
Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.
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Graph Proof (cont)

“S(H) ∪ {v} is not independent” means that there is an edge
from something in S(H) to v .
IMPORTANT: There cannot be an edge from v to S(H)

because whatever we can reach from v is in N(v) and would
have been removed in H.
We need strong induction for this proof because we don’t know
how many vertices are in N(v).
We must remove N(v) instead of just v because of this case:
We remove just v to yield H. S(H) turns out to have something
that can be reached from v . So, when we add v back to reform
G, v cannot become part of S(G) (because that would violate
the definition of independent set). But if v is 3 steps away from
anything in S(H), we must add it to satisfy the theorem. So are
stuck.

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1
F (n) = F (n − 1) + F (n − 2),n > 2.

Theorem: ∀n ≥ 1,F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).
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Fibonacci Numbers (2)
Expand both sides of the theorem, then cancel like terms:
F (2n + 1) = F (2n) + F (2n − 1) and,

F (n)2 + F (n + 1)2 = F (n)2 + (F (n) + F (n − 1))2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (n − 1)2 + F (n)2 + 2F (n)F (n − 1)

= F (2n − 1) + F (n)2 + 2F (n)F (n − 1).

Want: F (n)2 + F (n + 1)2 = F (2n + 1) = F (2n) + F (2n − 1)
Steps above left us with needing to prove:
F (2n) + F (2n − 1) = F (2n − 1) + F (n)2 + 2F (n)F (n − 1)
So we need to show that: F (2n) = F (n)2 + 2F (n)F (n − 1)
To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our
IH!
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Fibonacci Numbers (3)

With a stronger theorem comes a stronger IH!

Theorem:
F (n)2 + F (n + 1)2 = F (2n + 1) and
F (n)2 + 2F (n)F (n − 1) = F (2n).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1) and
F (n − 1)2 + 2F (n − 1)F (n − 2) = F (2n − 2).
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Fibonacci Numbers (4)

F (n)2 + 2F (n)F (n − 1)

= F (n)2 + 2(F (n − 1) + F (n − 2))F (n − 1)

= F (n)2 + F (n − 1)2 + 2F (n − 1)F (n − 2) + F (n − 1)2

= F (2n − 1) + F (2n − 2)

= F (2n).

F (n)2 + F (n + 1)2 = F (n)2 + [F (n) + F (n − 1)]2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (2n) + F (n − 1)2

= F (2n − 1) + F (2n)

= F (2n + 1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.
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Another Example

Theorem: All horses are the same color.

Proof: P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case: n = 1 is easy.
Induction Hypothesis: Assume P(i), i < n.
Induction Step:

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h,h′} have all the same color.

Therefore, P(n) holds.
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Another Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.

If it were true for 2, then the whole proof woudl work. But we
cannot get from the base case to an arbitrary 2.



Algorithm Analysis

We want to “measure” algorithms.
What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.
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Algorithm Analysis

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.
Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

I Establish an (integer) size n for inputs
I n numbers in a list
I n edges in a graph

Consider time for all inputs of size n:
I Time varies widely with specific input
I Best case
I Average case
I Worst case

Time complexity T(n) counts steps in an algorithm.
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Time Complexity

Sometimes analyze in terms of more than one variable.
Best case usually not of interest.
Average case is usually what we want, but can be hard to
measure.
Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.
Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” – not
dependent on n.

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

I Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
I Ignore small cases:

F Consider behavior approaching infinity
I Ignore constant factors, low order terms:

F 2n2 looks the same as 5n2 + n to us.
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Asymptotic Analysis

Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

O Notation

O notation is a measure for “upper bound” of a growth rate.
pronounced “Big-oh”

Definition: For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:
5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)
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O Notation

Remember: The time equation is for some particular set of
inputs – best, worst, or average case.



O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n
n2 ∈ O(n2) while n2 log n /∈ O(n2)

CS 5114: Theory of Algorithms Spring 2014 23 / 51

O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n
n2 ∈ O(n2) while n2 log n /∈ O(n2)

20
14

-0
1-

23

CS 5114

O Notation (cont)

A common misunderstanding:

• “The best case for my algorithm is n = 1 because that is the
fastest.” WRONG!

• Big-oh refers to a growth rate as n grows to∞.

• Best case is defined for the input of size n that is cheapest
among all inputs of size n.

Growth Rate Graph
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Growth Rate Graph

2n is an exponential algorithm. 10n and 20n differ only by a
constant.

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1,000 10,000 n′ = 10n 10
20n 500 5,000 n′ = 10n 10
5n log n 250 1,842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).
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Speedups

How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.
For n2, if n = 1000, then n′ would be 1003.
Compare T(n) = n2 to T(n) = n log n. For n > 58, it is faster to
have the Θ(n log n) algorithm than to have a computer that is
10 times faster.

Some Rules for Use
Definition: f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))
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Some Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.
Is O(2f (n)) ∈ O(3f (n))? Yes, but not vice versa.
3n = 1.5n × 2n so no constant could ever make 2n bigger than
3n for all n.
functional composition



Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition: For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition: g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

CS 5114: Theory of Algorithms Spring 2014 27 / 51

Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition: For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition: g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

20
14

-0
1-

23

CS 5114

Other Asymptotic Notation

Ω is most userful to discuss cost of problems, not algorithms.
Once you have an equation, the bounds have met. So this is
more interesting when discussing your level of uncertainty
about the difference between the upper and lower bound.

You have Θ when you have the upper and the lower bounds
meeting. So Θ means that you know a lot more than just
Big-oh, and so is perferred when possible.

A common misunderstanding:

• Confusing worst case with upper bound.

• Upper bound refers to a growth rate.

• Worst case refers to the worst input from among the choices
for possible inputs of a given size.

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition: g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n) = 0

Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition: g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition: T (n) =∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.
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Other Asymptotic Notation (cont)

We won’t use these too much.

Aim of Algorithm Analysis

Typically want to find “simple” f (n) such that T (n) = Θ(f (n)).
Sometimes we settle for O(f (n)).

Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”

Appropriate step depends on the problem.
Ex: measure key comparisons for sorting

Summation: Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations: Used for counting steps in
recursion.
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Aim of Algorithm Analysis

We prefer Θ over Big-oh because Θ means that we understand
our bounds and they met. But if we just can’t find that the
bottom meets the top, then we are stuck with just Big-oh. Lower
bounds can be hard. For problems we are often interested in Ω

– but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

For the sorting example, key comparisons must be
constant-time to be used as a cost measure.

Analyzing Problems

To an algorithm designer, what would it mean to solve a
problem?
Upper bound: The upper bound for the best algorithm that
we know.
Lower bound: The best (biggest) lower bound possible for
any algorithm to solve the problem.

Lower bounds are hard!
We know that we understand our problem when the bounds
match.

Example: Sorting
Example: Find the minimum value in an unsorted list.
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Analyzing Problems

Sorting: If you only know simple sorts, your upper bound is
O(n2).
Then you learn better sorts and your upper bound is O(n log n)
A naive lower bound is Ω(n). Later we learn the proof that no
(general) sorting algorithm can have a worst case better than
Ω(n log n).
At that point, we know that sorting is Θ(n). Minimum Finding:

The upper bound is O(n) because we know an algorithm to
solve it in that time.
The lower bound is Ω(n) because we have to look at every
value to be sure we have the answer


