as:

$$
\begin{aligned}
& F(1)=F(2)=1 \\
& F(n)=F(n-1)+F(n-2), n>2 .
\end{aligned}
$$

Theorem: $\forall n \geq 1, F(n)^{2}+F(n+1)^{2}=F(2 n+1)$.
Induction Hypothesis:
$F(n-1)^{2}+F(n)^{2}=F(2 n-1)$.
" $S(H) \cup\{v\}$ is not independent" means that there is an edge from something in $S(H)$ to v.
IMPORTANT: There cannot be an edge from v to $S(H)$
because whatever we can reach from v is in $N(v)$ and would have been removed in H .
We need strong induction for this proof because we don't know how many vertices are in $N(v)$.
We must remove $N(v)$ instead of just v because of this case:
We remove just v to yield H . $\mathrm{S}(\mathrm{H})$ turns out to have something that can be reached from v. So, when we add v back to reform G, v cannot become part of $\mathrm{S}(\mathrm{G})$ (because that would violate the definition of independent set). But if v is 3 steps away from anything in $S(H)$, we must add it to satisfy the theorem. So are stuck.

Fibonacci Numbers (2)

Expand both sides of the theorem, then cancel like terms: $F(2 n+1)=F(2 n)+F(2 n-1)$ and,

$$
\begin{aligned}
F(n)^{2}+F(n+1)^{2} & =F(n)^{2}+(F(n)+F(n-1))^{2} \\
& =F(n)^{2}+F(n)^{2}+2 F(n) F(n-1)+F(n-1)^{2} \\
& =F(n)^{2}+F(n-1)^{2}+F(n)^{2}+2 F(n) F(n-1) \\
& =F(2 n-1)+F(n)^{2}+2 F(n) F(n-1) .
\end{aligned}
$$

Want: $F(n)^{2}+F(n+1)^{2}=F(2 n+1)=F(2 n)+F(2 n-1)$ Steps above left us with needing to prove:
$F(2 n)+F(2 n-1)=F(2 n-1)+F(n)^{2}+2 F(n) F(n-1)$
So we need to show that: $F(2 n)=F(n)^{2}+2 F(n) F(n-1)$
To prove the original theorem, we must prove this. Since we must do it anyway, we should take advantage of this in our IH !

Fibonacci Numbers (4)

$$
\begin{aligned}
& F(n)^{2}+2 F(n) F(n-1) \\
& =F(n)^{2}+2(F(n-1)+F(n-2)) F(n-1) \\
& =F(n)^{2}+F(n-1)^{2}+2 F(n-1) F(n-2)+F(n-1)^{2} \\
& =F(2 n-1)+F(2 n-2) \\
& =F(2 n) \text {. } \\
& F(n)^{2}+F(n+1)^{2}=F(n)^{2}+[F(n)+F(n-1)]^{2} \\
& =F(n)^{2}+F(n)^{2}+2 F(n) F(n-1)+F(n-1)^{2} \\
& =F(n)^{2}+F(2 n)+F(n-1)^{2} \\
& =F(2 n-1)+F(2 n) \\
& =F(2 n+1) \text {. }
\end{aligned}
$$

... which proves the theorem. The original result could not have been proved without the stronger induction hypothesis.
CS 5114: Theory of Algorithms

The problem is that the base case does not give enough strength to give the particular instance of $n=2$ used in the last step.

If it were true for 2 , then the whole proof woudl work. But we cannot get from the base case to an arbitrary 2.

Algorithm Analysis

Algorithm Analysis

- mantom masamer

What do we measure?

Time and space to run; ease of implementation (this changes with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and compiler; System load; Programmer skill; Specifics of input (size, arrangement)

If you compare two programs running on the same computer under the same conditions, all the other factors (should) cancel out.
Want to measure the relative efficiency of two algorithms without needing to implement them on a real computer.

Time Complexity

- Time and space are the most important computer resources.
- Function of input: \mathbf{T} (input)
- Growth of time with size of input:
- Establish an (integer) size n for inputs
- n numbers in a list
- n edges in a graph
- Consider time for all inputs of size n :
- Time varies widely with specific input
- Best case
- Average case
- Worst case
- Time complexity $\mathbf{T}(n)$ counts steps in an algorithm.

Asymptotic Analysis

- It is undesirable/impossible to count the exact number of steps in most algorithms.
- Instead, concentrate on main characteristics.
- Solution: Asymptotic analysis
- Ignore small cases:
* Consider behavior approaching infinity
- Ignore constant factors, low order terms:
* $2 n^{2}$ looks the same as $5 n^{2}+n$ to us.

O Notation

O notation is a measure for "upper bound" of a growth rate.

- pronounced "Big-oh"

Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\mathrm{O}(f(n))$ if there exist two positive constants c and n_{0} such that $\mathbf{T}(n) \leq c f(n)$ for all $n>n_{0}$.

Examples:

- $5 n+8 \in \mathrm{O}(n)$
- $2 n^{2}+n \log n \in \mathrm{O}\left(n^{2}\right) \in \mathrm{O}\left(n^{3}+5 n^{2}\right)$
- $2 n^{2}+n \log n \in \mathrm{O}\left(n^{2}\right) \in \mathrm{O}\left(n^{3}+n^{2}\right)$
o Notation (cont)

A common misunderstanding:

- "The best case for my algorithm is $n=1$ because that is the fastest." WRONG!
- Big-oh refers to a growth rate as n grows to ∞.
- Best case is defined for the input of size n that is cheapest
- $n^{2} \in \mathrm{O}\left(n^{2}\right)$ while $n^{2} \log n \notin \mathrm{O}\left(n^{2}\right)$
among all inputs of size n.
2^{n} is an exponential algorithm. $10 n$ and $20 n$ differ only by a constant.

Speedups

What happens when we buy a computer 10 times faster?

$\mathbf{c}(n)$	n	n^{\prime}	Change	n^{\prime} / n
$10 n$	1,000	10,000	$n^{\prime}=10 n$	10
$20 n$	500	5,000	$n^{\prime}=10 n$	10
$5 n \log n$	250	1,842	$\sqrt{10} n<n^{\prime}<10 n$	7.37
$2 n^{2}$	70	223	$n^{\prime}=\sqrt{10} n$	3.16
2^{n}	13	16	$n^{\prime}=n+3$	--

n : Size of input that can be processed in one hour (10,000 steps).
n^{\prime} : Size of input that can be processed in one hour on the new machine (100,000 steps).

Some Rules for Use

Definition: f is monotonically growing if $n_{1} \geq n_{2}$ implies $f\left(n_{1}\right) \geq f\left(n_{2}\right)$.
We typically assume our time complexity function is monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.
$\forall c>0$ and $\forall a>1,(f(n))^{c} \in O\left(a^{f(n)}\right)$
In other words, an exponential function grows faster than a
polynomial function.
Lemma 3.2: If $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ then

- $f(n)+g(n) \in O(s(n)+r(n)) \equiv O(\max (s(n), r(n)))$
- $f(n) g(n) \in O(s(n) r(n))$.
- If $s(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- For any constant $k, f(n) \in O(k s(n))$

Other Asymptotic Notation

$\widetilde{\sim}_{\sim}^{C S} 5114$

Other Asymplotic Notation

 Ex. Ond

$\Omega(f(n))$ - lower bound (\geq)
Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\Omega(g(n))$ if there exist two positive constants c and n_{0} such that $\mathbf{T}(n) \geq c g(n)$ for all $n>n_{0}$.
Ex: $n^{2} \log n \in \Omega\left(n^{2}\right)$.
$\Theta(f(n))$ - Exact bound (=)
Definition: $g(n)=\Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: $5 n^{3}+4 n^{2}+9 n+7=\Theta\left(n^{3}\right)$

Other Asymptotic Notation (cont)

$o(f(n))$ - little $0(<)$
Definition: $g(n) \in o(f(n))$ if $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$
Ex: $n^{2} \in o\left(n^{3}\right)$
$\omega(f(n))$ - little omega (>)
Definition: $g(n) \in w(f(n))$ if $f(n) \in O(g(n))$.
Ex: $n^{5} \in w\left(n^{2}\right)$
$\infty(f(n))$
Definition: $T(n)=\infty(f(n))$ if $T(n)=O(f(n))$ but the
constant in the O is so large that the algorithm is impractical.

Aim of Algorithm Analysis

Typically want to find "simple" $f(n)$ such that $T(n)=\Theta(f(n))$.

- Sometimes we settle for $O(f(n))$.

Usually we measure T as "worst case" time complexity.
Sometimes we measure "average case" time complexity.
Approach: Estimate number of "steps"

- Appropriate step depends on the problem.
- Ex: measure key comparisons for sorting

Summation: Since we typically count steps in different parts of an algorithm and sum the counts, techniques for computing sums are important (loops).
Recurrence Relations: Used for counting steps in recursion.
CS 5114: Theory of Algorithms

Analyzing Problems

To an algorithm designer, what would it mean to solve a problem?
Upper bound: The upper bound for the best algorithm that we know.
Lower bound: The best (biggest) lower bound possible for any algorithm to solve the problem.

Lower bounds are hard!
We know that we understand our problem when the bounds match.

Example: Sorting
Example: Find the minimum value in an unsorted list.
Ω is most userful to discuss cost of problems, not algorithms. Once you have an equation, the bounds have met. So this is more interesting when discussing your level of uncertainty about the difference between the upper and lower bound.

You have Θ when you have the upper and the lower bounds meeting. So Θ means that you know a lot more than just Big-oh, and so is perferred when possible.

A common misunderstanding:

- Confusing worst case with upper bound.
- Upper bound refers to a growth rate.
- Worst case refers to the worst input from among the choices for possible inputs of a given size.

We won't use these too much.
N CS 5114 Lim of Algorithm Analysis

We prefer Θ over Big-oh because Θ means that we understand our bounds and they met. But if we just can't find that the bottom meets the top, then we are stuck with just Big-oh. Lower bounds can be hard. For problems we are often interested in Ω

- but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming), but worst case is simpler to compute than average case since we need not be concerned with distribution of input.

For the sorting example, key comparisons must be constant-time to be used as a cost measure.

Sorting: If you only know simple sorts, your upper bound is $O\left(n^{2}\right)$.
Then you learn better sorts and your upper bound is $O(n \log n)$ A naive lower bound is $\Omega(n)$. Later we learn the proof that no (general) sorting algorithm can have a worst case better than $\Omega(n \log n)$.
At that point, we know that sorting is $\Theta(n)$. Minimum Finding:
The upper bound is $O(n)$ because we know an algorithm to solve it in that time.
The lower bound is $\Omega(n)$ because we have to look at every value to be sure we have the answer

