
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1 / 418

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2014

Copyright c© 2014 by Clifford A. Shaffer20
14

-0
5-

02

CS 5114

Title page

Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

I Analysis of algorithms
I Problem statement
I Programming

Central Paradigm: Mathematical Induction
I Find a way to solve a problem by solving one or more

smaller problems

CS 5114: Theory of Algorithms Spring 2014 2 / 418

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

I Analysis of algorithms
I Problem statement
I Programming

Central Paradigm: Mathematical Induction
I Find a way to solve a problem by solving one or more

smaller problems20
14

-0
5-

02

CS 5114

CS5114: Theory of Algorithms

Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.
Divide and conquer is a way of solving a problem by solving
one more more smaller problems.
Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.
Purpose: To prove a parameterized theorem of the
form:
Theorem: ∀n ≥ c,P(n).

I Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2

CS 5114: Theory of Algorithms Spring 2014 3 / 418

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.
Purpose: To prove a parameterized theorem of the
form:
Theorem: ∀n ≥ c,P(n).

I Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n220

14
-0

5-
02

CS 5114

Review of Mathematical Induction

First we will refresh/expand our our familiarity with induction.
Then we will try to apply an inductive approach to algorithm
design.

P(n) is a statement containing n as a variable.

This sample P(n) is true for n ≥ 2, but false for n = 1.

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c,P(n − 1) is true→ P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).
The assumption “P(n − 1) is true” is the
induction hypothesis.
Typical induction proof form:

1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

CS 5114: Theory of Algorithms Spring 2014 4 / 418

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c,P(n − 1) is true→ P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).
The assumption “P(n − 1) is true” is the
induction hypothesis.
Typical induction proof form:

1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

20
14

-0
5-

02

CS 5114

Principle of Mathematical Induction

Important: The goal is to prove the implication, not the
theorem! That is, prove that P(n − 1)→ P(n). NOT to prove
P(n). This is much easier, because we can assume that
P(n − 1) is true.
Consider the truth table for implication to see this. Since A→ B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway if A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.
This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.

Induction Example 1

Theorem: Let

S(n) =
n∑

i=1

i = 1 + 2 + · · ·+ n.

Then, ∀n ≥ 1,S(n) = n(n+1)
2 .

CS 5114: Theory of Algorithms Spring 2014 5 / 418

Induction Example 1

Theorem: Let

S(n) =
n∑

i=1

i = 1 + 2 + · · ·+ n.

Then, ∀n ≥ 1,S(n) = n(n+1)
2 .

20
14

-0
5-

02

CS 5114

Induction Example 1

Base Case: P(n) is true since S(1) = 1 = 1(1 + 1)/2.
Induction Hypothesis: S(i) = i(i+1)

2 for i < n.
Induction Step:

S(n) = S(n − 1) + n = (n − 1)n/2 + n

=
n(n + 1)

2

Therefore, P(n − 1)→ P(n).
By the principle of Mathematical Induction,
∀n ≥ 1,S(n) = n(n+1)

2 .
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help us to construct a hypothesis.

Induction Example 2

Theorem: ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

CS 5114: Theory of Algorithms Spring 2014 6 / 418

Induction Example 2

Theorem: ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

20
14

-0
5-

02

CS 5114

Induction Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n) : (1 + x)n ≥ 1 + nx .

Base Case: (1 + x)1 = 1 + x ≥ 1 + 1x
Induction Hypothesis: Assume (1 + x)n−1 ≥ 1 + (n − 1)x
Induction Step:

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n − 1)x)

= 1 + nx − x + x + nx2 − x2

= 1 + nx + (n − 1)x2

≥ 1 + nx .

Induction Example 3

Theorem: 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

CS 5114: Theory of Algorithms Spring 2014 7 / 418

Induction Example 3

Theorem: 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

20
14

-0
5-

02

CS 5114

Induction Example 3

Base case: 4 = 2 + 2.

Induction Hypothesis: Assume P(k) for 4 ≤ k < n.

Induction Step:
Case 1: n − 1 is made up of all 2c/ stamps. Then, replace 2 of
these with a 5c/ stamp.

Case 2: n − 1 includes a 5c/ stamp. Then, replace this with 3 2c/
stamps.

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...
CS 5114: Theory of Algorithms Spring 2014 8 / 418

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...

20
14

-0
5-

02

CS 5114

Colorings

Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem: It is possible to two-color the regions formed by n
lines.

CS 5114: Theory of Algorithms Spring 2014 9 / 418

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem: It is possible to two-color the regions formed by n
lines.

20
14

-0
5-

02

CS 5114

Two-coloring Problem

Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try
induction on lines.
Base Case: n = 1. Any line divides the plane into two regions.
Induction Hypothesis: It is possible to two-color the regions
formed by n − 1 lines.
Induction Step: Start with the regions formed from n − 1 lines
and 2-color them. Now, introduce the n’th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n’th line.
A valid two-coloring results.

• Any boundary surviving the addition still has opposite colors.

• Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
1 P(c)
2 P(i), i = 1,2, · · · ,n − 1→ P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

CS 5114: Theory of Algorithms Spring 2014 10 / 418

Strong Induction

IF the following two statements are true:
1 P(c)
2 P(i), i = 1,2, · · · ,n − 1→ P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

20
14

-0
5-

02

CS 5114

Strong Induction

The previous examples were all very straightforward – simply
add in the n’th item and justify that the IH is maintained.
Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

• go backwards from n.

• prove a stronger IH.

to make the most of the IH.

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem: Let G = (V ,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).

CS 5114: Theory of Algorithms Spring 2014 11 / 418

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem: Let G = (V ,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).20

14
-0

5-
02

CS 5114

Graph Problem

It should be obvious that the theorem is true for an undirected
graph. Picke any independent set. Then add any node not
adjacent, one by one.
Naive approach: Assume the theorem is true for any graph of
n − 1 vertices. Now add the nth vertex and its edges. But this
won’t work for the graph 1← 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.
Going forward is good for proving existance.
Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.

Graph Problem (cont)

Theorem: Let G = (V ,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case: Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis: The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v ,w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

CS 5114: Theory of Algorithms Spring 2014 12 / 418

Graph Problem (cont)

Theorem: Let G = (V ,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case: Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis: The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v ,w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

20
14

-0
5-

02

CS 5114

Graph Problem (cont)

N(v) is all vertices reachable (directly) from v . That is, the
Neighbors of v .
H is the graph induced by V − N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is
1→ 2→ 3, and we remove 1, then the independent set for H
must be vertex 2. We can’t just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.

CS 5114: Theory of Algorithms Spring 2014 13 / 418

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.20
14

-0
5-

02

CS 5114

Graph Proof (cont)

“S(H) ∪ {v} is not independent” means that there is an edge
from something in S(H) to v .
IMPORTANT: There cannot be an edge from v to S(H)

because whatever we can reach from v is in N(v) and would
have been removed in H.
We need strong induction for this proof because we don’t know
how many vertices are in N(v).
We must remove N(v) instead of just v because of this case:
We remove just v to yield H. S(H) turns out to have something
that can be reached from v . So, when we add v back to reform
G, v cannot become part of S(G) (because that would violate
the definition of independent set). But if v is 3 steps away from
anything in S(H), we must add it to satisfy the theorem. So are
stuck.

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1
F (n) = F (n − 1) + F (n − 2),n > 2.

Theorem: ∀n ≥ 1,F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).

CS 5114: Theory of Algorithms Spring 2014 14 / 418

Fibonacci Numbers (2)
Expand both sides of the theorem, then cancel like terms:
F (2n + 1) = F (2n) + F (2n − 1) and,

F (n)2 + F (n + 1)2 = F (n)2 + (F (n) + F (n − 1))2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (n − 1)2 + F (n)2 + 2F (n)F (n − 1)

= F (2n − 1) + F (n)2 + 2F (n)F (n − 1).

Want: F (n)2 + F (n + 1)2 = F (2n + 1) = F (2n) + F (2n − 1)
Steps above left us with needing to prove:
F (2n) + F (2n − 1) = F (2n − 1) + F (n)2 + 2F (n)F (n − 1)
So we need to show that: F (2n) = F (n)2 + 2F (n)F (n − 1)
To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our
IH!

CS 5114: Theory of Algorithms Spring 2014 15 / 418

Fibonacci Numbers (3)

With a stronger theorem comes a stronger IH!

Theorem:
F (n)2 + F (n + 1)2 = F (2n + 1) and
F (n)2 + 2F (n)F (n − 1) = F (2n).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1) and
F (n − 1)2 + 2F (n − 1)F (n − 2) = F (2n − 2).

CS 5114: Theory of Algorithms Spring 2014 16 / 418

Fibonacci Numbers (4)

F (n)2 + 2F (n)F (n − 1)

= F (n)2 + 2(F (n − 1) + F (n − 2))F (n − 1)

= F (n)2 + F (n − 1)2 + 2F (n − 1)F (n − 2) + F (n − 1)2

= F (2n − 1) + F (2n − 2)

= F (2n).

F (n)2 + F (n + 1)2 = F (n)2 + [F (n) + F (n − 1)]2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (2n) + F (n − 1)2

= F (2n − 1) + F (2n)

= F (2n + 1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.

CS 5114: Theory of Algorithms Spring 2014 17 / 418

Another Example

Theorem: All horses are the same color.

Proof: P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case: n = 1 is easy.
Induction Hypothesis: Assume P(i), i < n.
Induction Step:

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h,h′} have all the same color.

Therefore, P(n) holds.

CS 5114: Theory of Algorithms Spring 2014 18 / 418

Another Example

Theorem: All horses are the same color.

Proof: P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case: n = 1 is easy.
Induction Hypothesis: Assume P(i), i < n.
Induction Step:

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h,h′} have all the same color.

Therefore, P(n) holds.

20
14

-0
5-

02

CS 5114

Another Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.

If it were true for 2, then the whole proof woudl work. But we
cannot get from the base case to an arbitrary 2.

Algorithm Analysis

We want to “measure” algorithms.
What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.

CS 5114: Theory of Algorithms Spring 2014 19 / 418

Algorithm Analysis

We want to “measure” algorithms.
What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.20

14
-0

5-
02

CS 5114

Algorithm Analysis

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.
Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

I Establish an (integer) size n for inputs
I n numbers in a list
I n edges in a graph

Consider time for all inputs of size n:
I Time varies widely with specific input
I Best case
I Average case
I Worst case

Time complexity T(n) counts steps in an algorithm.

CS 5114: Theory of Algorithms Spring 2014 20 / 418

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

I Establish an (integer) size n for inputs
I n numbers in a list
I n edges in a graph

Consider time for all inputs of size n:
I Time varies widely with specific input
I Best case
I Average case
I Worst case

Time complexity T(n) counts steps in an algorithm.

20
14

-0
5-

02

CS 5114

Time Complexity

Sometimes analyze in terms of more than one variable.
Best case usually not of interest.
Average case is usually what we want, but can be hard to
measure.
Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.
Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” – not
dependent on n.

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

I Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
I Ignore small cases:

F Consider behavior approaching infinity
I Ignore constant factors, low order terms:

F 2n2 looks the same as 5n2 + n to us.

CS 5114: Theory of Algorithms Spring 2014 21 / 418

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

I Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
I Ignore small cases:

F Consider behavior approaching infinity
I Ignore constant factors, low order terms:

F 2n2 looks the same as 5n2 + n to us.20
14

-0
5-

02

CS 5114

Asymptotic Analysis

Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

O Notation

O notation is a measure for “upper bound” of a growth rate.
pronounced “Big-oh”

Definition: For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:
5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)

CS 5114: Theory of Algorithms Spring 2014 22 / 418

O Notation

O notation is a measure for “upper bound” of a growth rate.
pronounced “Big-oh”

Definition: For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:
5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)

20
14

-0
5-

02

CS 5114

O Notation

Remember: The time equation is for some particular set of
inputs – best, worst, or average case.

O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n
n2 ∈ O(n2) while n2 log n /∈ O(n2)

CS 5114: Theory of Algorithms Spring 2014 23 / 418

O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n
n2 ∈ O(n2) while n2 log n /∈ O(n2)

20
14

-0
5-

02

CS 5114

O Notation (cont)

A common misunderstanding:

• “The best case for my algorithm is n = 1 because that is the
fastest.” WRONG!

• Big-oh refers to a growth rate as n grows to∞.

• Best case is defined for the input of size n that is cheapest
among all inputs of size n.

Growth Rate Graph

0

100

200

300

400

10n

20n

2n2

5n log n

2nn!

0 5 10 15

0 10 20 30 40 50

Input size n

10n

20n

5n log n2n22nn!

0

200

400

600

800

1000

1200

1400

CS 5114: Theory of Algorithms Spring 2014 24 / 418

Growth Rate Graph

0

100

200

300

400

10n

20n

2n2

5n log n

2nn!

0 5 10 15

0 10 20 30 40 50

Input size n

10n

20n

5n log n2n22nn!

0

200

400

600

800

1000

1200

1400

20
14

-0
5-

02

CS 5114

Growth Rate Graph

2n is an exponential algorithm. 10n and 20n differ only by a
constant.

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1,000 10,000 n′ = 10n 10
20n 500 5,000 n′ = 10n 10
5n log n 250 1,842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).

CS 5114: Theory of Algorithms Spring 2014 25 / 418

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1,000 10,000 n′ = 10n 10
20n 500 5,000 n′ = 10n 10
5n log n 250 1,842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).

20
14

-0
5-

02

CS 5114

Speedups

How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.
For n2, if n = 1000, then n′ would be 1003.
Compare T(n) = n2 to T(n) = n log n. For n > 58, it is faster to
have the Θ(n log n) algorithm than to have a computer that is
10 times faster.

Some Rules for Use
Definition: f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))

CS 5114: Theory of Algorithms Spring 2014 26 / 418

Some Rules for Use
Definition: f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))

20
14

-0
5-

02

CS 5114

Some Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.
Is O(2f (n)) ∈ O(3f (n))? Yes, but not vice versa.
3n = 1.5n × 2n so no constant could ever make 2n bigger than
3n for all n.
functional composition

Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition: For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition: g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

CS 5114: Theory of Algorithms Spring 2014 27 / 418

Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition: For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition: g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

20
14

-0
5-

02

CS 5114

Other Asymptotic Notation

Ω is most userful to discuss cost of problems, not algorithms.
Once you have an equation, the bounds have met. So this is
more interesting when discussing your level of uncertainty
about the difference between the upper and lower bound.

You have Θ when you have the upper and the lower bounds
meeting. So Θ means that you know a lot more than just
Big-oh, and so is perferred when possible.

A common misunderstanding:

• Confusing worst case with upper bound.

• Upper bound refers to a growth rate.

• Worst case refers to the worst input from among the choices
for possible inputs of a given size.

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition: g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n) = 0

Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition: g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition: T (n) =∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.

CS 5114: Theory of Algorithms Spring 2014 28 / 418

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition: g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n) = 0

Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition: g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition: T (n) =∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.

20
14

-0
5-

02

CS 5114

Other Asymptotic Notation (cont)

We won’t use these too much.

Aim of Algorithm Analysis

Typically want to find “simple” f (n) such that T (n) = Θ(f (n)).
Sometimes we settle for O(f (n)).

Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”

Appropriate step depends on the problem.
Ex: measure key comparisons for sorting

Summation: Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations: Used for counting steps in
recursion.

CS 5114: Theory of Algorithms Spring 2014 29 / 418

Aim of Algorithm Analysis

Typically want to find “simple” f (n) such that T (n) = Θ(f (n)).
Sometimes we settle for O(f (n)).

Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”

Appropriate step depends on the problem.
Ex: measure key comparisons for sorting

Summation: Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations: Used for counting steps in
recursion.

20
14

-0
5-

02

CS 5114

Aim of Algorithm Analysis

We prefer Θ over Big-oh because Θ means that we understand
our bounds and they met. But if we just can’t find that the
bottom meets the top, then we are stuck with just Big-oh. Lower
bounds can be hard. For problems we are often interested in Ω

– but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

For the sorting example, key comparisons must be
constant-time to be used as a cost measure.

Analyzing Problems

To an algorithm designer, what would it mean to solve a
problem?
Upper bound: The upper bound for the best algorithm that
we know.
Lower bound: The best (biggest) lower bound possible for
any algorithm to solve the problem.

Lower bounds are hard!
We know that we understand our problem when the bounds
match.

Example: Sorting
Example: Find the minimum value in an unsorted list.

CS 5114: Theory of Algorithms Spring 2014 30 / 418

Analyzing Problems

To an algorithm designer, what would it mean to solve a
problem?
Upper bound: The upper bound for the best algorithm that
we know.
Lower bound: The best (biggest) lower bound possible for
any algorithm to solve the problem.

Lower bounds are hard!
We know that we understand our problem when the bounds
match.

Example: Sorting
Example: Find the minimum value in an unsorted list.

20
14

-0
5-

02

CS 5114

Analyzing Problems

Sorting: If you only know simple sorts, your upper bound is
O(n2).
Then you learn better sorts and your upper bound is O(n log n)
A naive lower bound is Ω(n). Later we learn the proof that no
(general) sorting algorithm can have a worst case better than
Ω(n log n).
At that point, we know that sorting is Θ(n). Minimum Finding:

The upper bound is O(n) because we know an algorithm to
solve it in that time.
The lower bound is Ω(n) because we have to look at every
value to be sure we have the answer

Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.

CS 5114: Theory of Algorithms Spring 2014 31 / 418

Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.

20
14

-0
5-

02

CS 5114

Summation: Guess and Test

no notes

Summation Example

S(n) =
n∑

i=0

i2.

Guess that S(n) is a polynomial ≤ n3.
Equivalently, guess that it has the form
S(n) = an3 + bn2 + cn + d .

For n = 0 we have S(n) = 0 so d = 0.
For n = 1 we have a + b + c + 0 = 1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.
Solving these equations yields a = 1

3 ,b = 1
2 , c = 1

6

Now, prove the solution with induction.
CS 5114: Theory of Algorithms Spring 2014 32 / 418

Summation Example

S(n) =
n∑

i=0

i2.

Guess that S(n) is a polynomial ≤ n3.
Equivalently, guess that it has the form
S(n) = an3 + bn2 + cn + d .

For n = 0 we have S(n) = 0 so d = 0.
For n = 1 we have a + b + c + 0 = 1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.
Solving these equations yields a = 1

3 ,b = 1
2 , c = 1

6

Now, prove the solution with induction.

20
14

-0
5-

02

CS 5114

Summation Example

This is Manber Problem 2.5.

We need to prove by induction since we don’t know that the
guessed form is correct. All that we know without doing the
proof is that the form we guessed models some low-order
points on the equation properly.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate
intermediate terms.

G(n) =
n∑

i=0

ar i = a + ar + ar 2 + · · ·+ ar n

Shift by multiplying by r .

rG(n) = ar + ar 2 + · · ·+ ar n + ar n+1

Subtract.

G(n)− rG(n) = G(n)(1− r) = a− ar n+1

G(n) =
a− ar n+1

1− r
r 6= 1

CS 5114: Theory of Algorithms Spring 2014 33 / 418

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate
intermediate terms.

G(n) =
n∑

i=0

ar i = a + ar + ar 2 + · · ·+ ar n

Shift by multiplying by r .

rG(n) = ar + ar 2 + · · ·+ ar n + ar n+1

Subtract.

G(n)− rG(n) = G(n)(1− r) = a− ar n+1

G(n) =
a− ar n+1

1− r
r 6= 1

20
14

-0
5-

02

CS 5114

Technique 2: Shifted Sums

We often solve summations in this way – by multiplying by
something or subtracting something. The big problem is that it
can be a bit like finding a needle in a haystack to decide what
“move” to make. We need to do something that gives us a new
sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
an easier summation.

Shift by multiplying by r is a reasonable guess in this example
since the terms differ by a factor of r .

Example 3.3

G(n) =
n∑

i=1

i2i = 1× 2 + 2× 22 + 3× 23 + · · ·+ n × 2n

Multiply by 2.

2G(n) = 1× 22 + 2× 23 + 3× 24 + · · ·+ n × 2n+1

Subtract (Note:
∑n

i=1 2i = 2n+1 − 2)

2G(n)−G(n) = n2n+1 − 2n · · · 22 − 2
G(n) = n2n+1 − 2n+1 + 2

= (n − 1)2n+1 + 2

CS 5114: Theory of Algorithms Spring 2014 34 / 418

Example 3.3

G(n) =
n∑

i=1

i2i = 1× 2 + 2× 22 + 3× 23 + · · ·+ n × 2n

Multiply by 2.

2G(n) = 1× 22 + 2× 23 + 3× 24 + · · ·+ n × 2n+1

Subtract (Note:
∑n

i=1 2i = 2n+1 − 2)

2G(n)−G(n) = n2n+1 − 2n · · · 22 − 2
G(n) = n2n+1 − 2n+1 + 2

= (n − 1)2n+1 + 2

20
14

-0
5-

02

CS 5114

Example 3.3

no notes

Recurrence Relations

A (math) function defined in terms of itself.
Example: Fibonacci numbers:
F (n) = F (n − 1) + F (n − 2) general case
F (1) = F (2) = 1 base cases

There are always one or more general cases and one or
more base cases.
We will use recurrences for time complexity of recursive
(computer) functions.
General format is T (n) = E(T ,n) where E(T ,n) is an
expression in T and n.

I T (n) = 2T (n/2) + n

Alternately, an upper bound: T (n) ≤ E(T ,n).

CS 5114: Theory of Algorithms Spring 2014 35 / 418

Recurrence Relations

A (math) function defined in terms of itself.
Example: Fibonacci numbers:
F (n) = F (n − 1) + F (n − 2) general case
F (1) = F (2) = 1 base cases

There are always one or more general cases and one or
more base cases.
We will use recurrences for time complexity of recursive
(computer) functions.
General format is T (n) = E(T ,n) where E(T ,n) is an
expression in T and n.

I T (n) = 2T (n/2) + n

Alternately, an upper bound: T (n) ≤ E(T ,n).

20
14

-0
5-

02

CS 5114

Recurrence Relations

We won’t spend a lot of time on techniques... just enough to be
able to use them.

Solving Recurrences

We would like to find a closed form solution for T (n) such
that:

T (n) = Θ(f (n))

Alternatively, find lower bound
Not possible for inequalities of form T (n) ≤ E(T ,n).

Methods:
Guess (and test) a solution
Expand recurrence
Theorems

CS 5114: Theory of Algorithms Spring 2014 36 / 418

Solving Recurrences

We would like to find a closed form solution for T (n) such
that:

T (n) = Θ(f (n))

Alternatively, find lower bound
Not possible for inequalities of form T (n) ≤ E(T ,n).

Methods:
Guess (and test) a solution
Expand recurrence
Theorems

20
14

-0
5-

02

CS 5114

Solving Recurrences

Note that “finding a closed form” means that we have f (n) that
doesn’t include T .

Can’t find lower bound for the inequality because you do not
know enough... you don’t know how much bigger E(T ,n) is
than T (n), so the result might not be Ω(T (n)).

Guessing is useful for finding an asymptotic solution. Use
induction to prove the guess correct.

Guessing
T (n) = 2T (n/2) + 5n2 n ≥ 2
T (1) = 7

Note that T is defined only for powers of 2.

Guess a solution: T (n) ≤ c1n3 = f (n)
T (1) = 7 implies that c1 ≥ 7

Inductively, assume T (n/2) ≤ f (n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c1(n/2)3 + 5n2

≤ c1(n3/4) + 5n2

≤ c1n3 if c1 ≥ 20/3.

CS 5114: Theory of Algorithms Spring 2014 37 / 418

Guessing
T (n) = 2T (n/2) + 5n2 n ≥ 2
T (1) = 7

Note that T is defined only for powers of 2.

Guess a solution: T (n) ≤ c1n3 = f (n)
T (1) = 7 implies that c1 ≥ 7

Inductively, assume T (n/2) ≤ f (n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c1(n/2)3 + 5n2

≤ c1(n3/4) + 5n2

≤ c1n3 if c1 ≥ 20/3.

20
14

-0
5-

02

CS 5114

Guessing

For Big-oh, not many choices in what to guess.

7× 13 = 7

Because 20
4·3n3 + 5n2 = 20

3 n3 when n = 1, and as n grows, the
right side grows even faster.

Guessing (cont)

Therefore, if c1 = 7, a proof by induction yields:
T (n) ≤ 7n3

T (n) ∈ O(n3)

Is this the best possible solution?

CS 5114: Theory of Algorithms Spring 2014 38 / 418

Guessing (cont)

Therefore, if c1 = 7, a proof by induction yields:
T (n) ≤ 7n3

T (n) ∈ O(n3)

Is this the best possible solution?

20
14

-0
5-

02

CS 5114

Guessing (cont)

No - try something tighter.

Guessing (cont)

Guess again.
T (n) ≤ c2n2 = g(n)

T (1) = 7 implies c2 ≥ 7.

Inductively, assume T (n/2) ≤ g(n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c2(n/2)2 + 5n2

= c2(n2/2) + 5n2

≤ c2n2 if c2 ≥ 10

Therefore, if c2 = 10, T (n) ≤ 10n2. T (n) = O(n2).

Is this the best possible upper bound?
CS 5114: Theory of Algorithms Spring 2014 39 / 418

Guessing (cont)

Guess again.
T (n) ≤ c2n2 = g(n)

T (1) = 7 implies c2 ≥ 7.

Inductively, assume T (n/2) ≤ g(n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c2(n/2)2 + 5n2

= c2(n2/2) + 5n2

≤ c2n2 if c2 ≥ 10

Therefore, if c2 = 10, T (n) ≤ 10n2. T (n) = O(n2).

Is this the best possible upper bound?

20
14

-0
5-

02

CS 5114

Guessing (cont)

Because 10
2 n2 + 5n2 = 10n2 for n = 1, and the right hand side

grows faster.

Yes this is best, since T (n) can be as bad as 5n2.

Guessing (cont)

Now, reshape the recurrence so that T is defined for all
values of n.
T (n) ≤ 2T (bn/2c) + 5n2 n ≥ 2

For arbitrary n, let 2k−1 < n ≤ 2k .

We have already shown that T (2k) ≤ 10(2k)2.

T (n) ≤ T (2k) ≤ 10(2k)2

= 10(2k/n)2n2 ≤ 10(2)2n2

≤ 40n2

Hence, T (n) = O(n2) for all values of n.

Typically, the bound for powers of two generalizes to all n.
CS 5114: Theory of Algorithms Spring 2014 40 / 418

Guessing (cont)

Now, reshape the recurrence so that T is defined for all
values of n.
T (n) ≤ 2T (bn/2c) + 5n2 n ≥ 2

For arbitrary n, let 2k−1 < n ≤ 2k .

We have already shown that T (2k) ≤ 10(2k)2.

T (n) ≤ T (2k) ≤ 10(2k)2

= 10(2k/n)2n2 ≤ 10(2)2n2

≤ 40n2

Hence, T (n) = O(n2) for all values of n.

Typically, the bound for powers of two generalizes to all n.

20
14

-0
5-

02

CS 5114

Guessing (cont)

no notes

Expanding Recurrences

Usually, start with equality version of recurrence.

T (n) = 2T (n/2) + 5n2

T (1) = 7

Assume n is a power of 2; n = 2k .

CS 5114: Theory of Algorithms Spring 2014 41 / 418

Expanding Recurrences

Usually, start with equality version of recurrence.

T (n) = 2T (n/2) + 5n2

T (1) = 7

Assume n is a power of 2; n = 2k .

20
14

-0
5-

02

CS 5114

Expanding Recurrences

no notes

Expanding Recurrences (cont)

T (n) = 2T (n/2) + 5n2

= 2(2T (n/4) + 5(n/2)2) + 5n2

= 2(2(2T (n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT (1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · ·+ 2 · 5(n/2)2 + 5n2

= 7n + 5
k−1∑
i=0

n2/2i = 7n + 5n2
k−1∑
i=0

1/2i

= 7n + 5n2(2− 1/2k−1)

= 7n + 5n2(2− 2/n).

This it the exact solution for powers of 2. T (n) = Θ(n2).
CS 5114: Theory of Algorithms Spring 2014 42 / 418

Expanding Recurrences (cont)

T (n) = 2T (n/2) + 5n2

= 2(2T (n/4) + 5(n/2)2) + 5n2

= 2(2(2T (n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT (1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · ·+ 2 · 5(n/2)2 + 5n2

= 7n + 5
k−1∑
i=0

n2/2i = 7n + 5n2
k−1∑
i=0

1/2i

= 7n + 5n2(2− 1/2k−1)

= 7n + 5n2(2− 2/n).

This it the exact solution for powers of 2. T (n) = Θ(n2).

20
14

-0
5-

02

CS 5114

Expanding Recurrences (cont)

no notes

Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a,b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.

CS 5114: Theory of Algorithms Spring 2014 43 / 418

Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a,b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.20

14
-0

5-
02

CS 5114

Divide and Conquer Recurrences

no notes

Divide and Conquer Recurrences
(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.
CS 5114: Theory of Algorithms Spring 2014 44 / 418

Divide and Conquer Recurrences
(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k) + cnk

= amT (1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= cam
m∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.

20
14

-0
5-

02

CS 5114

Divide and Conquer Recurrences (cont)

n = bm ⇒ m = logbn.

Set a = blogb a. Switch order of logs, giving
(blogb n)logb a = nlogb a.

D & C Recurrences (cont)

(1) r < 1.

m∑
i=0

r i < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1.
m∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)

CS 5114: Theory of Algorithms Spring 2014 45 / 418

D & C Recurrences (cont)

(1) r < 1.

m∑
i=0

r i < 1/(1− r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1.
m∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)

20
14

-0
5-

02

CS 5114

D & C Recurrences (cont)

When r = 1, since r = bk/a = 1, we get a = bk .
Recall that k = logba.

D & C Recurrences (Case 3)

(3) r > 1.
m∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam∑ r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)

CS 5114: Theory of Algorithms Spring 2014 46 / 418

D & C Recurrences (Case 3)

(3) r > 1.
m∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam∑ r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)20
14

-0
5-

02

CS 5114

D & C Recurrences (Case 3)

no notes

Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3,b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).
CS 5114: Theory of Algorithms Spring 2014 47 / 418

Summary

Theorem 3.4:

T (n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3,b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).

20
14

-0
5-

02

CS 5114

Summary

We simplify by approximating summations.

Examples

Mergesort: T (n) = 2T (n/2) + n.
21/2 = 1, so T (n) = Θ(n log n).
Binary search: T (n) = T (n/2) + 2.
20/1 = 1, so T (n) = Θ(log n).
Insertion sort: T (n) = T (n − 1) + n.
Can’t apply the theorem. Sorry!
Standard Matrix Multiply (recursively):
T (n) = 8T (n/2) + n2.
22/8 = 1/2 so T (n) = Θ(nlog2 8) = Θ(n3).

CS 5114: Theory of Algorithms Spring 2014 48 / 418

Examples

Mergesort: T (n) = 2T (n/2) + n.
21/2 = 1, so T (n) = Θ(n log n).
Binary search: T (n) = T (n/2) + 2.
20/1 = 1, so T (n) = Θ(log n).
Insertion sort: T (n) = T (n − 1) + n.
Can’t apply the theorem. Sorry!
Standard Matrix Multiply (recursively):
T (n) = 8T (n/2) + n2.
22/8 = 1/2 so T (n) = Θ(nlog2 8) = Θ(n3).20

14
-0

5-
02

CS 5114

Examples

[
c11 c12
c21 c22

]
=

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
In the straightforward implementation, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

So the recursion is 8 calls of half size, and the additions take
Θ(n2) work.

Useful log Notation

If you want to take the log of (log n), it is written log log n.
(log n)2 can be written log2 n.
Don’t get these confused!
log∗ n means “the number of times that the log of n must
be taken before n ≤ 1.

I For example, 65536 = 216 so log∗ 65536 = 4 since
log 65536 = 16, log 16 = 4, log 4 = 2, log 2 = 1.

CS 5114: Theory of Algorithms Spring 2014 49 / 418

Useful log Notation

If you want to take the log of (log n), it is written log log n.
(log n)2 can be written log2 n.
Don’t get these confused!
log∗ n means “the number of times that the log of n must
be taken before n ≤ 1.

I For example, 65536 = 216 so log∗ 65536 = 4 since
log 65536 = 16, log 16 = 4, log 4 = 2, log 2 = 1.20

14
-0

5-
02

CS 5114

Useful log Notation

no notes

Amortized Analysis

Consider this variation on STACK:

void init(STACK S);
element examineTop(STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m1 calls to push, m2 calls to pop:
Naive worst case: m1 + m2 · n = m1 + m2 ·m1.

CS 5114: Theory of Algorithms Spring 2014 50 / 418

Amortized Analysis

Consider this variation on STACK:

void init(STACK S);
element examineTop(STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m1 calls to push, m2 calls to pop:
Naive worst case: m1 + m2 · n = m1 + m2 ·m1.

20
14

-0
5-

02

CS 5114

Amortized Analysis

no notes

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)

CS 5114: Theory of Algorithms Spring 2014 51 / 418

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)

20
14

-0
5-

02

CS 5114

Alternate Analysis

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this – we won’t go into this much,
but we use Amortized Analysis implicitly sometimes.

Creative Design of Algorithms by
Induction

Analogy: Induction↔ Algorithms

Begin with a problem:
“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances.

Example: Sorting
Q contains all finite sequences of integers.

CS 5114: Theory of Algorithms Spring 2014 52 / 418

Creative Design of Algorithms by
Induction

Analogy: Induction↔ Algorithms

Begin with a problem:
“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances.

Example: Sorting
Q contains all finite sequences of integers.

20
14

-0
5-

02

CS 5114

Creative Design of Algorithms by Induction

Now that we have completed the tool review, we will do two
things:

1. Survey algorithms in application areas

2. Try to understand how to create efficient algorithms

This chapter is about the second. The remaining chapters do
the second in the context of the first.

I← A is reasonably obvious – we often use induction to prove
that an algorithm is correct. The intellectual claim of Manber is
that I→ A gives insight into problem solving.

Solving Q

First step:
Parameterize problem by size: Q(n)

Example: Sorting
Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:
Q(1),Q(2), ...,Q(n)

Algorithm: Solve for an instance in Q(n) by solving
instances in Q(i), i < n and combining as necessary.

CS 5114: Theory of Algorithms Spring 2014 53 / 418

Solving Q

First step:
Parameterize problem by size: Q(n)

Example: Sorting
Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:
Q(1),Q(2), ...,Q(n)

Algorithm: Solve for an instance in Q(n) by solving
instances in Q(i), i < n and combining as necessary.

20
14

-0
5-

02

CS 5114

Solving Q

This is a “meta” algorithm – An algorithm for finding algorithms!

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem: ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

CS 5114: Theory of Algorithms Spring 2014 54 / 418

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem: ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

20
14

-0
5-

02

CS 5114

Induction

The goal is using Strong Induction.
Correctness is proved by induction.
Example: Sorting

• Sort n − 1 items, add nth item (insertion sort)

• Sort 2 sets of n/2, merge together (mergesort)

• Sort values < x and > x (quicksort)

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9], [5,7], [0,3], [4,8], [6,10], [7,8], [0,5], [1,3], [6,8]

0 1 2 3 4 5 6 7 8 9 10

CS 5114: Theory of Algorithms Spring 2014 55 / 418

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9], [5,7], [0,3], [4,8], [6,10], [7,8], [0,5], [1,3], [6,8]

0 1 2 3 4 5 6 7 8 9 10

20
14

-0
5-

02

CS 5114

Interval Containment

no notes

Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
Mark [6,9] since [6,9] ⊆ [6,10]

CS 5114: Theory of Algorithms Spring 2014 56 / 418

Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
Mark [6,9] since [6,9] ⊆ [6,10]

20
14

-0
5-

02

CS 5114

Interval Containment (cont)

[5,7] ⊆ [4,8]
[0,3] ⊆ [0,5]
[7,8] ⊆ [6,10]
[1,3] ⊆ [0,5]
[6,8] ⊆ [6,10]

[6,9] ⊆ [6,10]

Interval Containment (cont)

Q(n): Instances of n intervals
Base case: Q(1) is easy.
Inductive Hypothesis: For n > 1, we know how to
solve an instance in Q(n − 1).
Induction step: Solve for Q(n).

I Solve for first n − 1 intervals, applying inductive
hypothesis.

I Check the nth interval against intervals i = 1,2, · · ·
I If interval i contains interval n, mark interval n. (stop)
I If interval n contains interval i , mark interval i .

Analysis:
T (n) = T (n − 1) + cn
T (n) = Θ(n2)

CS 5114: Theory of Algorithms Spring 2014 57 / 418

Interval Containment (cont)

Q(n): Instances of n intervals
Base case: Q(1) is easy.
Inductive Hypothesis: For n > 1, we know how to
solve an instance in Q(n − 1).
Induction step: Solve for Q(n).

I Solve for first n − 1 intervals, applying inductive
hypothesis.

I Check the nth interval against intervals i = 1,2, · · ·
I If interval i contains interval n, mark interval n. (stop)
I If interval n contains interval i , mark interval i .

Analysis:
T (n) = T (n − 1) + cn
T (n) = Θ(n2)

20
14

-0
5-

02

CS 5114

Interval Containment (cont)

Base case: Nothing is contained

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.
CS 5114: Theory of Algorithms Spring 2014 58 / 418

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.

20
14

-0
5-

02

CS 5114

“Creative” Algorithm

In the example, the nth interval is [7,8].
Every other interval has left endpoint to left, or right endpoint to
right.
We must keep track of the current right-most endpont.

“Creative” Solution Induction
Induction Hypothesis: Can solve for Q(n − 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n − 1 segments.

Induction Step: (to solve Q(n))
Sort by left endpoints
Solve for first n − 1 intervals recursively, remembering
R.
If the rightmost endpoint of nth interval is ≤ R, then
mark the nth interval.
Else R← right endpoint of nth interval.

Analysis: Θ(n log n) + Θ(n).
Lesson: Preprocessing, often sorting, can help sometimes.

CS 5114: Theory of Algorithms Spring 2014 59 / 418

“Creative” Solution Induction
Induction Hypothesis: Can solve for Q(n − 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n − 1 segments.

Induction Step: (to solve Q(n))
Sort by left endpoints
Solve for first n − 1 intervals recursively, remembering
R.
If the rightmost endpoint of nth interval is ≤ R, then
mark the nth interval.
Else R← right endpoint of nth interval.

Analysis: Θ(n log n) + Θ(n).
Lesson: Preprocessing, often sorting, can help sometimes.

20
14

-0
5-

02

CS 5114

“Creative” Solution Induction

We strengthened the induction hypothesis. In algorithms, this
does cost something.
We must sort.
Analysis: Time for sort + constant time per interval.

Maximal Induced Subgraph

Problem: Given a graph G = (V ,E) and an integer k , find a
maximal induced subgraph H = (U,F) such that all vertices
in H have degree ≥ k .
Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

1

2

3

4

5

6 7

Solution:

CS 5114: Theory of Algorithms Spring 2014 60 / 418

Maximal Induced Subgraph

Problem: Given a graph G = (V ,E) and an integer k , find a
maximal induced subgraph H = (U,F) such that all vertices
in H have degree ≥ k .
Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

1

2

3

4

5

6 7

Solution:

20
14

-0
5-

02

CS 5114

Maximal Induced Subgraph

Induced subgraph: U is a subset of V , F is a subset of E such
that both ends of e ∈ E are members of U.
Solution is: U = {1,3,4,5}

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.

Theorem: ∀s, k > 0, we can solve an instance in Q(s, k).

Analysis: Should be able to implement algorithm in time
Θ(|V |+ |E |).

CS 5114: Theory of Algorithms Spring 2014 61 / 418

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.

Theorem: ∀s, k > 0, we can solve an instance in Q(s, k).

Analysis: Should be able to implement algorithm in time
Θ(|V |+ |E |).

20
14

-0
5-

02

CS 5114

Max Induced Subgraph Solution

Base Case: s = 1 H is the empty graph.
Induction Hypothesis: Assume s > 1. we can solve instances
of Q(s − 1, k).
Induction Step: Show that we can solve an instance of
G(V ,E) in Q(s, k). Two cases:

(1) Every vertex in G has degree ≥ k . H = G is the only solution.

(2) Otherwise, let v ∈ V have degree < k . G − v is an instance
of Q(s − 1, k) which we know how to solve.

By induction, the theorem follows.
Visit all edges to generate degree counts for the vertices. Any
vertex with degree below k goes on a queue. Pull the vertices
off the queue one by one, and reduce the degree of their
neighbors. Add the neighbor to the queue if it drops below k .

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem: If we can ask questions of the form “does person i
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?

CS 5114: Theory of Algorithms Spring 2014 62 / 418

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem: If we can ask questions of the form “does person i
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?20
14

-0
5-

02

CS 5114

Celebrity Problem

no notes

Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


A celebrity has all 0’s in his row and all 1’s in his column.

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do better?
CS 5114: Theory of Algorithms Spring 2014 63 / 418

Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


A celebrity has all 0’s in his row and all 1’s in his column.

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do better?

20
14

-0
5-

02

CS 5114

Celebrity Problem (cont)

The celebrity in this example is 4.

Efficient Celebrity Algorithm

Appeal to induction:
If we have an n × n matrix, how can we reduce it to an
(n − 1)× (n − 1) matrix?

What are ways to select the n’th person?

CS 5114: Theory of Algorithms Spring 2014 64 / 418

Efficient Celebrity Algorithm

Appeal to induction:
If we have an n × n matrix, how can we reduce it to an
(n − 1)× (n − 1) matrix?

What are ways to select the n’th person?

20
14

-0
5-

02

CS 5114

Efficient Celebrity Algorithm

This induction implies that we go backwards. Natural thing to
try: pick arbitrary n’th person.
Assume that we can solve for n − 1. What happens when we
add nth person?

• Celebrity candidate in n − 1 – just ask two questions.

• Celebrity is n – must check 2(n − 1) positions. O(n2).

• No celebrity. Again, O(n2).

So we will have to look for something special. Who can we
eliminate? There are only two choices: A celebrity or a
non-celebrity. It doesn’t make sense to eliminate a celebrity. Is
there an easy way to guarentee that we eliminate a
non-celeberity on each question?

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

Strike one row and one column.
1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

CS 5114: Theory of Algorithms Spring 2014 65 / 418

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

Strike one row and one column.
1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

20
14

-0
5-

02

CS 5114

Efficient Celebrity Algorithm (cont)

no notes

Celebrity Algorithm

Algorithm:
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis:
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1


CS 5114: Theory of Algorithms Spring 2014 66 / 418

Celebrity Algorithm

Algorithm:
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis:
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.


1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1

20
14

-0
5-

02

CS 5114

Celebrity Algorithm

Why do we need to verify that 4 really is a celebrity?
Becasue we never checked it against 2 and 3, just against 1
and 5.

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.
It follows that the maximum subsequence of a sequence
of all negative numbers is the empty subsequence.

Example:
2, 11, -9, 3, 4, -6, -7, 7, -3, 5, 6, -2

Maximum subsequence:
7, -3, 5, 6 Sum: 15

CS 5114: Theory of Algorithms Spring 2014 67 / 418

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.
It follows that the maximum subsequence of a sequence
of all negative numbers is the empty subsequence.

Example:
2, 11, -9, 3, 4, -6, -7, 7, -3, 5, 6, -2

Maximum subsequence:
7, -3, 5, 6 Sum: 15

20
14

-0
5-

02

CS 5114

Maximum Consecutive Subsequence

no notes

Finding an Algorithm

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.
First, figure out how to compute the sum.
Then, figure out how to get the subsequence that
computes that sum.

CS 5114: Theory of Algorithms Spring 2014 68 / 418

Finding an Algorithm

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.
First, figure out how to compute the sum.
Then, figure out how to get the subsequence that
computes that sum.

20
14

-0
5-

02

CS 5114

Finding an Algorithm

no notes

Finding an Algorithm (cont)

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.
Let S = x1, x2, · · · , xn be the sequence.
Base case: n = 1

Either x1 < 0⇒ sum = 0
Or sum = x1.

Induction Step:
We know the maximum subsequence SUM(n-1) for
x1, x2, · · · , xn−1.
Where does xn fit in?

I Either it is not in the maximum subsequence or it ends
the maximum subsequence.

If xn ends the maximum subsequence, it is appended to
trailing maximum subsequence of x1, · · · , xn−1.

CS 5114: Theory of Algorithms Spring 2014 69 / 418

Finding an Algorithm (cont)

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.
Let S = x1, x2, · · · , xn be the sequence.
Base case: n = 1

Either x1 < 0⇒ sum = 0
Or sum = x1.

Induction Step:
We know the maximum subsequence SUM(n-1) for
x1, x2, · · · , xn−1.
Where does xn fit in?

I Either it is not in the maximum subsequence or it ends
the maximum subsequence.

If xn ends the maximum subsequence, it is appended to
trailing maximum subsequence of x1, · · · , xn−1.

20
14

-0
5-

02

CS 5114

Finding an Algorithm (cont)

That is, of the numbers seen so far.

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a
subsequence that ends x1, · · · , xn−1.

To get this, we need a stronger induction hypothesis.

CS 5114: Theory of Algorithms Spring 2014 70 / 418

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a
subsequence that ends x1, · · · , xn−1.

To get this, we need a stronger induction hypothesis.

20
14

-0
5-

02

CS 5114

Finding an Algorithm (cont)

no notes

Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).

CS 5114: Theory of Algorithms Spring 2014 71 / 418

Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).20

14
-0

5-
02

CS 5114

Maximum Subsequence Solution

no notes

Maximum Subsequence Solution
(cont)

Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?

CS 5114: Theory of Algorithms Spring 2014 72 / 418

Maximum Subsequence Solution
(cont)

Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?20
14

-0
5-

02

CS 5114

Maximum Subsequence Solution (cont)

O(n). T (n) = T (n − 1) + 2.
Remember position information as well.

The Knapsack Problem

Problem:
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1,2, · · · ,n} such that∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101

CS 5114: Theory of Algorithms Spring 2014 73 / 418

The Knapsack Problem

Problem:
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1,2, · · · ,n} such that∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101

20
14

-0
5-

02

CS 5114

The Knapsack Problem

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

S = {9,27,54,73}

Now, try solving for K = 164. An answer is:

S = {19,44,101}.

There is no relationship between these solutions!

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n,K) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve P(n − 1,K).

CS 5114: Theory of Algorithms Spring 2014 74 / 418

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n,K) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis:
We know how to solve P(n − 1,K).20

14
-0

5-
02

CS 5114

Knapsack Algorithm Approach

Is there a subset S such that
∑

Si = K ?

Knapsack Induction

Induction Hypothesis:
We know how to solve P(n − 1,K).

Solving P(n,K):
If P(n − 1,K) has a solution, then it is also a solution for
P(n,K).
Otherwise, P(n,K) has a solution iff P(n − 1,K − kn)
has a solution.

So what should the induction hypothesis really be?

CS 5114: Theory of Algorithms Spring 2014 75 / 418

Knapsack Induction

Induction Hypothesis:
We know how to solve P(n − 1,K).

Solving P(n,K):
If P(n − 1,K) has a solution, then it is also a solution for
P(n,K).
Otherwise, P(n,K) has a solution iff P(n − 1,K − kn)
has a solution.

So what should the induction hypothesis really be?

20
14

-0
5-

02

CS 5114

Knapsack Induction

But... I don’t know how to solve P(n − 1,K − kn) since it is not
in my induction hypothesis! So, we must strengthen the
induction hypothesis.

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

Knapsack: New Induction

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

To solve P(n,K):
If P(n − 1,K) has a solution,

Then P(n,K) has a solution.
Else If P(n − 1,K − kn) has a solution,

Then P(n,K) has a solution.
Else P(n,K) has no solution.

CS 5114: Theory of Algorithms Spring 2014 76 / 418

Knapsack: New Induction

New Induction Hypothesis:
We know how to solve P(n − 1, k),0 ≤ k ≤ K .

To solve P(n,K):
If P(n − 1,K) has a solution,

Then P(n,K) has a solution.
Else If P(n − 1,K − kn) has a solution,

Then P(n,K) has a solution.
Else P(n,K) has no solution.20

14
-0

5-
02

CS 5114

Knapsack: New Induction

Need to solve two subproblems: P(n − 1, k) and
P(n − 1, k − kn).

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

But, there are only n(K + 1) problems defined.
I It must be that problems are being re-solved many times

by this algorithm. Don’t do that.

CS 5114: Theory of Algorithms Spring 2014 77 / 418

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

But, there are only n(K + 1) problems defined.
I It must be that problems are being re-solved many times

by this algorithm. Don’t do that.

20
14

-0
5-

02

CS 5114

Algorithm Complexity

Problem: Can’t use Theorem 3.4 in this form.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).
Fill in the table row by row.
Alternately, fill in table using logic above.

Analysis:
T (n) = Θ(nK).
Space needed is also Θ(nK).

CS 5114: Theory of Algorithms Spring 2014 78 / 418

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:
Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).
Fill in the table row by row.
Alternately, fill in table using logic above.

Analysis:
T (n) = Θ(nK).
Space needed is also Θ(nK).

20
14

-0
5-

02

CS 5114

Efficient Algorithm Implementation

To solve P(i , k) look at entry in the table.
If it is marked, then OK.
Otherwise solve recursively.
Initially, fill in all P(i ,0).

Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.
CS 5114: Theory of Algorithms Spring 2014 79 / 418

Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.

20
14

-0
5-

02

CS 5114

Example

Example: M(3, 9) contains O because P(2,9) has a solution.
It contains I because P(2,2) = P(2,9− 7) has a solution.
How can we find a solution to P(5,10) from M?
How can we find all solutions for P(5,10)?

Solution Graph

Find all solutions for P(5,10).

M(1, 0)

M(3, 9)

M(2, 2)

M(4, 9)

M(5, 10)

M(2, 9)

M(1, 9)

The result is an n-level DAG.

CS 5114: Theory of Algorithms Spring 2014 80 / 418

Solution Graph

Find all solutions for P(5,10).

M(1, 0)

M(3, 9)

M(2, 2)

M(4, 9)

M(5, 10)

M(2, 9)

M(1, 9)

The result is an n-level DAG.

20
14

-0
5-

02

CS 5114

Solution Graph

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and
retrieving) subproblem solutions.

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.

CS 5114: Theory of Algorithms Spring 2014 81 / 418

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.20
14

-0
5-

02

CS 5114

Dynamic Programming

no notes

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?
If we could eliminate redundancy, cost would be greatly
reduced.

CS 5114: Theory of Algorithms Spring 2014 82 / 418

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?
If we could eliminate redundancy, cost would be greatly
reduced.20

14
-0

5-
02

CS 5114

Fibonacci Sequence

Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
two function calls of size n − 1 each.

Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

I Key is working bottom up.
CS 5114: Theory of Algorithms Spring 2014 83 / 418

Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

I Key is working bottom up.

20
14

-0
5-

02

CS 5114

Fibonacci Sequence (cont)

no notes

Chained Matrix Multiplication

Problem: Compute the product of n matrices

M = M1 ×M2 × · · · ×Mn

as efficiently as possible.

If A is r × s and B is s × t , then
COST(A× B) =
SIZE(A× B) =

If C is t × u then
COST((A× B)× C) =
COST((A× (B × C))) =

CS 5114: Theory of Algorithms Spring 2014 84 / 418

Chained Matrix Multiplication

Problem: Compute the product of n matrices

M = M1 ×M2 × · · · ×Mn

as efficiently as possible.

If A is r × s and B is s × t , then
COST(A× B) =
SIZE(A× B) =

If C is t × u then
COST((A× B)× C) =
COST((A× (B × C))) =

20
14

-0
5-

02

CS 5114

Chained Matrix Multiplication

A× B:
COST: rst
SIZE: r × t

rst + (r × t)(t × u) = rst + rtu.
(r × s)[(s × t)(t × u)] = (r × s)(s × u).
rsu + stu.

Order Matters

Example:

A = 2× 8; B = 8× 5; C = 5× 20

COST((A× B)× C) =
COST(A× (B × C)) =

View as binary trees:

CS 5114: Theory of Algorithms Spring 2014 85 / 418

Order Matters

Example:

A = 2× 8; B = 8× 5; C = 5× 20

COST((A× B)× C) =
COST(A× (B × C)) =

View as binary trees:20
14

-0
5-

02

CS 5114

Order Matters

2 · 8 · 5 + 2 · 5 · 20 = 280.
8 · 5 · 20 + 2 · 8 · 20 = 1120.

Tree for ((A× B)× C) =: · · ABC
Tree for (A× (B × C) =: ·A · BC

We would like to find the optimal order for computation before
actually doing the matrix multiplications.

Chained Matrix Induction
Induction Hypothesis: We can find the optimal evaluation
tree for the multiplication of ≤ n − 1 matrices.

Induction Step: Suppose that we start with the tree for:

M1 ×M2 × · · · ×Mn−1

and try to add Mn.

Two obvious choices:
1 Multiply Mn−1 ×Mn and replace Mn−1 in the tree with a

subtree.
2 Multiply Mn by the result of P(n − 1): make a new root.

Visually, adding Mn may radically order the (optimal) tree.
CS 5114: Theory of Algorithms Spring 2014 86 / 418

Chained Matrix Induction
Induction Hypothesis: We can find the optimal evaluation
tree for the multiplication of ≤ n − 1 matrices.

Induction Step: Suppose that we start with the tree for:

M1 ×M2 × · · · ×Mn−1

and try to add Mn.

Two obvious choices:
1 Multiply Mn−1 ×Mn and replace Mn−1 in the tree with a

subtree.
2 Multiply Mn by the result of P(n − 1): make a new root.

Visually, adding Mn may radically order the (optimal) tree.

20
14

-0
5-

02

CS 5114

Chained Matrix Induction

Problem: There is no reason to believe that either of these
yields the optimal ordering.

Alternate Induction
Induction Step: Pick some multiplication as the root, then
recursively process each subtree.

Which one? Try them all!
Choose the cheapest one as the answer.
How many choices?

Observation: If we know the i th multiplication is the root,
then the left subtree is the optimal tree for the first i − 1
multiplications and the right subtree is the optimal tree for
the last n − i − 1 multiplications.

Notation: for 1 ≤ i ≤ j ≤ n,
c[i , j] = minimum cost to multiply Mi ×Mi+1 × · · · ×Mj .

So,c[1,n] = min
1≤i≤n−1

r0rirn + c[1, i] + c[i + 1,n].

CS 5114: Theory of Algorithms Spring 2014 87 / 418

Alternate Induction
Induction Step: Pick some multiplication as the root, then
recursively process each subtree.

Which one? Try them all!
Choose the cheapest one as the answer.
How many choices?

Observation: If we know the i th multiplication is the root,
then the left subtree is the optimal tree for the first i − 1
multiplications and the right subtree is the optimal tree for
the last n − i − 1 multiplications.

Notation: for 1 ≤ i ≤ j ≤ n,
c[i , j] = minimum cost to multiply Mi ×Mi+1 × · · · ×Mj .

So,c[1,n] = min
1≤i≤n−1

r0rirn + c[1, i] + c[i + 1,n].

20
14

-0
5-

02

CS 5114

Alternate Induction

n − 1 choices for root.

Analysis
Base Cases: For 1 ≤ k ≤ n, c[k , k] = 0.
More generally:

c[i , j] = min
1≤k≤j−1

ri−1rk rj + c[i , k] + c[k + 1, j]

Solving c[i , j] requires 2(j − i) recursive calls.
Analysis:

T (n) =
n−1∑
k=1

(T (k) + T (n − k)) = 2
n−1∑
k=1

T (k)

T (1) = 1
T (n + 1) = T (n) + 2T (n) = 3T (n)

T (n) = Θ(3n) Ugh!

But there are only Θ(n2) values c[i , j] to be calculated!
CS 5114: Theory of Algorithms Spring 2014 88 / 418

Analysis
Base Cases: For 1 ≤ k ≤ n, c[k , k] = 0.
More generally:

c[i , j] = min
1≤k≤j−1

ri−1rk rj + c[i , k] + c[k + 1, j]

Solving c[i , j] requires 2(j − i) recursive calls.
Analysis:

T (n) =
n−1∑
k=1

(T (k) + T (n − k)) = 2
n−1∑
k=1

T (k)

T (1) = 1
T (n + 1) = T (n) + 2T (n) = 3T (n)

T (n) = Θ(3n) Ugh!

But there are only Θ(n2) values c[i , j] to be calculated!

20
14

-0
5-

02

CS 5114

Analysis

2 calls for each root choice, with (j − i) choices for root. But,
these don’t all have equal cost.

T (n + 1) = 2
∑n

i=1 T (k)
So:

T (n + 1)− T (n) = 2
n∑

i=1

T (k)− 2
n−1∑
i=1

T (k)

= 2T (n)

T (n + 1) = 3T (n)

Actually, since j > i , only about half that needs to be done.

Dynamic Programming

Make an n × n table with entry (i , j) = c[i , j].
c[1,1] c[1,2] · · · c[1,n]

c[2,2] · · · c[2,n]
· · · · · ·
· · · · · ·

c[n,n]

Only upper triangle is used.
Fill in table diagonal by diagonal.
c[i , i] = 0.
For 1 ≤ i < j ≤ n,

c[i , j] = min
i≤k≤j−1

ri−1rk rj + c[i , k] + c[k + 1, j].

CS 5114: Theory of Algorithms Spring 2014 89 / 418

Dynamic Programming

Make an n × n table with entry (i , j) = c[i , j].
c[1,1] c[1,2] · · · c[1,n]

c[2,2] · · · c[2,n]
· · · · · ·
· · · · · ·

c[n,n]

Only upper triangle is used.
Fill in table diagonal by diagonal.
c[i , i] = 0.
For 1 ≤ i < j ≤ n,

c[i , j] = min
i≤k≤j−1

ri−1rk rj + c[i , k] + c[k + 1, j].

20
14

-0
5-

02

CS 5114

Dynamic Programming

The array is processed starting with the middle diagonal (all
zeros), diagonal by diagonal toward the upper left corner.

Dynamic Programming Analysis

The time to calculate c[i , j] is proportional to j − i .
There are Θ(n2) entries to fill.
T (n) = O(n3).
Also, T (n) = Ω(n3).
How do we actually find the best evaluation order?

CS 5114: Theory of Algorithms Spring 2014 90 / 418

Dynamic Programming Analysis

The time to calculate c[i , j] is proportional to j − i .
There are Θ(n2) entries to fill.
T (n) = O(n3).
Also, T (n) = Ω(n3).
How do we actually find the best evaluation order?

20
14

-0
5-

02

CS 5114

Dynamic Programming Analysis

For middle diagonal of size n/2, each costs n/2.

For each c[i , j], remember the k (the root of the tree) that
minimizes the expression.
So, store in the table the next place to go.

Summary

Dynamic programming can often be added to an
inductive proof to make the resulting algorithm as
efficient as possible.
Can be useful when divide and conquer fails to be
efficient.
Usually applies to optimization problems.
Requirements for dynamic programming:

1 Repeated solution of subproblems
2 Small number of subproblems, small amount of

information to store for each subproblem.
3 Base case easy to solve.
4 Easy to solve one subproblem given solutions to smaller

subproblems.

CS 5114: Theory of Algorithms Spring 2014 91 / 418

Summary

Dynamic programming can often be added to an
inductive proof to make the resulting algorithm as
efficient as possible.
Can be useful when divide and conquer fails to be
efficient.
Usually applies to optimization problems.
Requirements for dynamic programming:

1 Repeated solution of subproblems
2 Small number of subproblems, small amount of

information to store for each subproblem.
3 Base case easy to solve.
4 Easy to solve one subproblem given solutions to smaller

subproblems.

20
14

-0
5-

02

CS 5114

Summary

no notes

Sorting

Each record contains a field called the key.
Linear order: comparison.

The Sorting Problem

Given a sequence of records R1,R2, ...,Rn with key values
k1, k2, ..., kn, respectively, arrange the records into any order
s such that records Rs1 ,Rs2 , ...,Rsn have keys obeying the
property ks1 ≤ ks2 ≤ ... ≤ ksn .

Measures of cost:

Comparisons
Swaps

CS 5114: Theory of Algorithms Spring 2014 92 / 418

Sorting

Each record contains a field called the key.
Linear order: comparison.

The Sorting Problem

Given a sequence of records R1,R2, ...,Rn with key values
k1, k2, ..., kn, respectively, arrange the records into any order
s such that records Rs1 ,Rs2 , ...,Rsn have keys obeying the
property ks1 ≤ ks2 ≤ ... ≤ ksn .

Measures of cost:

Comparisons
Swaps

20
14

-0
5-

02

CS 5114

Sorting

Linear order means: a < b and b < c ⇒ a < c.

More simply, sorting means to put keys in ascending order.

Insertion Sort

void inssort(Elem* A, int n) { // Insertion Sort
for (int i=1; i<n; i++) // Insert i’th record

for (int j=i; (j>0) && (A[j].key<A[j-1].key);
j--)

swap(A, j, j-1);
}

i=1 3 4 5 6

42

20

17

13

28

14

23

15

20

42

17

13

28

14

23

15

2

17

20

42

13

28

14

23

15

13

17

20

42

28

14

23

13

17

20

28

42

14

23

13

14

17

20

28

42

23

13

14

17

20

23

28

42

13

14

15

17

20

23

28

42

7

15 15 1515

Best Case:
Worst Case:
Average Case:

CS 5114: Theory of Algorithms Spring 2014 93 / 418

Insertion Sort

void inssort(Elem* A, int n) { // Insertion Sort
for (int i=1; i<n; i++) // Insert i’th record

for (int j=i; (j>0) && (A[j].key<A[j-1].key);
j--)

swap(A, j, j-1);
}

i=1 3 4 5 6

42

20

17

13

28

14

23

15

20

42

17

13

28

14

23

15

2

17

20

42

13

28

14

23

15

13

17

20

42

28

14

23

13

17

20

28

42

14

23

13

14

17

20

28

42

23

13

14

17

20

23

28

42

13

14

15

17

20

23

28

42

7

15 15 1515

Best Case:
Worst Case:
Average Case:

20
14

-0
5-

02

CS 5114

Insertion Sort

Best case is 0 swaps, n − 1 comparisons.
Worst case is n2/2 swaps and compares.
Average case is n2/4 swaps and compares.

Insertion sort has great best-case performance.

Exchange Sorting

Theorem: Any sort restricted to swapping adjacent
records must be Ω(n2) in the worst and average cases.
Proof:

I For any permutation P, and any pair of positions i and j ,
the relative order of i and j must be wrong in either P or
the inverse of P.

I Thus, the total number of swaps required by P and the
inverse of P MUST be

n−1∑
i=1

i =
n(n − 1)

2
.

CS 5114: Theory of Algorithms Spring 2014 94 / 418

Exchange Sorting

Theorem: Any sort restricted to swapping adjacent
records must be Ω(n2) in the worst and average cases.
Proof:

I For any permutation P, and any pair of positions i and j ,
the relative order of i and j must be wrong in either P or
the inverse of P.

I Thus, the total number of swaps required by P and the
inverse of P MUST be

n−1∑
i=1

i =
n(n − 1)

2
.20

14
-0

5-
02

CS 5114

Exchange Sorting

n2/4 is the average distance from a record to its position in the
sorted output.

Quicksort
Divide and Conquer: divide list into values less than pivot
and values greater than pivot.

void qsort(Elem* A, int i, int j) { // Quicksort
int pivotindex = findpivot(A, i, j);
swap(A, pivotindex, j); // Swap to end
// k will be first position in right subarray
int k = partition(A, i-1, j, A[j].key;
swap(A, k, j); // Put pivot in place
if ((k-i) > 1) qsort(A, i, k-1); // Sort left
if ((j-k) > 1) qsort(A, k+1, j); // Sort right

}

int findpivot(Elem* A, int i, int j)
{ return (i+j)/2; }

CS 5114: Theory of Algorithms Spring 2014 95 / 418

Quicksort
Divide and Conquer: divide list into values less than pivot
and values greater than pivot.

void qsort(Elem* A, int i, int j) { // Quicksort
int pivotindex = findpivot(A, i, j);
swap(A, pivotindex, j); // Swap to end
// k will be first position in right subarray
int k = partition(A, i-1, j, A[j].key;
swap(A, k, j); // Put pivot in place
if ((k-i) > 1) qsort(A, i, k-1); // Sort left
if ((j-k) > 1) qsort(A, k+1, j); // Sort right

}

int findpivot(Elem* A, int i, int j)
{ return (i+j)/2; }

20
14

-0
5-

02

CS 5114

Quicksort

Initial call: qsort(array, 0, n-1);

Quicksort Partition

int partition(Elem* A, int l, int r, int pivot) {
do { // Move bounds inward until they meet

while (A[++l].key < pivot); // Move right
while (r && (A[--r].key > pivot));// Left
swap(A, l, r); // Swap out-of-place vals

} while (l < r); // Stop when they cross
swap(A, l, r); // Reverse wasted swap
return l; // Return first position in right

}

The cost for Partition is Θ(n).

CS 5114: Theory of Algorithms Spring 2014 96 / 418

Quicksort Partition

int partition(Elem* A, int l, int r, int pivot) {
do { // Move bounds inward until they meet

while (A[++l].key < pivot); // Move right
while (r && (A[--r].key > pivot));// Left
swap(A, l, r); // Swap out-of-place vals

} while (l < r); // Stop when they cross
swap(A, l, r); // Reverse wasted swap
return l; // Return first position in right

}

The cost for Partition is Θ(n).20
14

-0
5-

02

CS 5114

Quicksort Partition

no notes

Partition Example

Pass 1

Swap 1

Pass 2

Swap 2

Pass 3

72 6 57 88 85 42 83 73 48 60

l r

72 6 57 88 85 42 83 73 48 60

48 6 57 88 85 42 83 73 72 60

r

48 6 57 88 85 42 83 73 72 60

l

48 6 57 42 85 88 83 73 72 60

rl

48 6 57 42 88 83 73 72 60

Initial

l

l

r

r

85

l,r

CS 5114: Theory of Algorithms Spring 2014 97 / 418

Partition Example

Pass 1

Swap 1

Pass 2

Swap 2

Pass 3

72 6 57 88 85 42 83 73 48 60

l r

72 6 57 88 85 42 83 73 48 60

48 6 57 88 85 42 83 73 72 60

r

48 6 57 88 85 42 83 73 72 60

l

48 6 57 42 85 88 83 73 72 60

rl

48 6 57 42 88 83 73 72 60

Initial

l

l

r

r

85

l,r

20
14

-0
5-

02

CS 5114

Partition Example

no notes

Quicksort Example

Pivot = 6 Pivot = 73

Pivot = 57

Final Sorted Array

Pivot = 60

Pivot = 88

42 57 48

57

6 42 48 57 60 72 73 83 85 88

Pivot = 42 Pivot = 85

6 57 88 60 42 83 73 48 85

8572738388604257648

6

4842

42 48

85 83 88

8583

72 73 85 88 83

72

CS 5114: Theory of Algorithms Spring 2014 98 / 418

Quicksort Example

Pivot = 6 Pivot = 73

Pivot = 57

Final Sorted Array

Pivot = 60

Pivot = 88

42 57 48

57

6 42 48 57 60 72 73 83 85 88

Pivot = 42 Pivot = 85

6 57 88 60 42 83 73 48 85

8572738388604257648

6

4842

42 48

85 83 88

8583

72 73 85 88 83

72

20
14

-0
5-

02

CS 5114

Quicksort Example

no notes

Cost for Quicksort
Best Case: Always partition in half.

Worst Case: Bad partition.

Average Case:

f (n) = n − 1 +
1
n

n−1∑
i=0

(f (i) + f (n − i − 1))

Optimizations for Quicksort:
Better pivot.
Use better algorithm for small sublists.
Eliminate recursion.
Best: Don’t sort small lists and just use insertion sort at
the end.

CS 5114: Theory of Algorithms Spring 2014 99 / 418

Cost for Quicksort
Best Case: Always partition in half.

Worst Case: Bad partition.

Average Case:

f (n) = n − 1 +
1
n

n−1∑
i=0

(f (i) + f (n − i − 1))

Optimizations for Quicksort:
Better pivot.
Use better algorithm for small sublists.
Eliminate recursion.
Best: Don’t sort small lists and just use insertion sort at
the end.

20
14

-0
5-

02

CS 5114

Cost for Quicksort

Think about when the partition is bad. Note the FindPivot
function that we used is pretty good, especially compared to
taking the first (or last) value.
Also, think about the distribution of costs: Line up all the
permuations from most expensive to cheapest. How many can
be expensive? The area under this curve must be low, since
the average cost is Θ(n log n), but some of the values cost
Θ(n2). So there can be VERY few of the expensive ones.

This optimization means, for list threshold T, that no element is
more than T positions from its destination. Thus, insertion sort’s
best case is nearly realized. Cost is at worst nT .

Quicksort Average Cost

f (n) =

{
0 n ≤ 1
n − 1 + 1

n
∑n−1

i=0 (f (i) + f (n − i − 1)) n > 1

Since the two halves of the summation are identical,

f (n) =

{
0 n ≤ 1
n − 1 + 2

n

∑n−1
i=0 f (i) n > 1

Multiplying both sides by n yields

nf (n) = n(n − 1) + 2
n−1∑
i=0

f (i).

CS 5114: Theory of Algorithms Spring 2014 100 / 418

Quicksort Average Cost

f (n) =

{
0 n ≤ 1
n − 1 + 1

n
∑n−1

i=0 (f (i) + f (n − i − 1)) n > 1

Since the two halves of the summation are identical,

f (n) =

{
0 n ≤ 1
n − 1 + 2

n

∑n−1
i=0 f (i) n > 1

Multiplying both sides by n yields

nf (n) = n(n − 1) + 2
n−1∑
i=0

f (i).

20
14

-0
5-

02

CS 5114

Quicksort Average Cost

This is a “recurrence with full history”.

Think about what the pieces correspond to.
To do Quicksort on an array of size n, we must:

• Partation: Cost n

• Findpivot: Cost c

• Do the recursion: Cost dependent on the pivot’s final position.

These parts are modeled by the equation, including the
average over all the cases for position of the pivot.

Average Cost (cont.)

Get rid of the full history by subtracting nf (n) from
(n + 1)f (n + 1)

nf (n) = n(n − 1) + 2
n−1∑
i=1

f (i)

(n + 1)f (n + 1) = (n + 1)n + 2
n∑

i=1

f (i)

(n + 1)f (n + 1)− nf (n) = 2n + 2f (n)

(n + 1)f (n + 1) = 2n + (n + 2)f (n)

f (n + 1) =
2n

n + 1
+

n + 2
n + 1

f (n).

CS 5114: Theory of Algorithms Spring 2014 101 / 418

Average Cost (cont.)

Get rid of the full history by subtracting nf (n) from
(n + 1)f (n + 1)

nf (n) = n(n − 1) + 2
n−1∑
i=1

f (i)

(n + 1)f (n + 1) = (n + 1)n + 2
n∑

i=1

f (i)

(n + 1)f (n + 1)− nf (n) = 2n + 2f (n)

(n + 1)f (n + 1) = 2n + (n + 2)f (n)

f (n + 1) =
2n

n + 1
+

n + 2
n + 1

f (n).

20
14

-0
5-

02

CS 5114

Average Cost (cont.)

no notes

Average Cost (cont.)

Note that 2n
n+1 ≤ 2 for n ≥ 1.

Expand the recurrence to get:

f (n + 1) ≤ 2 +
n + 2
n + 1

f (n)

= 2 +
n + 2
n + 1

(
2 +

n + 1
n

f (n − 1)

)
= 2 +

n + 2
n + 1

(
2 +

n + 1
n

(
2 +

n
n − 1

f (n − 2)

))
= 2 +

n + 2
n + 1

(
2 + · · ·+ 4

3
(2 +

3
2

f (1))

)

CS 5114: Theory of Algorithms Spring 2014 102 / 418

Average Cost (cont.)

Note that 2n
n+1 ≤ 2 for n ≥ 1.

Expand the recurrence to get:

f (n + 1) ≤ 2 +
n + 2
n + 1

f (n)

= 2 +
n + 2
n + 1

(
2 +

n + 1
n

f (n − 1)

)
= 2 +

n + 2
n + 1

(
2 +

n + 1
n

(
2 +

n
n − 1

f (n − 2)

))
= 2 +

n + 2
n + 1

(
2 + · · ·+ 4

3
(2 +

3
2

f (1))

)

20
14

-0
5-

02

CS 5114

Average Cost (cont.)

no notes

Average Cost (cont.)

f (n + 1) ≤ 2
(

1 +
n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·

+
n + 2
n + 1

n + 1
n
· · · 3

2

)
= 2

(
1 + (n + 2)

(
1

n + 1
+

1
n

+ · · ·+ 1
2

))
= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n log n).

CS 5114: Theory of Algorithms Spring 2014 103 / 418

Average Cost (cont.)

f (n + 1) ≤ 2
(

1 +
n + 2
n + 1

+
n + 2
n + 1

n + 1
n

+ · · ·

+
n + 2
n + 1

n + 1
n
· · · 3

2

)
= 2

(
1 + (n + 2)

(
1

n + 1
+

1
n

+ · · ·+ 1
2

))
= 2 + 2(n + 2) (Hn+1 − 1)

= Θ(n log n).20
14

-0
5-

02

CS 5114

Average Cost (cont.)

Hn+1 = Θ(log n)

Mergesort

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List l1 = half of the items from inlist;
List l2 = other half of the items from inlist;
return merge(mergesort(l1), mergesort(l2));

}

36 20 17 13 28 14 23 15

2823151436201713

20 36 13 17 14 28 15 23

13 14 15 17 20 23 28 36

CS 5114: Theory of Algorithms Spring 2014 104 / 418

Mergesort

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List l1 = half of the items from inlist;
List l2 = other half of the items from inlist;
return merge(mergesort(l1), mergesort(l2));

}

36 20 17 13 28 14 23 15

2823151436201713

20 36 13 17 14 28 15 23

13 14 15 17 20 23 28 36

20
14

-0
5-

02

CS 5114

Mergesort

no notes

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort(Elem* A, Elem* temp,
int left, int right) {

int mid = (left+right)/2;
if (left == right) return; // List of one
mergesort(A, temp, left, mid); // Sort half
mergesort(A, temp, mid+1, right);// Sort half
for (int i=left; i<=right; i++) // Copy to temp

temp[i] = A[i];

CS 5114: Theory of Algorithms Spring 2014 105 / 418

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort(Elem* A, Elem* temp,
int left, int right) {

int mid = (left+right)/2;
if (left == right) return; // List of one
mergesort(A, temp, left, mid); // Sort half
mergesort(A, temp, mid+1, right);// Sort half
for (int i=left; i<=right; i++) // Copy to temp

temp[i] = A[i];20
14

-0
5-

02

CS 5114

Mergesort Implementation (1)

This implementation requires a second array.

Mergesort Implementation (2)

// Do the merge operation back to array
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1) // Left list exhausted
A[curr] = temp[i2++];

else if (i2 > right) // Right list exhausted
A[curr] = temp[i1++];

else if (temp[i1].key < temp[i2].key)
A[curr] = temp[i1++];

else A[curr] = temp[i2++];
}}

Mergesort cost:
Mergesort is good for sorting linked lists.

CS 5114: Theory of Algorithms Spring 2014 106 / 418

Mergesort Implementation (2)

// Do the merge operation back to array
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1) // Left list exhausted
A[curr] = temp[i2++];

else if (i2 > right) // Right list exhausted
A[curr] = temp[i1++];

else if (temp[i1].key < temp[i2].key)
A[curr] = temp[i1++];

else A[curr] = temp[i2++];
}}

Mergesort cost:
Mergesort is good for sorting linked lists.

20
14

-0
5-

02

CS 5114

Mergesort Implementation (2)

Mergesort cost: Θ(n log n)

Linked lists: Send records to alternating linked lists, mergesort
each, then merge.

Heaps

Heap: Complete binary tree with the Heap Property:

Min-heap: all values less than child values.
Max-heap: all values greater than child values.

The values in a heap are partially ordered.

Heap representation: normally the array based complete
binary tree representation.

CS 5114: Theory of Algorithms Spring 2014 107 / 418

Heaps

Heap: Complete binary tree with the Heap Property:

Min-heap: all values less than child values.
Max-heap: all values greater than child values.

The values in a heap are partially ordered.

Heap representation: normally the array based complete
binary tree representation.20

14
-0

5-
02

CS 5114

Heaps

no notes

Building the Heap

(a)

6

(b)

4 5 6 7

5 74

2 3

2

2

6

6

3 5

1

3

7

5

4 2 1 3

7

4

1

1

(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

CS 5114: Theory of Algorithms Spring 2014 108 / 418

Building the Heap

(a)

6

(b)

4 5 6 7

5 74

2 3

2

2

6

6

3 5

1

3

7

5

4 2 1 3

7

4

1

1

(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

20
14

-0
5-

02

CS 5114

Building the Heap

This is a Max Heap
How to get a good number of exchanges? By induction.
Heapify the root’s subtrees, then push the root to the correct
level.

Siftdown

void heap::siftdown(int pos) { // Sift ELEM down
assert((pos >= 0) && (pos < n));
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) &&

(Heap[j].key < Heap[j+1].key))
j++; // j now index of child with > value

if (Heap[pos].key >= Heap[j].key) return;
swap(Heap, pos, j);
pos = j; // Move down

}
}

CS 5114: Theory of Algorithms Spring 2014 109 / 418

Siftdown

void heap::siftdown(int pos) { // Sift ELEM down
assert((pos >= 0) && (pos < n));
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) &&

(Heap[j].key < Heap[j+1].key))
j++; // j now index of child with > value

if (Heap[pos].key >= Heap[j].key) return;
swap(Heap, pos, j);
pos = j; // Move down

}
}

20
14

-0
5-

02

CS 5114

Siftdown

no notes

BuildHeap

For fast heap construction:

Work from high end of array to low end.
Call siftdown for each item.
Don’t need to call siftdown on leaf nodes.

void heap::buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

Cost for heap construction:

log n∑
i=1

(i − 1)
n
2i ≈ n.

CS 5114: Theory of Algorithms Spring 2014 110 / 418

BuildHeap

For fast heap construction:

Work from high end of array to low end.
Call siftdown for each item.
Don’t need to call siftdown on leaf nodes.

void heap::buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

Cost for heap construction:

log n∑
i=1

(i − 1)
n
2i ≈ n.

20
14

-0
5-

02

CS 5114

BuildHeap

(i − 1) is number of steps down, n/2i is number of nodes at that
level.

The intuition for why this cost is Θ(n) is important.
Fundamentally, the issue is that nearly all nodes in a tree are
close to the bottom, and we are (worst case) pushing all nodes
down to the bottom. So most nodes have nowhere to go,
leading to low cost.

Heapsort

Heapsort uses a max-heap.

void heapsort(Elem* A, int n) { // Heapsort
heap H(A, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort

H.removemax(); // Value placed at end of heap
}

Cost of Heapsort:

Cost of finding k largest elements:

CS 5114: Theory of Algorithms Spring 2014 111 / 418

Heapsort

Heapsort uses a max-heap.

void heapsort(Elem* A, int n) { // Heapsort
heap H(A, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort

H.removemax(); // Value placed at end of heap
}

Cost of Heapsort:

Cost of finding k largest elements:20
14

-0
5-

02

CS 5114

Heapsort

Cost of Heapsort: Θ(n log n)
Cost of finding k largest elements: Θ(k log n + n).

• Time to build heap: Θ(n).

• Time to remove least element: Θ(log n).

Compare Heapsort to sorting with BST:

• BST is expensive in space (overhead), potential bad balance,
BST does not take advantage of having all records available
in advance.

• Heap is space efficient, balanced, and building initial heap is
efficient.

Binsort
A simple, efficient sort:
for (i=0; i<n; i++)
B[key(A[i])] = A[i];

Ways to generalize:
Make each bin the head of a list.
Allow more keys than records.

void binsort(ELEM *A, int n) {
list B[MaxKeyValue];
for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
for (i=0; i<MaxKeyValue; i++)

for (each element in order in B[i])
output(B[i].currValue());

}

Cost:
CS 5114: Theory of Algorithms Spring 2014 112 / 418

Binsort
A simple, efficient sort:
for (i=0; i<n; i++)

B[key(A[i])] = A[i];

Ways to generalize:
Make each bin the head of a list.
Allow more keys than records.

void binsort(ELEM *A, int n) {
list B[MaxKeyValue];
for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
for (i=0; i<MaxKeyValue; i++)

for (each element in order in B[i])
output(B[i].currValue());

}

Cost:

20
14

-0
5-

02

CS 5114

Binsort

The simple version only works for a permutation of 0 to n − 1,
but it is truly O(n)!
Support duplicatesI.e., larger key spaceCost might look like
Θ(n).
Oops! It is ctually, Θ(n ∗Maxkeyvalue).
Maxkeyvalue could be O(n2) or worse.

Radix Sort

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28

Result of second pass: 1 175 23 25 27 28 67 72 84 91 97

First pass
(on right digit)

Second pass
(on left digit)

Initial List: 27 91 1 97 17 23 84 28 72 5 67 25

23

84

5 25

27

28

91 1

72

97 17 67

17

91 97

72

84

1 5

23 25

67

27 28

CS 5114: Theory of Algorithms Spring 2014 113 / 418

Radix Sort

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28

Result of second pass: 1 175 23 25 27 28 67 72 84 91 97

First pass
(on right digit)

Second pass
(on left digit)

Initial List: 27 91 1 97 17 23 84 28 72 5 67 25

23

84

5 25

27

28

91 1

72

97 17 67

17

91 97

72

84

1 5

23 25

67

27 28

20
14

-0
5-

02

CS 5114

Radix Sort

no notes

Radix Sort Algorithm (1)

void radix(Elem* A, Elem* B, int n, int k, int r,
int* count) {

// Count[i] stores number of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtok*=r) {
for (int j=0; j<r; j++) count[j] = 0; // Init

// Count # of records for each bin this pass
for (j=0; j<n; j++)

count[(key(A[j])/rtok)%r]++;

//Index B: count[j] is index of j’s last slot
for (j=1; j<r; j++)

count[j] = count[j-1]+count[j];

CS 5114: Theory of Algorithms Spring 2014 114 / 418

Radix Sort Algorithm (1)

void radix(Elem* A, Elem* B, int n, int k, int r,
int* count) {

// Count[i] stores number of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtok*=r) {
for (int j=0; j<r; j++) count[j] = 0; // Init

// Count # of records for each bin this pass
for (j=0; j<n; j++)

count[(key(A[j])/rtok)%r]++;

//Index B: count[j] is index of j’s last slot
for (j=1; j<r; j++)

count[j] = count[j-1]+count[j];

20
14

-0
5-

02

CS 5114

Radix Sort Algorithm (1)

no notes

Radix Sort Algorithm (2)

// Put recs into bins working from bottom
//Bins fill from bottom so j counts downwards
for (j=n-1; j>=0; j--)

B[--count[(key(A[j])/rtok)%r]] = A[j];
for (j=0; j<n; j++) A[j] = B[j]; // Copy B->A

}
}

Cost: Θ(nk + rk).

How do n, k and r relate?

CS 5114: Theory of Algorithms Spring 2014 115 / 418

Radix Sort Algorithm (2)

// Put recs into bins working from bottom
//Bins fill from bottom so j counts downwards
for (j=n-1; j>=0; j--)

B[--count[(key(A[j])/rtok)%r]] = A[j];
for (j=0; j<n; j++) A[j] = B[j]; // Copy B->A

}
}

Cost: Θ(nk + rk).

How do n, k and r relate?20
14

-0
5-

02

CS 5114

Radix Sort Algorithm (2)

r can be viewed as a constant.
k ≥ log n if there are n distinct keys.

Radix Sort Example

0 5 6 9871 2 3 4 10 11

0 5 6 9871 2 3 4 10 11

First pass values for Count.

Count array:
Index positions for Array B.

rtoi = 1.

Second pass values for Count.
rtoi = 10.

Count array:
Index positions for Array B.

End of Pass 2: Array A.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Initial Input: Array A

91 23 84 25 27 97 17 67 2872

91 1 97 17 23 84 28 72 5 67 2527

11 12 122 3 4 5 7 70

1 5

1 2 3 4 5 6 7 8 90

1210

0 1 2 3 4 5 6 7 8 9

17 23 25 27 28 67 72 84 91 9751

2 1 1 1 2 0 4 1 00

2111041 002

987 7773

End of Pass 1: Array A.

2

CS 5114: Theory of Algorithms Spring 2014 116 / 418

Radix Sort Example

0 5 6 9871 2 3 4 10 11

0 5 6 9871 2 3 4 10 11

First pass values for Count.

Count array:
Index positions for Array B.

rtoi = 1.

Second pass values for Count.
rtoi = 10.

Count array:
Index positions for Array B.

End of Pass 2: Array A.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Initial Input: Array A

91 23 84 25 27 97 17 67 2872

91 1 97 17 23 84 28 72 5 67 2527

11 12 122 3 4 5 7 70

1 5

1 2 3 4 5 6 7 8 90

1210

0 1 2 3 4 5 6 7 8 9

17 23 25 27 28 67 72 84 91 9751

2 1 1 1 2 0 4 1 00

2111041 002

987 7773

End of Pass 1: Array A.

220
14

-0
5-

02

CS 5114

Radix Sort Example

no notes

Sorting Lower Bound

Want to prove a lower bound for all possible sorting
algorithms.

Sorting is O(n log n).

Sorting I/O takes Ω(n) time.

Will now prove Ω(n log n) lower bound.

Form of proof:
Comparison based sorting can be modeled by a binary
tree.
The tree must have Ω(n!) leaves.
The tree must be Ω(n log n) levels deep.

CS 5114: Theory of Algorithms Spring 2014 117 / 418

Sorting Lower Bound

Want to prove a lower bound for all possible sorting
algorithms.

Sorting is O(n log n).

Sorting I/O takes Ω(n) time.

Will now prove Ω(n log n) lower bound.

Form of proof:
Comparison based sorting can be modeled by a binary
tree.
The tree must have Ω(n!) leaves.
The tree must be Ω(n log n) levels deep.

20
14

-0
5-

02

CS 5114

Sorting Lower Bound

no notes

Decision Trees

Yes No

Yes No Yes No

Yes No Yes No

A[1]<A[0]?

A[2]<A[1]? A[2]<A[1]?

A[1]<A[0]?A[1]<A[0]?

(Y<X?)

(Z<Y?)

(Z<X?)(Z<Y?)

XYZ

ZYX YZX

XYZ
XZY
YXZ

YZX
ZXY
ZYX

YXZ

YXZ
YZX
ZYX

XZY

YXZYZX

YZX
ZYX

XYZ

XYZ
XZY
ZXY

XZY

ZXY

XYZ

ZXY XZY

(Z<X?)

There are n! permutations, and at least 1 node for each.
A tree with n nodes has at least log n levels.
Where is the worst case in the decision tree?

CS 5114: Theory of Algorithms Spring 2014 118 / 418

Decision Trees

Yes No

Yes No Yes No

Yes No Yes No

A[1]<A[0]?

A[2]<A[1]? A[2]<A[1]?

A[1]<A[0]?A[1]<A[0]?

(Y<X?)

(Z<Y?)

(Z<X?)(Z<Y?)

XYZ

ZYX YZX

XYZ
XZY
YXZ

YZX
ZXY
ZYX

YXZ

YXZ
YZX
ZYX

XZY

YXZYZX

YZX
ZYX

XYZ

XYZ
XZY
ZXY

XZY

ZXY

XYZ

ZXY XZY

(Z<X?)

There are n! permutations, and at least 1 node for each.
A tree with n nodes has at least log n levels.
Where is the worst case in the decision tree?20

14
-0

5-
02

CS 5114

Decision Trees

no notes

Lower Bound Analysis

log n! ≤ log nn = n log n.

log n! ≥ log
(n

2

) n
2
≥ 1

2
(n log n − n).

So, log n! = Θ(n log n).
Using the decision tree model, what is the average
depth of a node?
This is also Θ(log n!).

CS 5114: Theory of Algorithms Spring 2014 119 / 418

Lower Bound Analysis

log n! ≤ log nn = n log n.

log n! ≥ log
(n

2

) n
2
≥ 1

2
(n log n − n).

So, log n! = Θ(n log n).
Using the decision tree model, what is the average
depth of a node?
This is also Θ(log n!).20

14
-0

5-
02

CS 5114

Lower Bound Analysis

log n− (1 or 2).

A Search Model (1)

Problem:
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.

CS 5114: Theory of Algorithms Spring 2014 120 / 418

A Search Model (1)

Problem:
Given:

A list L, of n elements
A search key X

Solve: Identify one element in L which has key value X , if
any exist.

Model:
The key values for elements in L are unique.
One comparison determines <, =, >.
Comparison is our only way to find ordering information.
Every comparison costs the same.

20
14

-0
5-

02

CS 5114

A Search Model (1)

What if the key values are not unique? Probably the cost goes
down, not up. This is an assumption for analysis, not for
implementation.

We would have a slightly different model (though no asymptotic
change in cost) if our only comparison test was <. We would
have a very different model if our only comparison was = / 6=.

A comparison-based model.

String data might require comparisons with very different costs.

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.
(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?

CS 5114: Theory of Algorithms Spring 2014 121 / 418

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.

Cost model: Number of comparisons.
(Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?20
14

-0
5-

02

CS 5114

A Search Model (2)

• We are assuming that the # of comparisons is proportional to
runtime.

• Might not always share an array (assumption that all
accesses are equal). For example, linked lists.

• We assume there is no relationship between value X and its
position.

Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else

return linear_search(L, lower+1, upper, X);
}

What equation represents the worst case cost?
CS 5114: Theory of Algorithms Spring 2014 122 / 418

Linear Search

General algorithm strategy: Reduce the problem.
Compare X to the first element.
If not done, then solve the problem for n − 1 elements.

Position linear_search(L, lower, upper, X) {
if L[lower] = X then

return lower;
else if lower = upper then

return -1;
else

return linear_search(L, lower+1, upper, X);
}

What equation represents the worst case cost?

20
14

-0
5-

02

CS 5114

Linear Search

f (n) =

{
1 n = 1
f (n − 1) + 1 n > 1

Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem
is n comparisons.

Proof: By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?
CS 5114: Theory of Algorithms Spring 2014 123 / 418

Lower Bound on Problem

Theorem: Lower bound (in the worst case) for the problem
is n comparisons.

Proof: By contradiction.
Assume an algorithm A exists that requires only n − 1
(or less) comparisons of X with elements of L.
Since there are n elements of L, A must have avoided
comparing X with L[i] for some value i .
We can feed the algorithm an input with X in position i .
Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?

20
14

-0
5-

02

CS 5114

Lower Bound on Problem

Be careful about assumptions on how an algorithm might
(must) behave.
After all, where do new, clever algorithms come from? From
different behavior than was previously assumed!

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.
It is possible that X is in position i at that time.

CS 5114: Theory of Algorithms Spring 2014 124 / 418

Fixing the Proof (1)

Error #1: An algorithm need not consistently skip position i .
Fix:

On any given run of the algorithm, some element i gets
skipped.
It is possible that X is in position i at that time.

20
14

-0
5-

02

CS 5114

Fixing the Proof (1)

no notes

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.
View L as initially consisting of n “pieces.”
A comparison can join two pieces (without involving X).
The total of these comparisons is k .
We must have at least n − k pieces.
A comparison of X against a piece can reject the whole
piece.
This requires n − k comparisons.
The total is still at least n comparisons.

CS 5114: Theory of Algorithms Spring 2014 125 / 418

Fixing the Proof (2)

Error #2: Must allow comparisons between elements of L.
Fix:

Include the ability to “preprocess” L.
View L as initially consisting of n “pieces.”
A comparison can join two pieces (without involving X).
The total of these comparisons is k .
We must have at least n − k pieces.
A comparison of X against a piece can reject the whole
piece.
This requires n − k comparisons.
The total is still at least n comparisons.

20
14

-0
5-

02

CS 5114

Fixing the Proof (2)

no notes

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?)

Ignore everything except the position of X in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1−
n∑

i=1

P(X = L[i]).

CS 5114: Theory of Algorithms Spring 2014 126 / 418

Average Cost

How many comparisons does linear search do on average?

We must know the probability of occurrence for each
possible input.

(Must X be in L?)

Ignore everything except the position of X in L. Why?

What are the n + 1 events?

P(X /∈ L) = 1−
n∑

i=1

P(X = L[i]).

20
14

-0
5-

02

CS 5114

Average Cost

No, X might not be in L! What is this probability?

The actual values of other elements is irrelevent to the search
routine.

L[1],L[2], ...,L[n] and not found.

Assume that array bounds are 1..n.

Average Cost Equation
Let ki = i be the number of comparisons when X = L[i].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i].
Let p0 be the probability that X /∈ L[i] for any i .

f (n) = k0p0 +
n∑

i=1

kipi

= np0 +
n∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?

CS 5114: Theory of Algorithms Spring 2014 127 / 418

Average Cost Equation
Let ki = i be the number of comparisons when X = L[i].
Let k0 = n be the number of comparisons when X /∈ L.

Let pi be the probability that X = L[i].
Let p0 be the probability that X /∈ L[i] for any i .

f (n) = k0p0 +
n∑

i=1

kipi

= np0 +
n∑

i=1

ipi

What happens to the equation if we assume all pi ’s are
equal (except p0)?

20
14

-0
5-

02

CS 5114

Average Cost Equation

no notes

Computation

f (n) = p0n +
n∑

i=1

ip

= p0n + p
n∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1− p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.

CS 5114: Theory of Algorithms Spring 2014 128 / 418

Computation

f (n) = p0n +
n∑

i=1

ip

= p0n + p
n∑

i=1

i

= p0n + p
n(n + 1)

2

= p0n +
1− p0

n
n(n + 1)

2

=
n + 1 + p0(n − 1)

2

Depending on the value of p0, n+1
2 ≤ f (n) ≤ n.

20
14

-0
5-

02

CS 5114

Computation

p =
1− p0

n
.
Show a graph of p0 vs. cost for 0 ≤ p0 ≤ 1, with y axis going
from 0 to n.

Problems with Average Cost

Average cost is usually harder to determine than worst
cost.
We really need also to know the variance around the
average.
Our computation is only as good as our knowledge
(guess) on distribution.

CS 5114: Theory of Algorithms Spring 2014 129 / 418

Problems with Average Cost

Average cost is usually harder to determine than worst
cost.
We really need also to know the variance around the
average.
Our computation is only as good as our knowledge
(guess) on distribution.

20
14

-0
5-

02

CS 5114

Problems with Average Cost

Example: Quicksort variance is rather low. For this linear
search, the variances is higher (normal curve).

Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?
CS 5114: Theory of Algorithms Spring 2014 130 / 418

Sorted List
Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X . Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!

What is wrong here?

20
14

-0
5-

02

CS 5114

Sorted List

We have more information a priori.

Can quit early.
What is best, worst, average cost? 1, n, n/2, respectively.
Effectively eliminates case of x not on list.

If we find that x is smaller, we only rule out one element.
Cost is 1 either way, but we don’t get much information in worst
case.
Small probability for big information, but big probability for small
information.

Jump Search

Algorithm:
From the beginning of the array, start making jumps of
size k , checking L[k] then L[2k], and so on.
So long as X is greater, keep jumping by k .
If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?

CS 5114: Theory of Algorithms Spring 2014 131 / 418

Jump Search

Algorithm:
From the beginning of the array, start making jumps of
size k , checking L[k] then L[2k], and so on.
So long as X is greater, keep jumping by k .
If X is less, then use linear search on the last sublist of
k elements.

This is called Jump Search.

What is the right amount to jump?

20
14

-0
5-

02

CS 5114

Jump Search

no notes

Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋
+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋
+ k − 1

}
Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
I Roughly 2

√
n.

CS 5114: Theory of Algorithms Spring 2014 132 / 418

Analysis of Jump Search

If mk ≤ n < (m + 1)k , then the total cost is at most
m + k − 1 3-way comparisons.

f (n, k) = m + k − 1 =
⌊n

k

⌋
+ k − 1.

What should k be?

min
1≤k≤n

{⌊n
k

⌋
+ k − 1

}
Take the derivative and solve for f ′(x) = 0 to find the
minimum.
This is a minimum when k =

√
n.

What is the worst case cost?
I Roughly 2

√
n.

20
14

-0
5-

02

CS 5114

Analysis of Jump Search

m is number of big steps, k is size of big step.

Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion

CS 5114: Theory of Algorithms Spring 2014 133 / 418

Lessons
We want to balance the work done while selecting a sublist
with the work done while searching a sublist.

In general, make subproblems of equal effort.

This is an example of divide and conquer

What if we extend this to three levels?
We’d jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
Instead, we resort to recursion

20
14

-0
5-

02

CS 5114

Lessons

This could lead us to binary search. It could also lead us to
interpolation search.

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet
int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

CS 5114: Theory of Algorithms Spring 2014 134 / 418

Binary Search

int binary(int K, int* array, int left, int right) {
// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Middle of remaining subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}20
14

-0
5-

02

CS 5114

Binary Search

f (n) =

{
1 n = 1
f (bn/2c) + 1 n > 1

Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this model.

CS 5114: Theory of Algorithms Spring 2014 135 / 418

Lower Bound (for Problem Worst Case)

How does n compare to
√

n compare to log n?

Can we do better?

Model an algorithm for the problem using a decision tree.
Consider only comparisons with X .
Branch depending on the result of comparing X with
L[i].
There must be at least n leaf nodes in the tree. (Why?)
Some path must be at least log n deep. (Why?)

Thus, binary search has optimal worst cost under this model.

20
14

-0
5-

02

CS 5114

Lower Bound (for Problem Worst Case)

Assumption: A deterministic algorithm: For a given input, the
algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any
comparisons between elements in L, so such comparisons are
useless.

There must be some point in the algorithm, for each position in
the array, where only that position remains as the possible
outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.

Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

Average cost is log n − 1.
CS 5114: Theory of Algorithms Spring 2014 136 / 418

Average Cost of Binary Search (1)

An estimate given these assumptions:
X is in L.
X is equally likely to be in any position.
n = 2k for some non-negative integer k .

Cost?

One chance to hit in one probe.
Two chances to hit in two probes.
2i−1 to hit in i probes.
i ≤ k .

Average cost is log n − 1.

20
14

-0
5-

02

CS 5114

Average Cost of Binary Search (1)

no notes

Average Cost Lower Bound

Use decision trees again.
Total Path Length: Sum of the level for each node.
The cost of an outcome is the level of the corresponding
node plus 1.
The average cost of the algorithm is the average cost of
the outcomes (total path length/n).
What is the tree with the least average depth?
This is equivalent to the tree that corresponds to binary
search.
Thus, binary search is optimal.

CS 5114: Theory of Algorithms Spring 2014 137 / 418

Average Cost Lower Bound

Use decision trees again.
Total Path Length: Sum of the level for each node.
The cost of an outcome is the level of the corresponding
node plus 1.
The average cost of the algorithm is the average cost of
the outcomes (total path length/n).
What is the tree with the least average depth?
This is equivalent to the tree that corresponds to binary
search.
Thus, binary search is optimal.

20
14

-0
5-

02

CS 5114

Average Cost Lower Bound

(In worst case.)

Fill in tree row by row, left to right. So node i is at depth blog ic.

Interpolation Search

(Also known as Dictionary Search) Search L at a position

that is appropriate to the value of X .

p =
X − L[1]

L[n]− L[1]

Repeat as necessary to recalculate p for future searches.

CS 5114: Theory of Algorithms Spring 2014 138 / 418

Interpolation Search

(Also known as Dictionary Search) Search L at a position

that is appropriate to the value of X .

p =
X − L[1]

L[n]− L[1]

Repeat as necessary to recalculate p for future searches.20
14

-0
5-

02

CS 5114

Interpolation Search

That is, readjust for new array bounds.

Note that p is a fraction, so bpnc is an index position between 0
and n − 1.

Quadratic Binary Search

This is easier to analyze:
Compute p and examine L[dpne].
If X < L[dpne] then sequentially probe

L[dpn − i
√

ne], i = 1,2,3, ...

until we reach a value less than or equal to X .
Similar for X > L[dpne].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?

CS 5114: Theory of Algorithms Spring 2014 139 / 418

Quadratic Binary Search

This is easier to analyze:
Compute p and examine L[dpne].
If X < L[dpne] then sequentially probe

L[dpn − i
√

ne], i = 1,2,3, ...

until we reach a value less than or equal to X .
Similar for X > L[dpne].
We are now within

√
n positions of X .

ASSUME (for now) that this takes a constant number of
comparisons.
Now we have a sublist of size

√
n.

Repeat the process recursively.
What is the cost?

20
14

-0
5-

02

CS 5114

Quadratic Binary Search

This is following the induction in a different way than Binary
Search. Binary Search says break down list by (repeatedly)
splitting in half. Interpolation search says break down list by
(repeatedly) finding a square root-sized sublist.

We will come back and examine this assumption.

How many times can we take the square root of n?
Keep dividing the exponent by 2 until we reach 1 – that is, take
the log of the exponent.
What is the exponent? It is log n.
log log n is the number of times that we can take the square
root.

QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√

nP√n

This is equal to:
√

n∑
i=1

P(need at least i probes)

CS 5114: Theory of Algorithms Spring 2014 140 / 418

QBS Probe Count (1)

Cost is Θ(log log n) IF the number of probes on jump search
is constant.

Number of comparisons needed is:
√

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√

nP√n

This is equal to:
√

n∑
i=1

P(need at least i probes)

20
14

-0
5-

02

CS 5114

QBS Probe Count (1)

no notes

QBS Probe Count (2)

√
n∑

i=1

P(need at least i probes)

= 1 + (1− P1) + (1− P1 − P2) + · · ·+ P√n

= (P1 + ... + P√n) + (P2 + ... + P√n) +

(P3 + ... + P√n) + · · ·
= 1P1 + 2P2 + 3P3 + · · ·+

√
nP√n

CS 5114: Theory of Algorithms Spring 2014 141 / 418

QBS Probe Count (2)

√
n∑

i=1

P(need at least i probes)

= 1 + (1− P1) + (1− P1 − P2) + · · ·+ P√n

= (P1 + ... + P√n) + (P2 + ... + P√n) +

(P3 + ... + P√n) + · · ·
= 1P1 + 2P2 + 3P3 + · · ·+

√
nP√n20

14
-0

5-
02

CS 5114

QBS Probe Count (2)

no notes

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1− p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1− p) ≤ 1/4.

This assumes uniformly distributed data.
CS 5114: Theory of Algorithms Spring 2014 142 / 418

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

2 +

√
n∑

i=3

P(need at least i probes)

Useful fact (Čebyšev’s Inequality):
The probability that we need probe i times (Pi) is:

Pi ≤
p(1− p)n
(i − 2)2n

≤ 1
4(i − 2)2

since p(1− p) ≤ 1/4.

This assumes uniformly distributed data.

20
14

-0
5-

02

CS 5114

QBS Probe Count (3)

Original C’s Inequality ≤ the result of recognizing that
p(1− p) ≤ 1/4.

Important assumption!

QBS Probe Count (4)

Final result:

2 +

√
n∑

i=3

1
4(i − 2)2 ≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?

CS 5114: Theory of Algorithms Spring 2014 143 / 418

QBS Probe Count (4)

Final result:

2 +

√
n∑

i=3

1
4(i − 2)2 ≈ 2.4112

Is this better than binary search?

What happened to our proof that binary search is optimal?20
14

-0
5-

02

CS 5114

QBS Probe Count (4)

The assumption of uniform distribution (resulting in constant
number of probes on average) is much stronger than the
assumptions used by the lower bounds proof.

Comparison (1)
Let’s compare log log n to log n.

n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

CS 5114: Theory of Algorithms Spring 2014 144 / 418

Comparison (1)
Let’s compare log log n to log n.

n log n log log n Diff
16 4 2 2
256 8 3 2.7
64K 16 4 4
232 32 5 6.4

Now look at the actual comparisons used.
Binary search ≈ log n − 1
Interpolation search ≈ 2.4 log log n

n log n − 1 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

20
14

-0
5-

02

CS 5114

Comparison (1)

no notes

Comparison (2)

Not done yet! This is only a count of comparisons!
Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

CS 5114: Theory of Algorithms Spring 2014 145 / 418

Comparison (2)

Not done yet! This is only a count of comparisons!
Which is more expensive: calculating the midpoint or
calculating the interpolation point?

Which algorithm is dependent on good behavior by the
input?

20
14

-0
5-

02

CS 5114

Comparison (2)

Taking an interpolation point.

QBS

Order Statistics

Definition: Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.
What if list is not sorted?
Problem: Find the maximum element.
Change the model: Count exact number of
comparisons
Solution:

CS 5114: Theory of Algorithms Spring 2014 146 / 418

Order Statistics

Definition: Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.
What if list is not sorted?
Problem: Find the maximum element.
Change the model: Count exact number of
comparisons
Solution:20

14
-0

5-
02

CS 5114

Order Statistics

Finding max: Compare element n to the maximum of the
previous n − 1 elements. Cost: n − 1 comparisons. This is
optimal since you must look at every element to be sure that it
is not the maximum.

Two problems

Find the max and the min
Find (max and) the second biggest value

Is one of these harder than the other?

CS 5114: Theory of Algorithms Spring 2014 147 / 418

Two problems

Find the max and the min
Find (max and) the second biggest value

Is one of these harder than the other?

20
14

-0
5-

02

CS 5114

Two problems

Of course both can be done in Θ(n) time, but we want to count
exact number of comparisons.

Both can also be done by finding max, then finding min or
second max. So both can be done in 2n-1 comparisons.

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals?

Simple algorithm:
Find the best.
Discard it.
Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

CS 5114: Theory of Algorithms Spring 2014 148 / 418

Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals?

Simple algorithm:
Find the best.
Discard it.
Now, find the second best of the n − 1 remaining
elements.

Cost? Is this optimal?

20
14

-0
5-

02

CS 5114

Finding the Second Best

As we discuss this problem, we consider exact counts, not
asymptotics.

Not necessarily – the best 2 could compete in the first round!
Note that we ignore variations in performance, the outcome
between two players will always be the same.

2n − 3.

To know, need a lower bound on the problem.
Naive: ≈ n might work. Clearly not optimal here! But, tighten
lower bound.

Lower Bound for Second (1)

Lower bound:
Anyone who lost to anyone who is not the max cannot
be second.
So, the only candidates are those who lost to max.
Find_max might compare max to n − 1 others.
Thus, we might need n − 2 additional comparisons to
find second.
Wrong!

CS 5114: Theory of Algorithms Spring 2014 149 / 418

Lower Bound for Second (1)

Lower bound:
Anyone who lost to anyone who is not the max cannot
be second.
So, the only candidates are those who lost to max.
Find_max might compare max to n − 1 others.
Thus, we might need n − 2 additional comparisons to
find second.
Wrong!20

14
-0

5-
02

CS 5114

Lower Bound for Second (1)

What is wrong with this argument?
It relies on the behavior of a particular algorithm.

Lower Bound for Second (2)
The previous argument exhibits the necessity fallacy:

Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: d3n/2e − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

CS 5114: Theory of Algorithms Spring 2014 150 / 418

Lower Bound for Second (2)
The previous argument exhibits the necessity fallacy:

Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
Break the list into two halves.
Run Find_max on each half.
Compare the winners.
Run Find_max on the winner’s half for second.
Compare that second to second winner.

Cost: d3n/2e − 2.
Is this optimal?
What if we break the list into four pieces? Eight?

20
14

-0
5-

02

CS 5114

Lower Bound for Second (2)

In particular, it is not necessary that the max element compare
with n − 1 others, even in the worst case.
bn/2c − 1 + dn/2e − 1 ... +1 = n − 1.
Worst case: dn/2e − 1 elements, since winner need not
compete again.
+1.
Cost of d3n/2e − 2 just closed half of the gap between our old
lower bound and our old algorithm – pretty good progress!
4: about 5/4.
8: n − 1 + dn/8e − 1 = d9n/8e − 2.
What if we do this recursively?
f (n) = 2f (n/2) + 2; f (1) = 0 which is 3n/2− 2, which is no
better than halves. So recursive divide & conquer (in a naive
way) does not work! Quarters would be better!

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.
The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

I a single node, if m = 0, or
I two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

CS 5114: Theory of Algorithms Spring 2014 151 / 418

Binomial Trees (1)
Pushing this idea to its extreme, we want each
comparison to be between winners of equal numbers of
comparisons.
The only candidates for second are losers to the
eventual winner.
A binomial tree of height m has 2m nodes organized
as:

I a single node, if m = 0, or
I two height m − 1 binomial trees with one tree’s root

becoming a child of the other.

20
14

-0
5-

02

CS 5114

Binomial Trees (1)

but, we want as few of these as possible.

Binomial Trees (2)

Algorithm:
Build the tree.
Compare the dlog ne children of the root for second.

Cost?

CS 5114: Theory of Algorithms Spring 2014 152 / 418

Binomial Trees (2)

Algorithm:
Build the tree.
Compare the dlog ne children of the root for second.

Cost?

20
14

-0
5-

02

CS 5114

Binomial Trees (2)

n + dlog ne − 2.

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.

CS 5114: Theory of Algorithms Spring 2014 153 / 418

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.20
14

-0
5-

02

CS 5114

Adversarial Lower Bounds Proof (1)

no notes

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.
When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.
The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:
Hangman.
Search an unordered list.

CS 5114: Theory of Algorithms Spring 2014 154 / 418

Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.
When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.
The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:
Hangman.
Search an unordered list.

20
14

-0
5-

02

CS 5114

Adversarial Lower Bounds Proof (2)

Adversary maintains dictionary, and can give any answer that
conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.

Lower Bound for Second Best

At least n − 1 values must lose at least once.
At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

CS 5114: Theory of Algorithms Spring 2014 155 / 418

Lower Bound for Second Best

At least n − 1 values must lose at least once.
At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

20
14

-0
5-

02

CS 5114

Lower Bound for Second Best

What does your intuition tell you as a lower bound for k? Ω(n)?
Ω(log n)? Ω(c)?

Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[i]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?
Minimize the rate at which any element improves.
Do this by making the stronger element always win.
Is this legal?

CS 5114: Theory of Algorithms Spring 2014 156 / 418

Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[i]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?
Minimize the rate at which any element improves.
Do this by making the stronger element always win.
Is this legal?

20
14

-0
5-

02

CS 5114

Adversarial Lower Bound

The winner has now proved stronger than a + b+ the one who
just lost.

Yes. The adversary cannot “fix” the fight to give contradictory
answers. But, it can give answers consistent with some legal
input.

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.
From the algorithm’s point of view, the best outcome is
that an element doubles in strength.
This happens when a = b.
All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + dlog ne − 2 comparisons.

CS 5114: Theory of Algorithms Spring 2014 157 / 418

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.
From the algorithm’s point of view, the best outcome is
that an element doubles in strength.
This happens when a = b.
All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + dlog ne − 2 comparisons.

20
14

-0
5-

02

CS 5114

Lower Bound (Cont.)

Need to get the final strength up to n − 1.
These k losers are candidates for 2nd place.

Min and Max
Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires 2n − 3
comparisons.

Solution: By induction.

Base cases:
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
CS 5114: Theory of Algorithms Spring 2014 158 / 418

Min and Max
Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires 2n − 3
comparisons.

Solution: By induction.

Base cases:
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.

20
14

-0
5-

02

CS 5114

Min and Max

We are adding items n and n − 1.

Conceptually: ? compares for n − 2 elements, plus one
compare for last two items, plus cost to join the partial solutions.

Min and Max (2)

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
Find min and max of elements n − 1 and n (1 compare).
Combine these two with n − 2 elements (2 compares).
Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?
CS 5114: Theory of Algorithms Spring 2014 159 / 418

Min and Max (2)

Induction Hypothesis:
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
Find min and max of elements n − 1 and n (1 compare).
Combine these two with n − 2 elements (2 compares).
Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

20
14

-0
5-

02

CS 5114

Min and Max (2)

Total work is about 3n/2 comparisons.

It doesn’t get any better if we split the sequence into two
halves. The recurrence is:

T (n) =

{
1 n = 2
2T (n/2) + 2 n > 2

This is 3/2n − 2 for n a power of 2.

The Lower Bound (1)

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:
Novices: not tested.
Winners: Won at least once, never lost.
Losers: Lost at least once, never won.
Moderates: Both won and lost at least once.

CS 5114: Theory of Algorithms Spring 2014 160 / 418

The Lower Bound (1)

Is d3n/2e − 2 optimal?

Consider all states that a successful algorithm must go
through: The state space lower bound.

At any given instant, track the following four categories:
Novices: not tested.
Winners: Won at least once, never lost.
Losers: Lost at least once, never won.
Moderates: Both won and lost at least once.

20
14

-0
5-

02

CS 5114

The Lower Bound (1)

no notes

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?

CS 5114: Theory of Algorithms Spring 2014 161 / 418

The Lower Bound (2)

Who can get ignored?

What is the initial state?

What is the final state?

How is this relevant?20
14

-0
5-

02

CS 5114

The Lower Bound (2)

Moderates – Can’t be min or max.

Initial: (n, 0, 0, 0).

Final: (0, 1, 1, n-2).

We must go from the initial state to the final state to solve the
problem.
So, we can analyze how this gets done.

Lower Bound (3)

Every algorithm must go from (n,0,0,0) to (0,1,1,n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

CS 5114: Theory of Algorithms Spring 2014 162 / 418

Lower Bound (3)

Every algorithm must go from (n,0,0,0) to (0,1,1,n − 2).

There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.

20
14

-0
5-

02

CS 5114

Lower Bound (3)

That gets rid of 4 types of comparisons.

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)

CS 5114: Theory of Algorithms Spring 2014 163 / 418

Lower Bound (3)

If we are in state (i , j , k , l) and we have a comparison, then:
N : N (i − 2, j + 1, k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)
L : N (i − 1, j + 1, k , l)

or (i − 1, j , k , l + 1)
W : N (i − 1, j , k + 1, l)

or (i − 1, j , k , l + 1)
W : L (i , j , k , l)

or (i , j − 1, k − 1, l + 2)20
14

-0
5-

02

CS 5114

Lower Bound (3)

no notes

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: dn/2e are required.

CS 5114: Theory of Algorithms Spring 2014 164 / 418

Adversarial Argument

What should an adversary do?
Comparing a winner to a loser is of no value.

Only the following five transitions are of interest:
N : N (i − 2, j + 1, k + 1, l)
L : N (i − 1, j + 1, k , l)
W : N (i − 1, j , k + 1, l)
W : W (i , j − 1, k , l + 1)
L : L (i , j , k − 1, l + 1)

Only the last two types increase the number of moderates,
so there must be n − 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: dn/2e are required.

20
14

-0
5-

02

CS 5114

Adversarial Argument

Minimize information gained.

Adversary will just make the winner win – No new information is
provided.

This provides an algorithm.

K th Smallest Element

Problem: Find the k th smallest element from sequence S.

(Also called selection.)

Solution: Find min value and discard (k times).
If k is large, find n − k max values.

Cost: O(min(k ,n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).

CS 5114: Theory of Algorithms Spring 2014 165 / 418

K th Smallest Element

Problem: Find the k th smallest element from sequence S.

(Also called selection.)

Solution: Find min value and discard (k times).
If k is large, find n − k max values.

Cost: O(min(k ,n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).20

14
-0

5-
02

CS 5114

K th Smallest Element

no notes

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑
i=1

(f (i − 1))

Average case cost: O(n) time.

CS 5114: Theory of Algorithms Spring 2014 166 / 418

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑
i=1

(f (i − 1))

Average case cost: O(n) time.20
14

-0
5-

02

CS 5114

Better K th Smallest Algorithm

Like Quicksort, it is possible for this to take O(n2) time!!
It is possible to guarentee average case O(n) time.

String Matching

Let A = a1a2 · · · an and B = b1b2 · · · bm, m ≤ n, be two
strings of characters.

Problem: Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i ,1 ≤ i ≤ m,
ak+i = bi .

CS 5114: Theory of Algorithms Spring 2014 167 / 418

String Matching

Let A = a1a2 · · · an and B = b1b2 · · · bm, m ≤ n, be two
strings of characters.

Problem: Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i ,1 ≤ i ≤ m,
ak+i = bi .

20
14

-0
5-

02

CS 5114

String Matching

no notes

String Matching Example
A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.
CS 5114: Theory of Algorithms Spring 2014 168 / 418

String Matching Example
A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.

20
14

-0
5-

02

CS 5114

String Matching Example

O(mn) comparisons in worst case.

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

CS 5114: Theory of Algorithms Spring 2014 169 / 418

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

20
14

-0
5-

02

CS 5114

String Matching Worst Case

Our example was a little pessimistic... but it wasn’t worst case!

In the second example, we can quickly reject a position - no
backtracking.

Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix until third x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!

CS 5114: Theory of Algorithms Spring 2014 170 / 418

Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix until third x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!20
14

-0
5-

02

CS 5114

Finding a Better Algorithm

Not only can we skip down several letters if we track the
potential prefix, we don’t need even to repeat the check of the
prefix letters – just start that many characters down.

Knuth-Morris-Pratt Algorithm

Key to success:
I Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

I We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · · bi−1 = B(j), and 0 if no such j exists.
We define next(1) = −1 to distinguish it.
next(2) = 0. Why?

CS 5114: Theory of Algorithms Spring 2014 171 / 418

Knuth-Morris-Pratt Algorithm

Key to success:
I Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

I We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · · bi−1 = B(j), and 0 if no such j exists.
We define next(1) = −1 to distinguish it.
next(2) = 0. Why?

20
14

-0
5-

02

CS 5114

Knuth-Morris-Pratt Algorithm

In all cases other than B[1] we compare current A value to
appropriate B value. The test told us there was no match at
that position. If B[1] does not match a character of A, that
character is completely rejected. We must slide B over it.

Why? All that we know is that the 2nd letter failed to match.
There is no value j such that 0 < j < i − 1. Conceptually,
compare beginning of B to current character.

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.
At each position ask “If I fail here, how many letters
before me are good?”

CS 5114: Theory of Algorithms Spring 2014 172 / 418

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.
At each position ask “If I fail here, how many letters
before me are good?”20

14
-0

5-
02

CS 5114

Computing the table

no notes

How to Compute Table?

By induction.
Base cases: next(1) and next(2) already determined.
Induction Hypothesis: Values have been computed up
to next(i − 1).
Induction Step: For next(i): at most next(i − 1) + 1.

I When? bi−1 = bnext(i−1)+1.
I That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.
But, this is just a mismatch, so use next table to
compute where to check.

CS 5114: Theory of Algorithms Spring 2014 173 / 418

How to Compute Table?

By induction.
Base cases: next(1) and next(2) already determined.
Induction Hypothesis: Values have been computed up
to next(i − 1).
Induction Step: For next(i): at most next(i − 1) + 1.

I When? bi−1 = bnext(i−1)+1.
I That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.
But, this is just a mismatch, so use next table to
compute where to check.

20
14

-0
5-

02

CS 5114

How to Compute Table?

Induction step: Each step can only improve by 1.

While this is complex to understand, it is efficient to implement.

Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

I For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?
If mismatch at bk , then only k mismatches are possible.
But, for each mismatch, we had to go forward a
character to get to bk .
Since there are always n forward moves, the total cost is
O(n).

CS 5114: Theory of Algorithms Spring 2014 174 / 418

Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

I For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?
If mismatch at bk , then only k mismatches are possible.
But, for each mismatch, we had to go forward a
character to get to bk .
Since there are always n forward moves, the total cost is
O(n).20

14
-0

5-
02

CS 5114

Complexity of KMP Algorithm

no note

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.
CS 5114: Theory of Algorithms Spring 2014 175 / 418

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.

20
14

-0
5-

02

CS 5114

Example Using Table

no note

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in
xbycabc
abc

abc
abc

CS 5114: Theory of Algorithms Spring 2014 176 / 418

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in
xbycabc
abc

abc
abc

20
14

-0
5-

02

CS 5114

Boyer-Moore String Match Algorithm

Better for larger alphabets.

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee.
CS 5114: Theory of Algorithms Spring 2014 177 / 418

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee.

20
14

-0
5-

02

CS 5114

Probabilistic Algorithms

no notes

Probabilistic Algorithm

Pick 2 numbers and choose the greater.
This will be in the upper half with probability 3/4.
Not good enough? Pick more numbers!
For k numbers, greatest is in upper half with probability
1− 2−k .
Monte Carlo Algorithm: Good running time, result not
guaranteed.
Las Vegas Algorithm: Result guaranteed, but not the
running time.

CS 5114: Theory of Algorithms Spring 2014 178 / 418

Probabilistic Algorithm

Pick 2 numbers and choose the greater.
This will be in the upper half with probability 3/4.
Not good enough? Pick more numbers!
For k numbers, greatest is in upper half with probability
1− 2−k .
Monte Carlo Algorithm: Good running time, result not
guaranteed.
Las Vegas Algorithm: Result guaranteed, but not the
running time.20

14
-0

5-
02

CS 5114

Probabilistic Algorithm

Pick k big enough and the chance for failure becomes less than
the chance that the machine will crash (i.e., probability of even
getting an answer from a deterministic algorithm).

Rather have no answer than a wrong answer? If k is big
enough, the probability of a wrong answer is less than any
calamity with finite probability – with this probability
independent of n.

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?

CS 5114: Theory of Algorithms Spring 2014 179 / 418

Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.

Can we use binary search?
Comparisons?
“Work?”

What if we add additional pointers?20
14

-0
5-

02

CS 5114

Searching Linked Lists

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

CS 5114: Theory of Algorithms Spring 2014 180 / 418

“Perfect” Skip List
head

(a)

1

head

(b)

0

1

2

head

(c)

0

0

30 5831 42 6225

25 30 58 6942 625

5

25 5831 62305

31

42

69

69

20
14

-0
5-

02

CS 5114

“Perfect” Skip List

What is the access time? log n.
We can insert/delete in log n time as well.

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

CS 5114: Theory of Algorithms Spring 2014 181 / 418

Building a Skip List
Pick the node size at random (from a suitable probability
distribution).

(a) (b)

(c) (d)

(e)

head head

headhead

head

20 2 205 5

5 10 20 302

10

2010

10

10

20
14

-0
5-

02

CS 5114

Building a Skip List

no notes

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?
CS 5114: Theory of Algorithms Spring 2014 182 / 418

Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel(void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

}

What is the worst cost to search in the “perfect” Skip List?

What is the average cost to search in the “perfect” Skip List?

What is the cost to insert?

What is the average cost in the “typical” Skip List?

20
14

-0
5-

02

CS 5114

Skip List Analysis (1)

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.

Close to log n.

log n.

log n.

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

CS 5114: Theory of Algorithms Spring 2014 183 / 418

Skip List Analysis (2)

How does this differ from a BST?
Simpler or more complex?
More or less efficient?
Which relies on data distribution, which on basic laws of
probability?

20
14

-0
5-

02

CS 5114

Skip List Analysis (2)

About the same.

On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
Chance of worst case is then 2/n!.

CS 5114: Theory of Algorithms Spring 2014 184 / 418

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
Chance of worst case is then 2/n!.

20
14

-0
5-

02

CS 5114

Probabilistic Quicksort

This principle is why, for example, the Skip List data structure
has much more reliable performance than a BST. The BST’s
performance depends on the input data. The Skip List’s
performance depends entirely on chance. For random data, the
two are essentially identical. But you can’t trust data to be
random.

Random Number Generators

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
Linear congruential method:

I Pick a seed r(1). Then,

r(i) = (r(i − 1)× b) mod t .

Must pick good values for b and t .
Resulting numbers must be in the range:
What happens if r(i) = r(j)?

CS 5114: Theory of Algorithms Spring 2014 185 / 418

Random Number Generators

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
Linear congruential method:

I Pick a seed r(1). Then,

r(i) = (r(i − 1)× b) mod t .

Must pick good values for b and t .
Resulting numbers must be in the range:
What happens if r(i) = r(j)?20

14
-0

5-
02

CS 5114

Random Number Generators

Lots of “commercial” random number generators have poor
performance because they don’t get the numbers right.
Must be in range 0 to t − 1.

They generate the same number, which leads to a cycle of
length |j − i |.

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1,6,10,8,9,2,12,7,3,5,4,11,1 · · ·
r(i) = 7r(i − 1) mod 13 =

· · · 1,7,10,5,9,11,12,6,3,8,4,2,1 · · ·
r(i) = 5r(i − 1) mod 13 =

· · · 1,5,12,8,1 · · ·
· · · 2,10,11,3,2 · · ·
· · · 4,7,9,6,4 · · ·
· · · 0,0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1

CS 5114: Theory of Algorithms Spring 2014 186 / 418

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1,6,10,8,9,2,12,7,3,5,4,11,1 · · ·
r(i) = 7r(i − 1) mod 13 =

· · · 1,7,10,5,9,11,12,6,3,8,4,2,1 · · ·
r(i) = 5r(i − 1) mod 13 =

· · · 1,5,12,8,1 · · ·
· · · 2,10,11,3,2 · · ·
· · · 4,7,9,6,4 · · ·
· · · 0,0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1

20
14

-0
5-

02

CS 5114

Random Number Generators (cont)

no notes

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
Relationships
Families
Communication Networks
Road Maps

CS 5114: Theory of Algorithms Spring 2014 187 / 418

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
Relationships
Families
Communication Networks
Road Maps

20
14

-0
5-

02

CS 5114

Graph Algorithms

• A graph G = (V,E) consists of a set of vertices V, and a set
of edges E, such that each edge in E is a connection
between a pair of vertices in V.

• Directed vs. Undirected

• Labeled graph, weighted graph

• Labels for edges vs. weights for edges

• Multiple edges, loops

• Cycle, Circuit, path, simple path, tours

• Bipartite, acyclic, connected

• Rooted tree, unrooted tree, free tree

A Tree Proof
Definition: A free tree is a connected, undirected graph
that has no cycles.
Theorem: If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof: By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis: The theorem is true for a tree
having n − 1 vertices.
Inductive Step:

I If T has n vertices, then T contains a vertex of degree 1.
I Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
I By IH, T ′ has n − 2 edges.
I Thus, T has n − 1 edges.

CS 5114: Theory of Algorithms Spring 2014 188 / 418

A Tree Proof
Definition: A free tree is a connected, undirected graph
that has no cycles.
Theorem: If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof: By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis: The theorem is true for a tree
having n − 1 vertices.
Inductive Step:

I If T has n vertices, then T contains a vertex of degree 1.
I Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
I By IH, T ′ has n − 2 edges.
I Thus, T has n − 1 edges.

20
14

-0
5-

02

CS 5114

A Tree Proof

This is close to a satisfactory definition for free tree. There are
several equivalent definitions for free trees, with similar proofs
to relate them.

Why do we know that some vertex has degree 1? Because the
definition says that the Free Tree has no cycles.

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:
1 Eulerian tours

Traverse each edge exactly once
2 Depth-first search

Keeps vertices on a stack
3 Breadth-first search

Keeps vertices on a queue

CS 5114: Theory of Algorithms Spring 2014 189 / 418

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:
1 Eulerian tours

Traverse each edge exactly once
2 Depth-first search

Keeps vertices on a stack
3 Breadth-first search

Keeps vertices on a queue20
14

-0
5-

02

CS 5114

Graph Traversals

a vertex may be visited multiple times

Eulerian Tours

A circuit that contains every edge exactly once.
Example: f

c
e

b
a

d

Tour: b a f c d e.

Example:
f

c
e

b
a

d

g

No Eulerian tour. How can you tell for sure?

CS 5114: Theory of Algorithms Spring 2014 190 / 418

Eulerian Tours

A circuit that contains every edge exactly once.
Example: f

c
e

b
a

d

Tour: b a f c d e.

Example:
f

c
e

b
a

d

g

No Eulerian tour. How can you tell for sure?20
14

-0
5-

02

CS 5114

Eulerian Tours

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

Eulerian Tour Proof

Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof: By induction on m.
Base Case:
Inductive Hypothesis:
Inductive Step:

I Start with an arbitrary vertex and follow a path until you
return to the vertex.

I Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

I By IH, each connected component has an Eulerian tour.
I Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2014 191 / 418

Eulerian Tour Proof

Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof: By induction on m.
Base Case:
Inductive Hypothesis:
Inductive Step:

I Start with an arbitrary vertex and follow a path until you
return to the vertex.

I Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

I By IH, each connected component has an Eulerian tour.
I Combine the tours to get a tour of the entire graph.

20
14

-0
5-

02

CS 5114

Eulerian Tour Proof

Base case: 0 edges and 1 vertex fits the theorem.
IH: The theorem is true for < m edges.
Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V|+ |E|).
CS 5114: Theory of Algorithms Spring 2014 192 / 418

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V|+ |E|).

20
14

-0
5-

02

CS 5114

Depth First Search

no notes

Depth First Search Example

(a) (b)

A B

D

F

A B

C

D

F

E

C

E

CS 5114: Theory of Algorithms Spring 2014 193 / 418

Depth First Search Example

(a) (b)

A B

D

F

A B

C

D

F

E

C

E

20
14

-0
5-

02

CS 5114

Depth First Search Example

The directions are imposed by the traversal. This is the Depth
First Search Tree.

DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof: Consider the first time an edge (v ,w) is examined,
with v the current vertex.

If w is unmarked, then (v ,w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v ,w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .

CS 5114: Theory of Algorithms Spring 2014 194 / 418

DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof: Consider the first time an edge (v ,w) is examined,
with v the current vertex.

If w is unmarked, then (v ,w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v ,w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .

20
14

-0
5-

02

CS 5114

DFS Tree

Results: No “cross edges.” That is, no edges connecting
vertices sideways in the tree.

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2014 195 / 418

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

1 6 7

8953

2 4

Forward edges: (1, 3)
Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution: Maintain a list of unmarked vertices.

I Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

20
14

-0
5-

02

CS 5114

DFS for Directed Graphs

no notes

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof:
1 Suppose a DFS produces a back edge (v ,w).

I v and w are in the same DFS tree, w an ancestor of v .
I (v ,w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

I Do a DFS on G.
I Let w be the vertex of C with smallest DFS number.
I Let (v ,w) be the edge of C coming into w .
I v is a descendant of w in a DFS tree.
I Therefore, (v ,w) is a back edge.

CS 5114: Theory of Algorithms Spring 2014 196 / 418

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof:
1 Suppose a DFS produces a back edge (v ,w).

I v and w are in the same DFS tree, w an ancestor of v .
I (v ,w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

I Do a DFS on G.
I Let w be the vertex of C with smallest DFS number.
I Let (v ,w) be the edge of C coming into w .
I v is a descendant of w in a DFS tree.
I Therefore, (v ,w) is a back edge.

20
14

-0
5-

02

CS 5114

Directed Cycles

See earlier lemma.

Breadth First Search

Like DFS, but replace stack with a queue.
Visit vertex’s neighbors before going deeper in tree.

CS 5114: Theory of Algorithms Spring 2014 197 / 418

Breadth First Search

Like DFS, but replace stack with a queue.
Visit vertex’s neighbors before going deeper in tree.

20
14

-0
5-

02

CS 5114

Breadth First Search

no notes

Breadth First Search Algorithm

void BFS(Graph G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED) {
G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}

CS 5114: Theory of Algorithms Spring 2014 198 / 418

Breadth First Search Algorithm

void BFS(Graph G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED) {
G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}

20
14

-0
5-

02

CS 5114

Breadth First Search Algorithm

no notes

Breadth First Search Example

(a) (b)

B

C

A

C

B

DD

F

EE

A

F

Non-tree edges connect vertices at levels differing by 0 or 1.

CS 5114: Theory of Algorithms Spring 2014 199 / 418

Breadth First Search Example

(a) (b)

B

C

A

C

B

DD

F

EE

A

F

Non-tree edges connect vertices at levels differing by 0 or 1.

20
14

-0
5-

02

CS 5114

Breadth First Search Example

We know this because if an edge had connected to a deeper
level, then that target node would have been placed on the
queue when the edge was encountered.

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.

J1 J2

J3 J4

J5 J7

J6

CS 5114: Theory of Algorithms Spring 2014 200 / 418

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.

J1 J2

J3 J4

J5 J7

J6

20
14

-0
5-

02

CS 5114

Topological Sort

no notes

Topological Sort Algorithm

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper

}
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}

CS 5114: Theory of Algorithms Spring 2014 201 / 418

Topological Sort Algorithm

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper

}
void tophelp(Graph G, int v) { // Helper function

G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}

20
14

-0
5-

02

CS 5114

Topological Sort Algorithm

Prints in reverse order.

Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2’s count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for v
for (Edge w = each neighbor of v) {

Count[G.v2(w)]--; // One less prereq
if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));

}}}
CS 5114: Theory of Algorithms Spring 2014 202 / 418

Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2’s count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for v
for (Edge w = each neighbor of v) {

Count[G.v2(w)]--; // One less prereq
if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));

}}}

20
14

-0
5-

02

CS 5114

Queue-based Topological Sort

no notes

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:
Find the shortest path between two specified vertices.
Find the shortest path from vertex S to all other vertices.
Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

CS 5114: Theory of Algorithms Spring 2014 203 / 418

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:
Find the shortest path between two specified vertices.
Find the shortest path from vertex S to all other vertices.
Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

20
14

-0
5-

02

CS 5114

Shortest Paths Problems

no notes

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
If there is no such edge, then w(A, B) =∞.

5

20

2

10
D

B

A

3
11

EC
15

CS 5114: Theory of Algorithms Spring 2014 204 / 418

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
If there is no such edge, then w(A, B) =∞.

5

20

2

10
D

B

A

3
11

EC
15

20
14

-0
5-

02

CS 5114

Shortest Paths Definitions

w(A, D) = 20; d(A, D) = 10 (through ACBD).

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.

CS 5114: Theory of Algorithms Spring 2014 205 / 418

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.20

14
-0

5-
02

CS 5114

Single Source Shortest Paths

no notes

Dijkstra’s Algorithm Example

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

5

20

2

10
D

B

A

3
11

EC
15

CS 5114: Theory of Algorithms Spring 2014 206 / 418

Dijkstra’s Algorithm Example

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

5

20

2

10
D

B

A

3
11

EC
15

20
14

-0
5-

02

CS 5114

Dijkstra’s Algorithm Example

no notes

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > (D[v] + G.weight(w)))
D[G.v2(w)] = D[v] + G.weight(w);

}
}

CS 5114: Theory of Algorithms Spring 2014 207 / 418

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > (D[v] + G.weight(w)))
D[G.v2(w)] = D[v] + G.weight(w);

}
}

20
14

-0
5-

02

CS 5114

Dijkstra’s Algorithm: Array (1)

no notes

Dijkstra’s Algorithm: Array (2)

// Get mincost vertex
int minVertex(Graph G, int* D) {
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: Θ(|V|2 + |E|) = Θ(|V|2).

CS 5114: Theory of Algorithms Spring 2014 208 / 418

Dijkstra’s Algorithm: Array (2)

// Get mincost vertex
int minVertex(Graph G, int* D) {

int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: Θ(|V|2 + |E|) = Θ(|V|2).

20
14

-0
5-

02

CS 5114

Dijkstra’s Algorithm: Array (2)

no notes

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

CS 5114: Theory of Algorithms Spring 2014 209 / 418

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue

int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

20
14

-0
5-

02

CS 5114

Dijkstra’s Algorithm: Priority Queue (1)

no notes

Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.
Total cost: Θ((|V|+ |E|) log |V|).

CS 5114: Theory of Algorithms Spring 2014 210 / 418

Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.
Total cost: Θ((|V|+ |E|) log |V|).

20
14

-0
5-

02

CS 5114

Dijkstra’s Algorithm: Priority Queue (2)

no notes

All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v).
Could run Dijkstra’s Algorithm |V| times.
Better is Floyd’s Algorithm.
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .

∞

∞

∞

∞

1 7

4
5

3

112

12

1

0

2

3

CS 5114: Theory of Algorithms Spring 2014 211 / 418

All Pairs Shortest Paths

For every vertex u, v ∈ V, calculate d(u, v).
Could run Dijkstra’s Algorithm |V| times.
Better is Floyd’s Algorithm.
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .

∞

∞

∞

∞

1 7

4
5

3

112

12

1

0

2

3

20
14

-0
5-

02

CS 5114

All Pairs Shortest Paths

Multiple runs of Dijkstra’s algorithm Cost:
|V ||E | log |V | = |V |3 log |V | for dense graph.

The issue driving the concept of “k paths” is how to efficiently
check all the paths without computing any path more than once.

0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a 2
or 1 path. Everything is a 4 path.

Floyd’s Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}

CS 5114: Theory of Algorithms Spring 2014 212 / 418

Floyd’s Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)
if (D[i][j] > (D[i][k] + D[k][j]))

D[i][j] = D[i][k] + D[k][j];
}20

14
-0

5-
02

CS 5114

Floyd’s Algorithm

no notes

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.
A

9

7 5

B

C

1 2
6

D 2

1E

F

CS 5114: Theory of Algorithms Spring 2014 213 / 418

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.
A

9

7 5

B

C

1 2
6

D 2

1E

F

20
14

-0
5-

02

CS 5114

Minimum Cost Spanning Trees

no notes

Key Theorem for MST
Let V1, V2 be an arbitrary, non-trivial partition of V . Let
(v1, v2), v1 ∈ V1, v2 ∈ V2, be the cheapest edge between V1

and V2. Then (v1, v2) is in some MST of G.
Proof:

Let T be an arbitrary MST of G.
If (v1, v2) is in T , then we are done.
Otherwise, adding (v1, v2) to T creates a cycle C.
At least one edge (u1,u2) of C other than (v1, v2) must
be between V1 and V2.
c(u1,u2) ≥ c(v1, v2).
Let T ′ = T ∪ {(v1, v2)} − {(u1,u2)}.
Then, T ′ is a spanning tree of G and c(T ′) ≤ c(T).
But c(T) is minimum cost.

Therefore, c(T ′) = c(T) and T ′ is a MST containing (v1, v2).
CS 5114: Theory of Algorithms Spring 2014 214 / 418

Key Theorem for MST
Let V1, V2 be an arbitrary, non-trivial partition of V . Let
(v1, v2), v1 ∈ V1, v2 ∈ V2, be the cheapest edge between V1

and V2. Then (v1, v2) is in some MST of G.
Proof:

Let T be an arbitrary MST of G.
If (v1, v2) is in T , then we are done.
Otherwise, adding (v1, v2) to T creates a cycle C.
At least one edge (u1,u2) of C other than (v1, v2) must
be between V1 and V2.
c(u1,u2) ≥ c(v1, v2).
Let T ′ = T ∪ {(v1, v2)} − {(u1,u2)}.
Then, T ′ is a spanning tree of G and c(T ′) ≤ c(T).
But c(T) is minimum cost.

Therefore, c(T ′) = c(T) and T ′ is a MST containing (v1, v2).

20
14

-0
5-

02

CS 5114

Key Theorem for MST

There can only be multiple MSTs when there are edges with
equal cost.

Key Theorem Figure

j

i

u

p

i

u

j

Marked Unmarked

’’correct’’ edge

e’

Prim’s edge

v

vv

v

e

Vertices v , i < j Vertices v , i >= j

CS 5114: Theory of Algorithms Spring 2014 215 / 418

Key Theorem Figure

j

i

u

p

i

u

j

Marked Unmarked

’’correct’’ edge

e’

Prim’s edge

v

vv

v

e

Vertices v , i < j Vertices v , i >= j

20
14

-0
5-

02

CS 5114

Key Theorem Figure

no notes

Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; int V[G.n()]; // Distances
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) {
D[G.v2(w)] = G.weight(w); // Update dist
V[G.v2(w)] = v; // who came from

}}}
CS 5114: Theory of Algorithms Spring 2014 216 / 418

Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; int V[G.n()]; // Distances
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) {
D[G.v2(w)] = G.weight(w); // Update dist
V[G.v2(w)] = v; // who came from

}}}

20
14

-0
5-

02

CS 5114

Prim’s MST Algorithm (1)

no notes

Prim’s MST Algorithm (2)

int minVertex(Graph G, int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

This is an example of a greedy algorithm.

CS 5114: Theory of Algorithms Spring 2014 217 / 418

Prim’s MST Algorithm (2)

int minVertex(Graph G, int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))

v = i;
return v;

}

This is an example of a greedy algorithm.

20
14

-0
5-

02

CS 5114

Prim’s MST Algorithm (2)

no notes

Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;

CS 5114: Theory of Algorithms Spring 2014 218 / 418

Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;

20
14

-0
5-

02

CS 5114

Alternative Prim’s Implementation (1)

no notes

Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }

while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) { // Update D
D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert dist in heap

}
}}

CS 5114: Theory of Algorithms Spring 2014 219 / 418

Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }

while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > G.weight(w)) { // Update D
D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert dist in heap

}
}}

20
14

-0
5-

02

CS 5114

Alternative Prim’s Implementation (2)

no notes

Kruskal’s MST Algorithm (1)

Kruskel(Graph G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges into E

for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) {

E[edgecnt].weight = G.weight(w);
E[edgecnt++].edge = w;

}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numMST = G.n(); // Init w/ n equiv classes

CS 5114: Theory of Algorithms Spring 2014 220 / 418

Kruskal’s MST Algorithm (1)

Kruskel(Graph G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges into E

for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) {

E[edgecnt].weight = G.weight(w);
E[edgecnt++].edge = w;

}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numMST = G.n(); // Init w/ n equiv classes

20
14

-0
5-

02

CS 5114

Kruskal’s MST Algorithm (1)

no notes

Kruskal’s MST Algorithm (2)

for (i=0; numMST>1; i++) { // Combine
Elem temp = H.removemin(); // Next cheap edge
Edge w = temp.edge;
int v = G.v1(w); int u = G.v2(w);
if (A.differ(v, u)) { // If different

A.UNION(v, u); // Combine
AddEdgetoMST(G.v1(w), G.v2(w)); // Add
numMST--; // Now one less MST

}
}

}

How do we compute function MSTof(v)?
Solution: UNION-FIND algorithm (Section 4.3).

CS 5114: Theory of Algorithms Spring 2014 221 / 418

Kruskal’s MST Algorithm (2)

for (i=0; numMST>1; i++) { // Combine
Elem temp = H.removemin(); // Next cheap edge
Edge w = temp.edge;
int v = G.v1(w); int u = G.v2(w);
if (A.differ(v, u)) { // If different

A.UNION(v, u); // Combine
AddEdgetoMST(G.v1(w), G.v2(w)); // Add
numMST--; // Now one less MST

}
}

}

How do we compute function MSTof(v)?
Solution: UNION-FIND algorithm (Section 4.3).

20
14

-0
5-

02

CS 5114

Kruskal’s MST Algorithm (2)

no notes

Kruskal’s Algorithm Example

Total cost: Θ(|V|+ |E| log |E|).

Initial

Step 1 A B

C

1

D

E F

Step 2

Process edge (E, F)

1 1

Step 3

Process edge (C, F)

B

1 2

E 1

F

Process edge (C, D)

A

A B D E FC

C

D

B

C

D

E
A

F

CS 5114: Theory of Algorithms Spring 2014 222 / 418

Kruskal’s Algorithm Example

Total cost: Θ(|V|+ |E| log |E|).

Initial

Step 1 A B

C

1

D

E F

Step 2

Process edge (E, F)

1 1

Step 3

Process edge (C, F)

B

1 2

E 1

F

Process edge (C, D)

A

A B D E FC

C

D

B

C

D

E
A

F

20
14

-0
5-

02

CS 5114

Kruskal’s Algorithm Example

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.

Matching

Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.
Problem: Form as many compatible non-overlapping
teams as possible.
Model using G, an undirected graph.

I Join vertices if the workers will work together.
A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

I A maximal matching has no free pairs of vertices that
can extend the matching.

I A maximum matching has the greatest possible
number of edges.

I A perfect matching includes every vertex.

CS 5114: Theory of Algorithms Spring 2014 223 / 418

Matching

Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.
Problem: Form as many compatible non-overlapping
teams as possible.
Model using G, an undirected graph.

I Join vertices if the workers will work together.
A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

I A maximal matching has no free pairs of vertices that
can extend the matching.

I A maximum matching has the greatest possible
number of edges.

I A perfect matching includes every vertex.

20
14

-0
5-

02

CS 5114

Matching

An example:
(1-3) is a matching.
(1-3) (5, 4) is both maximal and maximum.
Take away the edge (5-4). Then (3, 2) would be maximal but
not a maximum matching.

1 2

3

5

4

Very Dense Graphs (1)

Theorem: Let G = (V ,E) be an undirected graph with
|V | = 2n and every vertex having degree ≥ n. Then G
contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.
Let M ⊆ E be a max matching. |M| < n.
There must be two unmatched vertices v1, v2 that are
not adjacent.
Every vertex adjacent to v1 or to v2 is matched.
Let M ′ ⊆ M be the set of edges involved in matching the
neighbors of v1 and v2.
There are ≥ 2n edges from v1 and v2 to vertices
covered by M ′, but |M ′| < n.

CS 5114: Theory of Algorithms Spring 2014 224 / 418

Very Dense Graphs (1)

Theorem: Let G = (V ,E) be an undirected graph with
|V | = 2n and every vertex having degree ≥ n. Then G
contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.
Let M ⊆ E be a max matching. |M| < n.
There must be two unmatched vertices v1, v2 that are
not adjacent.
Every vertex adjacent to v1 or to v2 is matched.
Let M ′ ⊆ M be the set of edges involved in matching the
neighbors of v1 and v2.
There are ≥ 2n edges from v1 and v2 to vertices
covered by M ′, but |M ′| < n.

20
14

-0
5-

02

CS 5114

Very Dense Graphs (1)

There must be two unmatched vertices not adjacent:
Otherwise it would either be perfect (if there are no 2 free
vertices) or we could just match v1 and v2 (because they are
adjacent).

Every adjacent vertex is matched, otherwise the matching
would not be maximal.

See Manber Figure 3.76.

Very Dense Graphs (2)

Proof: (continued)
Thus, some edge of M ′ is adjacent to 3 edges from v1

and v2.
Let (u1,u2) be such an edge.
Replacing (u1,u2) with (v1,u2) and (v2,u1) results in a
larger matching.
Theorem proven by contradiction.

CS 5114: Theory of Algorithms Spring 2014 225 / 418

Very Dense Graphs (2)

Proof: (continued)
Thus, some edge of M ′ is adjacent to 3 edges from v1

and v2.
Let (u1,u2) be such an edge.
Replacing (u1,u2) with (v1,u2) and (v2,u1) results in a
larger matching.
Theorem proven by contradiction.

20
14

-0
5-

02

CS 5114

Very Dense Graphs (2)

Pigeonhole Principle

Generalizing the Insight

u1 u2 u1

v1 v2v1 v2

u2

v1,u2,u1, v2 is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.
In one step, switch unmatched and matched edges.
Let G = (V ,E) be an undirected graph and M ⊆ E a
matching.
An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.

CS 5114: Theory of Algorithms Spring 2014 226 / 418

Generalizing the Insight

u1 u2 u1

v1 v2v1 v2

u2

v1,u2,u1, v2 is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.
In one step, switch unmatched and matched edges.
Let G = (V ,E) be an undirected graph and M ⊆ E a
matching.
An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.

20
14

-0
5-

02

CS 5114

Generalizing the Insight

no notes

Matching Example

1 2 3

5

4

76

9

811

10

CS 5114: Theory of Algorithms Spring 2014 227 / 418

Matching Example

1 2 3

5

4

76

9

811

10

20
14

-0
5-

02

CS 5114

Matching Example

1, 2, 3, 5 is NOT an alternating path (it does not start with an
unmatch vertex).

7, 6, 11, 10, 9, 8 is an alternating path with respect to the given
matching.

Observation: If a matching has an alternating path, then the
size of the matching can be increased by one by switching
matched and unmatched edges along the alternating path.

The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating
paths.

Proof:
Clearly, if a matching has alternating paths, then it is not
maximum.
Suppose M is a non-maximum matching.
Let M ′ be any maximum matching. Then, |M ′| > |M|.
Let M⊕M ′ be the symmetric difference of M and M ′.

M⊕M ′ = M ∪M ′ − (M ∩M ′).

G′ = (V ,M⊕M ′) is a subgraph of G having maximum
degree ≤ 2.

CS 5114: Theory of Algorithms Spring 2014 228 / 418

The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating
paths.

Proof:
Clearly, if a matching has alternating paths, then it is not
maximum.
Suppose M is a non-maximum matching.
Let M ′ be any maximum matching. Then, |M ′| > |M|.
Let M⊕M ′ be the symmetric difference of M and M ′.

M⊕M ′ = M ∪M ′ − (M ∩M ′).

G′ = (V ,M⊕M ′) is a subgraph of G having maximum
degree ≤ 2.

20
14

-0
5-

02

CS 5114

The Alternating Path Theorem (1)

The first point is the obvious part of the iff. If there is an
alternating path, simply switch the match and umatched edges
to augment the match.

Symmetric difference: Those in either, but not both.

The max degree is ≤ 2 because a vertex matches one different
vertex in M and M ′.

The Alternating Path Theorem (2)

Proof: (continued)
Therefore, the connected components of G′ are either
even-length cycles or a path with alternating edges.
Since |M ′| > |M|, there must be a component of G′ that
is an alternating path having more M ′ edges than M
edges.

CS 5114: Theory of Algorithms Spring 2014 229 / 418

The Alternating Path Theorem (2)

Proof: (continued)
Therefore, the connected components of G′ are either
even-length cycles or a path with alternating edges.
Since |M ′| > |M|, there must be a component of G′ that
is an alternating path having more M ′ edges than M
edges.

20
14

-0
5-

02

CS 5114

The Alternating Path Theorem (2)

no notes

Bipartite Matching

A bipartite graph G = (U,V ,E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V .
Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.
Alternating paths will work to find a maximum bipartite
matching. An alternating path always has one end in U
and the other in V .
If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an alternating path.

CS 5114: Theory of Algorithms Spring 2014 230 / 418

Bipartite Matching

A bipartite graph G = (U,V ,E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V .
Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.
Alternating paths will work to find a maximum bipartite
matching. An alternating path always has one end in U
and the other in V .
If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an alternating path.

20
14

-0
5-

02

CS 5114

Bipartite Matching

no notes

Bipartite Matching Example
1

2

3

4

5

6

7

8

9

10

2, 8, 5, 10 is an alternating path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint alternating paths
that we can augment independently.

CS 5114: Theory of Algorithms Spring 2014 231 / 418

Bipartite Matching Example
1

2

3

4

5

6

7

8

9

10

2, 8, 5, 10 is an alternating path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint alternating paths
that we can augment independently.

20
14

-0
5-

02

CS 5114

Bipartite Matching Example

Naive algorithm: Find a maximal matching (greedy algorithm).

For each vertex:
Do a DFS or other search until an alternating path is found.
Use the alternating path to improve the match.

|V |(|V |+ |E |)

Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity O((|V |+ |E |)
√
|V |).

CS 5114: Theory of Algorithms Spring 2014 232 / 418

Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity O((|V |+ |E |)
√
|V |).

20
14

-0
5-

02

CS 5114

Algorithm for Maximum Bipartite Matching

Order doesn’t matter. Find a path, remove its vertices, then
repeat.Augment along the paths independently since they are
disjoint.

Network Flows

Models distribution of utilities in networks such as oil
pipelines, water systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph G = (V ,E) having a
distinguished source vertex s and a distinguished sink vertex
t . Every edge (u, v) of G has a capacity c(u, v) ≥ 0. If
(u, v) /∈ E , then c(u, v) = 0.

CS 5114: Theory of Algorithms Spring 2014 233 / 418

Network Flows

Models distribution of utilities in networks such as oil
pipelines, water systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph G = (V ,E) having a
distinguished source vertex s and a distinguished sink vertex
t . Every edge (u, v) of G has a capacity c(u, v) ≥ 0. If
(u, v) /∈ E , then c(u, v) = 0.20

14
-0

5-
02

CS 5114

Network Flows

no notes

Network Flow Graph

2

10
5

0

0

20

3

3

1020

10 1

s

3 4

2

t

CS 5114: Theory of Algorithms Spring 2014 234 / 418

Network Flow Graph

2

10
5

0

0

20

3

3

1020

10 1

s

3 4

2

t

20
14

-0
5-

02

CS 5114

Network Flow Graph

no notes

Network Flow Definitions
A flow in a network is a function f : V × V → R with the
following properties.

(i) Skew Symmetry:

∀v ,w ∈ V , f (v ,w) = −f (w , v).

(ii) Capacity Constraint:

∀v ,w ,∈ V , f (v ,w) ≤ c(v ,w).

If f (v ,w) = c(v ,w) then (v ,w) is saturated.
(iii) Flow Conservation:

∀v ∈ V − {s, t},
∑

f (v ,w) = 0. Equivalently,

∀v ∈ V − {s, t},
∑

u

f (u, v) =
∑

w

f (v ,w).

In other words, flow into v equals flow out of v .
CS 5114: Theory of Algorithms Spring 2014 235 / 418

Network Flow Definitions
A flow in a network is a function f : V × V → R with the
following properties.

(i) Skew Symmetry:

∀v ,w ∈ V , f (v ,w) = −f (w , v).

(ii) Capacity Constraint:

∀v ,w ,∈ V , f (v ,w) ≤ c(v ,w).

If f (v ,w) = c(v ,w) then (v ,w) is saturated.
(iii) Flow Conservation:

∀v ∈ V − {s, t},
∑

f (v ,w) = 0. Equivalently,

∀v ∈ V − {s, t},
∑

u

f (u, v) =
∑

w

f (v ,w).

In other words, flow into v equals flow out of v .

20
14

-0
5-

02

CS 5114

Network Flow Definitions

no notes

Flow Example

2, 2

10, 3
5, 3

3, −3

10, 5

10, 8

+infinity, 13

20, 10

0, −10

20, 10

3, 0

1

s

3 4

2

t

Edges are labeled “capacity, flow”.
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

|f | =
∑
w∈V

f (s,w) =
∑
w∈V

f (w , t).

CS 5114: Theory of Algorithms Spring 2014 236 / 418

Flow Example

2, 2

10, 3
5, 3

3, −3

10, 5

10, 8

+infinity, 13

20, 10

0, −10

20, 10

3, 0

1

s

3 4

2

t

Edges are labeled “capacity, flow”.
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

|f | =
∑
w∈V

f (s,w) =
∑
w∈V

f (w , t).20
14

-0
5-

02

CS 5114

Flow Example

3, -3 is an illustration of “negative flow” returning. Every node
can be thought of as having negative flow. We will make use of
this later – augmenting paths.

Max Flow Problem

Problem: Find a flow of maximum value.

Cut (X ,X ′) is a partition of V such that s ∈ X , t ∈ X ′.

The capacity of a cut is

c(X ,X ′) =
∑

v∈X ,w∈X ′

c(v ,w).

A min cut is a cut of minimum capacity.

CS 5114: Theory of Algorithms Spring 2014 237 / 418

Max Flow Problem

Problem: Find a flow of maximum value.

Cut (X ,X ′) is a partition of V such that s ∈ X , t ∈ X ′.

The capacity of a cut is

c(X ,X ′) =
∑

v∈X ,w∈X ′

c(v ,w).

A min cut is a cut of minimum capacity.

20
14

-0
5-

02

CS 5114

Max Flow Problem

no notes

Cut Flows

For any flow f , the flow across a cut is:

f (X ,X ′) =
∑

v∈X ,w∈X ′

f (v ,w).

Lemma: For all flows f and all cuts (X ,X ′), f (X ,X ′) = |f |.

Clearly, the flow out of s = |f | = the flow into t .
It can be proved that the flow across every other cut is
also |f |.

Corollary: The value of any flow is less than or equal to the
capacity of a min cut.

CS 5114: Theory of Algorithms Spring 2014 238 / 418

Cut Flows

For any flow f , the flow across a cut is:

f (X ,X ′) =
∑

v∈X ,w∈X ′

f (v ,w).

Lemma: For all flows f and all cuts (X ,X ′), f (X ,X ′) = |f |.

Clearly, the flow out of s = |f | = the flow into t .
It can be proved that the flow across every other cut is
also |f |.

Corollary: The value of any flow is less than or equal to the
capacity of a min cut.

20
14

-0
5-

02

CS 5114

Cut Flows

no notes

Residual Graph

Given any flow f , the residual capacity of the edge is

res(v ,w) = c(v ,w)− f (v ,w) ≥ 0.

Residual graph is a network R = (V ,ER) where ER

contains edges of non-zero residual capacity.

3

10

10

6

3

5

10

10

7

2

8

2

2

5

1

s

3 4

2

t

CS 5114: Theory of Algorithms Spring 2014 239 / 418

Residual Graph

Given any flow f , the residual capacity of the edge is

res(v ,w) = c(v ,w)− f (v ,w) ≥ 0.

Residual graph is a network R = (V ,ER) where ER

contains edges of non-zero residual capacity.

3

10

10

6

3

5

10

10

7

2

8

2

2

5

1

s

3 4

2

t20
14

-0
5-

02

CS 5114

Residual Graph

R is the network after f has been subtracted.
Saturated edges do not appear.
Some edges have larger capacity than in G.

Observations

1 Any flow in R can be added to F to obtain a larger flow
in G.

2 In fact, a max flow f ′ in R plus the flow f (written f + f ′) is
a max flow in G.

3 Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

I Such a path is called an augmenting path.
I For example, the path

s,1,2, t

can carry a flow of 2 units = c(1,2).

CS 5114: Theory of Algorithms Spring 2014 240 / 418

Observations

1 Any flow in R can be added to F to obtain a larger flow
in G.

2 In fact, a max flow f ′ in R plus the flow f (written f + f ′) is
a max flow in G.

3 Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

I Such a path is called an augmenting path.
I For example, the path

s,1,2, t

can carry a flow of 2 units = c(1,2).

20
14

-0
5-

02

CS 5114

Observations

no notes

Max-flow Min-cut Theorem

The following are equivalent:
(i) f is a max flow.
(ii) f has no augmenting path in R.
(iii) |f | = c(X ,X ′) for some min cut (X ,X ′).

Proof:
(i)⇒ (ii):

If f has an augmenting path, then f is not a max flow.

CS 5114: Theory of Algorithms Spring 2014 241 / 418

Max-flow Min-cut Theorem

The following are equivalent:
(i) f is a max flow.
(ii) f has no augmenting path in R.
(iii) |f | = c(X ,X ′) for some min cut (X ,X ′).

Proof:
(i)⇒ (ii):

If f has an augmenting path, then f is not a max flow.20
14

-0
5-

02

CS 5114

Max-flow Min-cut Theorem

no notes

Max-flow Min-cut Theorem (2)

(ii)⇒ (iii):
Suppose f has no augmenting path in R.
Let X be the subset of V reachable from s and
X ′ = V − X .
Then s ∈ X , t ∈ X ′, so (X ,X ′) is a cut.
∀v ∈ X ,w ∈ X ′, res(v ,w) = c(v ,w)− f (v ,w) = 0.
f (X ,X ′) =

∑
v∈X ,w∈X ′ f (v ,w) =∑

v∈X ,w∈X ′ c(v ,w) = c(X ,X ′).
By Lemma, |f | = c(X ,X ′) and (X ,X ′) is a min cut.

CS 5114: Theory of Algorithms Spring 2014 242 / 418

Max-flow Min-cut Theorem (2)

(ii)⇒ (iii):
Suppose f has no augmenting path in R.
Let X be the subset of V reachable from s and
X ′ = V − X .
Then s ∈ X , t ∈ X ′, so (X ,X ′) is a cut.
∀v ∈ X ,w ∈ X ′, res(v ,w) = c(v ,w)− f (v ,w) = 0.
f (X ,X ′) =

∑
v∈X ,w∈X ′ f (v ,w) =∑

v∈X ,w∈X ′ c(v ,w) = c(X ,X ′).
By Lemma, |f | = c(X ,X ′) and (X ,X ′) is a min cut.20

14
-0

5-
02

CS 5114

Max-flow Min-cut Theorem (2)

Line 4: Because no augmenting path.
Line 5: Because we know the residuals are all 0.

In other words, look at the capacity of G at the cut separating s
from t in the residual graph. This must be a min cut (for G) with
capacity |f |.

Max-flow Min-cut Theorem (3)

(iii)⇒ (i)
Let f be a flow such that |f | = c(X ,X ′) for some (min)
cut (X ,X ′).
By Lemma, all flows f ′ satisfy |f ′| ≤ c(X ,X ′) = |f |.

Thus, f is a max flow.

CS 5114: Theory of Algorithms Spring 2014 243 / 418

Max-flow Min-cut Theorem (3)

(iii)⇒ (i)
Let f be a flow such that |f | = c(X ,X ′) for some (min)
cut (X ,X ′).
By Lemma, all flows f ′ satisfy |f ′| ≤ c(X ,X ′) = |f |.

Thus, f is a max flow.

20
14

-0
5-

02

CS 5114

Max-flow Min-cut Theorem (3)

no notes

Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a
min cut.
This suggests a strategy for finding a max flow.

R = G; f = 0;
repeat
find a path from s to t in R;
augment along path to get a larger flow f;
update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.

CS 5114: Theory of Algorithms Spring 2014 244 / 418

Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a
min cut.
This suggests a strategy for finding a max flow.

R = G; f = 0;
repeat

find a path from s to t in R;
augment along path to get a larger flow f;
update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.

20
14

-0
5-

02

CS 5114

Max-flow Min-cut Corollary

Problem with Ford-Fulkerson:
Draw graph with nodes nodes s, t, a, and b. Flow from S to a
and b is M, flow from a and b to t is M, flow from a to b is 1.

Now, pick s-a-b-t.
Then s-b-a-t. (reverse 1 unit of flow).
Repeat M times.
M is unrelated to the size of V, E, so this is potentially
exponential.

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of
edges.

Performance: O(|V |3).

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

CS 5114: Theory of Algorithms Spring 2014 245 / 418

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of
edges.

Performance: O(|V |3).

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

20
14

-0
5-

02

CS 5114

Edmonds-Karp Algorithm

no notes

Geometric Algorithms

Potentially large set of objects to manipulate.
Possibly millions of points, lines, squares, circles.
Efficiency is crucial.

Computational Geometry
Will concentrate on discrete algorithms – 2D

Practical considerations
Special cases
Numeric stability

CS 5114: Theory of Algorithms Spring 2014 246 / 418

Geometric Algorithms

Potentially large set of objects to manipulate.
Possibly millions of points, lines, squares, circles.
Efficiency is crucial.

Computational Geometry
Will concentrate on discrete algorithms – 2D

Practical considerations
Special cases
Numeric stability

20
14

-0
5-

02

CS 5114

Geometric Algorithms

Same principles often apply to 3D, but it may be more
complicated.
We will avoid continuous problems such as polygon
intersection.

Special cases: Geometric programming is much like other
programming in this sense. But there are a LOT of special
cases! Co-point, co-linear, co-planar, horizontal, vertical, etc.

Numeric stability: Each intersection point in a cascade of
intersections might require increasing precision to represent the
computed intersection, even when the point coordinates start
as integers. Floating point causes problems!

Definitions

A point is represented by a pair of coordinates (x , y).
A line is represented by distinct points p and q.

I Manber’s notation: −p − q−.
A line segment is also represented by a pair of distinct
points: the endpoints.

I Notation: p − q.
A path P is a sequence of points p1,p2, · · · ,pn and the
line segments p1 − p2,p2 − p3, · · · ,pn−1 − pn connecting
them.
A closed path has p1 = pn. This is also called a
polygon.

I Points ≡ vertices.
I A polygon is a sequence of points, not a set.

CS 5114: Theory of Algorithms Spring 2014 247 / 418

Definitions

A point is represented by a pair of coordinates (x , y).
A line is represented by distinct points p and q.

I Manber’s notation: −p − q−.
A line segment is also represented by a pair of distinct
points: the endpoints.

I Notation: p − q.
A path P is a sequence of points p1,p2, · · · ,pn and the
line segments p1 − p2,p2 − p3, · · · ,pn−1 − pn connecting
them.
A closed path has p1 = pn. This is also called a
polygon.

I Points ≡ vertices.
I A polygon is a sequence of points, not a set.

20
14

-0
5-

02

CS 5114

Definitions

Line alternate representation: slope and intercept.
For polygons, order matters. A left-handed and right-handed
triangle are not the same even if they occupy the same space.

Definitions (cont)

Simple Polygon: The corresponding path does not
intersect itself.

I A simple polygon encloses a region of the plane INSIDE
the polygon.

Basic operations, assumed to be computed in constant
time:

I Determine intersection point of two line segments.
I Determine which side of a line that a point lies on.
I Determine the distance between two points.

CS 5114: Theory of Algorithms Spring 2014 248 / 418

Definitions (cont)

Simple Polygon: The corresponding path does not
intersect itself.

I A simple polygon encloses a region of the plane INSIDE
the polygon.

Basic operations, assumed to be computed in constant
time:

I Determine intersection point of two line segments.
I Determine which side of a line that a point lies on.
I Determine the distance between two points.20

14
-0

5-
02

CS 5114

Definitions (cont)

no notes

Point in Polygon

Problem: Given a simple polygon P and a point q,
determine whether q is inside or outside P.

Basic approach:
Cast a ray from q to outside P. Call this L.
Count the number of intersections between L and the
edges of P.
If count is even, then q is outside. Else, q is inside.

Problems:
How to find intersections?
Accuracy of calculations.
Special cases.

CS 5114: Theory of Algorithms Spring 2014 249 / 418

Point in Polygon

Problem: Given a simple polygon P and a point q,
determine whether q is inside or outside P.

Basic approach:
Cast a ray from q to outside P. Call this L.
Count the number of intersections between L and the
edges of P.
If count is even, then q is outside. Else, q is inside.

Problems:
How to find intersections?
Accuracy of calculations.
Special cases.

20
14

-0
5-

02

CS 5114

Point in Polygon

Special cases:

• Line intersects polygon at a vertex, goes in to out.

• Line intersects poly. at inflection point (stays in or stays out).

• Line intersects polygon through a line.

Simplify calculations by making line horizontal.

Accuracy of calculations is not a problem with integer
coordinates for points and a horizontal line. But think about
representing the intersection point for two arbitrary line
segements (from a polygon intersection operation). Cascading
intersections can lead to ever-increasing demand for precision
in coordinate representation.

Point in Polygon Analysis (1)

Time complexity:
Compare the ray to each edge.
Each intersection takes constant time.
Running time is O(n).

Improving efficiency:
O(n) is best possible for problem as stated.
Many lines are “obviously” not intersected.

CS 5114: Theory of Algorithms Spring 2014 250 / 418

Point in Polygon Analysis (1)

Time complexity:
Compare the ray to each edge.
Each intersection takes constant time.
Running time is O(n).

Improving efficiency:
O(n) is best possible for problem as stated.
Many lines are “obviously” not intersected.20

14
-0

5-
02

CS 5114

Point in Polygon Analysis (1)

no notes

Point in Polygon Analysis (2)

Two general principles for geometrical and graphical
algorithms:

1 Operational (constant time) improvements:
I Only do full calculation for ‘good’ candidates
I Perform ‘fast checks’ to eliminate edges.
I Ex: If p1.y > q.y and p2.y > q.y then don’t bother to do

full intersection calculation.
2 When doing many point-in-polygon operations,

preprocessing may be worthwhile.
I Ex: Sort edges by min and max y values.

Only check for edges covering y value of point q.

CS 5114: Theory of Algorithms Spring 2014 251 / 418

Point in Polygon Analysis (2)

Two general principles for geometrical and graphical
algorithms:

1 Operational (constant time) improvements:
I Only do full calculation for ‘good’ candidates
I Perform ‘fast checks’ to eliminate edges.
I Ex: If p1.y > q.y and p2.y > q.y then don’t bother to do

full intersection calculation.
2 When doing many point-in-polygon operations,

preprocessing may be worthwhile.
I Ex: Sort edges by min and max y values.

Only check for edges covering y value of point q.

20
14

-0
5-

02

CS 5114

Point in Polygon Analysis (2)

Spatial data structures can help.

“Fast checks” take time. When they “win” (they rule something
out), they save time. When they “lose” (they fail to rule
something out) they add extra time. So they have to “win” often
enough so that the time savings outweighs the cost of the
check.

Constructing Simple Polygons

Problem: Given a set of points, connect them with a simple
closed path.

Approaches:
1 Randomly select points.
2 Use a scan line:

I Sort points by y value.
I Connect in sorted order.

3 Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.

I Simplifying assumption: The scan line hits one point at a
time.

I Do a rotating scan through points, connecting as you go.

CS 5114: Theory of Algorithms Spring 2014 252 / 418

Constructing Simple Polygons

Problem: Given a set of points, connect them with a simple
closed path.

Approaches:
1 Randomly select points.
2 Use a scan line:

I Sort points by y value.
I Connect in sorted order.

3 Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.

I Simplifying assumption: The scan line hits one point at a
time.

I Do a rotating scan through points, connecting as you go.

20
14

-0
5-

02

CS 5114

Constructing Simple Polygons

(1) Could easily yield an intersection.

(2) The problem is connecting point pn back to p1. This could
yield an intersection.

Simplifying assumption is that the points are not colinear w.r.t.
the scan line.

See Manber Figure 8.6.

Validation

Theorem: Connecting points in the order in which they are
encountered by the rotating scan line creates a simple
polygon.

Proof:
Denote the points p1, · · · ,pn by the order in which they
are encountered by the scan line.
For all i , 1 ≤ i < n, edge pi − pi+1 is in a distinct slice of
the circle formed by a rotation of the scan line.
Thus, edge pi − pi+1 does not intersect any other edge.
Exception: If the angle between points pi and pi+1 is
greater than 180◦.

CS 5114: Theory of Algorithms Spring 2014 253 / 418

Validation

Theorem: Connecting points in the order in which they are
encountered by the rotating scan line creates a simple
polygon.

Proof:
Denote the points p1, · · · ,pn by the order in which they
are encountered by the scan line.
For all i , 1 ≤ i < n, edge pi − pi+1 is in a distinct slice of
the circle formed by a rotation of the scan line.
Thus, edge pi − pi+1 does not intersect any other edge.
Exception: If the angle between points pi and pi+1 is
greater than 180◦.

20
14

-0
5-

02

CS 5114

Validation

So, the key is to pick a point for the center of the rotating scan
that guarentees that the angle never reachese 180◦.

Implementation

How do we find the point for the scanline center?

Actually, we don’t care about angle – slope will do.

Select z;
for (i = 2 to n)

compute the slope of line z − pi .
Sort points pi by slope;
label points in sorted order;

Time complexity: Dominated by sort.
CS 5114: Theory of Algorithms Spring 2014 254 / 418

Implementation

How do we find the point for the scanline center?

Actually, we don’t care about angle – slope will do.

Select z;
for (i = 2 to n)

compute the slope of line z − pi .
Sort points pi by slope;
label points in sorted order;

Time complexity: Dominated by sort.

20
14

-0
5-

02

CS 5114

Implementation

Pick as z the point with greatest x value (and least y value if
there is a tie). See Manber Figure 8.7.

The next point is the next largest angle between z − pi and the
vertical line through z. It is important to use the slope, because
then our computation is a constant-time operation with no
transendental functions.

z is the point with greatest x value (minimum y in case of tie)

So, time is Θ(n log n)

Convex Hull

A convex hull is a polygon such that any line segment
connecting two points inside the polygon is itself entirely
inside the polygon.
A convex path is a path of points p1,p2, · · · ,pn such
that connecting p1 and pn results in a convex polygon.
The convex hull for a set of points is the smallest convex
polygon enclosing all the points.

I imagine placing a tight rubberband around the points.

The point belongs to the hull if it is a vertex of the hull.
Problem: Compute the convex hull of n points.

CS 5114: Theory of Algorithms Spring 2014 255 / 418

Convex Hull

A convex hull is a polygon such that any line segment
connecting two points inside the polygon is itself entirely
inside the polygon.
A convex path is a path of points p1,p2, · · · ,pn such
that connecting p1 and pn results in a convex polygon.
The convex hull for a set of points is the smallest convex
polygon enclosing all the points.

I imagine placing a tight rubberband around the points.

The point belongs to the hull if it is a vertex of the hull.
Problem: Compute the convex hull of n points.20

14
-0

5-
02

CS 5114

Convex Hull

no notes

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

1 nth point is inside the hull.
I No change.

2 nth point is outside the convex hull
I “Stretch” hull to include the point (dropping other points).

CS 5114: Theory of Algorithms Spring 2014 256 / 418

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

1 nth point is inside the hull.
I No change.

2 nth point is outside the convex hull
I “Stretch” hull to include the point (dropping other points).

20
14

-0
5-

02

CS 5114

Simple Convex Hull Algorithm

See Manber Figure 8.9.

Subproblems (1)

Potential problems as we process points:
1 Determine if point is inside convex hull.
2 Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point – some sort of min or max point.

If we always pick the point with max x , what problem is
eliminated?
Stretch:

1 Find vertices to eliminate
2 Add new vertex between existing vertices.

CS 5114: Theory of Algorithms Spring 2014 257 / 418

Subproblems (1)

Potential problems as we process points:
1 Determine if point is inside convex hull.
2 Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point – some sort of min or max point.

If we always pick the point with max x , what problem is
eliminated?
Stretch:

1 Find vertices to eliminate
2 Add new vertex between existing vertices.

20
14

-0
5-

02

CS 5114

Subproblems (1)

Why? Lots of points don’t affect the hull, and stretching is
expensive.

Subproblem 1 can be eliminated: the max is always outside the
polygon.

Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point q.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.

CS 5114: Theory of Algorithms Spring 2014 258 / 418

Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point q.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.20

14
-0

5-
02

CS 5114

Subproblems (2)

“Min” and “max” with respect to the angle formed by the
supporting lines.

Sorted-Order Algorithm

set convex hull to be p1,p2,p3;
for q = 4 to n {

order points on hull with respect to pq;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

}

CS 5114: Theory of Algorithms Spring 2014 259 / 418

Sorted-Order Algorithm

set convex hull to be p1,p2,p3;
for q = 4 to n {

order points on hull with respect to pq;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

}20
14

-0
5-

02

CS 5114

Sorted-Order Algorithm

Sort by x value.

Time complexity

Sort by x value: O(n log n).

For qth point:
Compute angles: O(q)

Find max and min: O(q)

Delete and insert points: O(q).

T (n) = T (n − 1) + O(n) = O(n2)

CS 5114: Theory of Algorithms Spring 2014 260 / 418

Time complexity

Sort by x value: O(n log n).

For qth point:
Compute angles: O(q)

Find max and min: O(q)

Delete and insert points: O(q).

T (n) = T (n − 1) + O(n) = O(n2)20
14

-0
5-

02

CS 5114

Time complexity

no notes

Gift Wrapping Concept

Straightforward algorithm has inefficiencies.
Alternative: Consider the whole set and build hull
directly.
Approach:

I Find an extreme point as start point.
I Find a supporting line.
I Use the vertex on the supporting line as the next start

point and continue around the polygon.
Corresponding Induction Hypothesis:

I Given a set of n points, we can find a convex path of
length k < n that is part of the convex hull.

The induction step extends the PATH, not the hull.

CS 5114: Theory of Algorithms Spring 2014 261 / 418

Gift Wrapping Concept

Straightforward algorithm has inefficiencies.
Alternative: Consider the whole set and build hull
directly.
Approach:

I Find an extreme point as start point.
I Find a supporting line.
I Use the vertex on the supporting line as the next start

point and continue around the polygon.
Corresponding Induction Hypothesis:

I Given a set of n points, we can find a convex path of
length k < n that is part of the convex hull.

The induction step extends the PATH, not the hull.

20
14

-0
5-

02

CS 5114

Gift Wrapping Concept

Straightforward algorithm spends time to build convex hull with
points interior to final convex hull.

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P;

P = ∅;
Point p = the point in S with largest x coordinate;
P = P ∪ p;
Line L = the vertical line containing p;
while (P is not complete) do {

Point q = the point in S such that angle between line
−p − q− and L is minimal along all points;

P = P ∪ q;
L = −p − q−;
p = q;

}
}

CS 5114: Theory of Algorithms Spring 2014 262 / 418

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P;

P = ∅;
Point p = the point in S with largest x coordinate;
P = P ∪ p;
Line L = the vertical line containing p;
while (P is not complete) do {

Point q = the point in S such that angle between line
−p − q− and L is minimal along all points;

P = P ∪ q;
L = −p − q−;
p = q;

}
}

20
14

-0
5-

02

CS 5114

Gift Wrapping Algorithm

no notes

Gift Wrapping Analysis

Complexity:
To add k th point, find the min angle among n − k lines.
Do this h times (for h the number of points on hull).
Often good in average case.
Could be bad in worst case.

CS 5114: Theory of Algorithms Spring 2014 263 / 418

Gift Wrapping Analysis

Complexity:
To add k th point, find the min angle among n − k lines.
Do this h times (for h the number of points on hull).
Often good in average case.
Could be bad in worst case.

20
14

-0
5-

02

CS 5114

Gift Wrapping Analysis

O(n2). Actually, O(hn) where h is the number of edges to hull.

Graham’s Scan

Approach:
I Start with the points ordered with respect to some

maximal point.
I Process these points in order, adding them to the set of

processed points and its convex hull.
I Like straightforward algorithm, but pick better order.

Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.
Process points in this order, maintaining the convex hull
of points seen so far.

CS 5114: Theory of Algorithms Spring 2014 264 / 418

Graham’s Scan

Approach:
I Start with the points ordered with respect to some

maximal point.
I Process these points in order, adding them to the set of

processed points and its convex hull.
I Like straightforward algorithm, but pick better order.

Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.
Process points in this order, maintaining the convex hull
of points seen so far.20

14
-0

5-
02

CS 5114

Graham’s Scan

See Manber Figure 8.11.

Graham’s Scan (cont)

Induction Hypothesis:
Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n − 1 points corresponding to the convex hull of the
n − 1 points.

Induction Step:
Add the k th point to the set.
Check the angle formed by pk ,pk−1,pk−2.
If angle < 180◦ with respect to inside of the polygon,
then delete pk−1 and repeat.

CS 5114: Theory of Algorithms Spring 2014 265 / 418

Graham’s Scan (cont)

Induction Hypothesis:
Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n − 1 points corresponding to the convex hull of the
n − 1 points.

Induction Step:
Add the k th point to the set.
Check the angle formed by pk ,pk−1,pk−2.
If angle < 180◦ with respect to inside of the polygon,
then delete pk−1 and repeat.

20
14

-0
5-

02

CS 5114

Graham’s Scan (cont)

no notes

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p1 = the point in P with largest x coordinate;
P = SimplePolygon(P,p1); // Order points in P
Point q1 = p1;
Point q2 = p2;
Point q3 = p3;
int m = 3;
for (k = 4 to n) {

while (angle(−qm−1 − qm−, −qm − pk−) ≤ 180◦) do
m = m − 1;

m = m + 1;
qm = pk ;

}
}

CS 5114: Theory of Algorithms Spring 2014 266 / 418

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p1 = the point in P with largest x coordinate;
P = SimplePolygon(P,p1); // Order points in P
Point q1 = p1;
Point q2 = p2;
Point q3 = p3;
int m = 3;
for (k = 4 to n) {

while (angle(−qm−1 − qm−, −qm − pk−) ≤ 180◦) do
m = m − 1;

m = m + 1;
qm = pk ;

}
}

20
14

-0
5-

02

CS 5114

Graham’s Scan Algorithm

no notes

Graham’s Scan Analysis

Time complexity:
Other than Simple Polygon, all steps take O(n) time.
Thus, total cost is O(n log n).

CS 5114: Theory of Algorithms Spring 2014 267 / 418

Graham’s Scan Analysis

Time complexity:
Other than Simple Polygon, all steps take O(n) time.
Thus, total cost is O(n log n).

20
14

-0
5-

02

CS 5114

Graham’s Scan Analysis

no notes

Lower Bound for Computing Convex
Hull

Theorem: Sorting is transformable to the convex hull
problem in linear time.

Proof:
Given a number xi , convert it to point (xi , x2

i) in 2D.
All such points lie on the parabla y = x2.
The convex hull of this set of points will consist of a list
of the points sorted by x .

Corollary: A convex hull algorithm faster than O(n log n)
would provide a sorting algorithm faster than O(n log n).

CS 5114: Theory of Algorithms Spring 2014 268 / 418

Lower Bound for Computing Convex
Hull

Theorem: Sorting is transformable to the convex hull
problem in linear time.

Proof:
Given a number xi , convert it to point (xi , x2

i) in 2D.
All such points lie on the parabla y = x2.
The convex hull of this set of points will consist of a list
of the points sorted by x .

Corollary: A convex hull algorithm faster than O(n log n)
would provide a sorting algorithm faster than O(n log n).

20
14

-0
5-

02

CS 5114

Lower Bound for Computing Convex Hull

WARNING: These are the most important two slides of the
semester!

“Black Box” Model

A Sorting Algorithm:

keys→ points: O(n)

Convex Hull

CH Polygon→ Sorted Keys: O(n)

CS 5114: Theory of Algorithms Spring 2014 269 / 418

“Black Box” Model

A Sorting Algorithm:

keys→ points: O(n)

Convex Hull

CH Polygon→ Sorted Keys: O(n)

20
14

-0
5-

02

CS 5114

“Black Box” Model

This is the fundamental concept of a reduction. We will use this
constantly for the rest of the semester.

Closest Pair

Problem: Given a set of n points, find the pair whose
separation is the least.
Example of a proximity problem

I Make sure no two components in a computer chip are
too close.

Related problem:
I Find the nearest neighbor (or k nearest neighbors) for

every point.

Straightforward solution: Check distances for all pairs.
Induction Hypothesis: Can solve for n − 1 points.
Adding the nth point still requires comparing to all other
points, requiring O(n2) time.

CS 5114: Theory of Algorithms Spring 2014 270 / 418

Closest Pair

Problem: Given a set of n points, find the pair whose
separation is the least.
Example of a proximity problem

I Make sure no two components in a computer chip are
too close.

Related problem:
I Find the nearest neighbor (or k nearest neighbors) for

every point.

Straightforward solution: Check distances for all pairs.
Induction Hypothesis: Can solve for n − 1 points.
Adding the nth point still requires comparing to all other
points, requiring O(n2) time.

20
14

-0
5-

02

CS 5114

Closest Pair

Next try: Ordering the points by x value still doesn’t help.

Divide and Conquer Algorithm

Approach: Split into two equal size sets, solve for each,
and rejoin.
How to split?

I Want as much valid information as possible to result.

Try splitting into two disjoint parts separated by a
dividing plane.
Then, need only worry about points close to the dividing
plane when rejoining.
To divide: Sort by x value and split in the middle.

CS 5114: Theory of Algorithms Spring 2014 271 / 418

Divide and Conquer Algorithm

Approach: Split into two equal size sets, solve for each,
and rejoin.
How to split?

I Want as much valid information as possible to result.

Try splitting into two disjoint parts separated by a
dividing plane.
Then, need only worry about points close to the dividing
plane when rejoining.
To divide: Sort by x value and split in the middle.20

14
-0

5-
02

CS 5114

Divide and Conquer Algorithm

Assume n = 2k points.

Note: We will actually compute smallest distance, not pair of
points with smallest distance.

Closest Pair Algorithm

Induction Hypothesis:
We can solve closest pair for two sets of size n/2
named P1 and P2.

Let minimal distance in P1 be d1, and for P2 be d2.
Assume d1 ≤ d2.

Only points in the strip of width d1 to either side of the
dividing line need to be considered.

Worst case: All points are in the strip.

CS 5114: Theory of Algorithms Spring 2014 272 / 418

Closest Pair Algorithm

Induction Hypothesis:
We can solve closest pair for two sets of size n/2
named P1 and P2.

Let minimal distance in P1 be d1, and for P2 be d2.
Assume d1 ≤ d2.

Only points in the strip of width d1 to either side of the
dividing line need to be considered.

Worst case: All points are in the strip.

20
14

-0
5-

02

CS 5114

Closest Pair Algorithm

See Manber Figure 8.13

Closest Pair Algorithm (cont)

Observation:
A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d1 distance apart.

Sorting by y value limits the search required.

CS 5114: Theory of Algorithms Spring 2014 273 / 418

Closest Pair Algorithm (cont)

Observation:
A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d1 distance apart.

Sorting by y value limits the search required.

20
14

-0
5-

02

CS 5114

Closest Pair Algorithm (cont)

See Manber Figure 8.14

Closest Pair Algorithm Cost

O(n log n) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(n log n).

Scan points in strip, comparing against the other strip: O(n).

T (n) = 2T (n/2) + O(n log n).

T (n) = O(n log2 n).

CS 5114: Theory of Algorithms Spring 2014 274 / 418

Closest Pair Algorithm Cost

O(n log n) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(n log n).

Scan points in strip, comparing against the other strip: O(n).

T (n) = 2T (n/2) + O(n log n).

T (n) = O(n log2 n).

20
14

-0
5-

02

CS 5114

Closest Pair Algorithm Cost

no notes

A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets – an O(n) step.

T (n) = 2T (n/2) + O(n).
T (n) = O(n log n).

CS 5114: Theory of Algorithms Spring 2014 275 / 418

A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets – an O(n) step.

T (n) = 2T (n/2) + O(n).
T (n) = O(n log n).

20
14

-0
5-

02

CS 5114

A Faster Algorithm

no notes

Horizontal and Vertical Segments

Intersection Problems:
I Detect if any intersections ...
I Report any intersections ...

... of a set of <line segments>.
We can simplify the problem by restricting to vertical
and horizontal line segments.
Example applications:

I Determine if wires or components of a VLSI design
cross.

I Determine if they are too close.
F Solution: Expand by 1/2 the tolerance distance and

check for intersection.
I Hidden line/hidden surface elimination for Computer

Graphics.
CS 5114: Theory of Algorithms Spring 2014 276 / 418

Horizontal and Vertical Segments

Intersection Problems:
I Detect if any intersections ...
I Report any intersections ...

... of a set of <line segments>.
We can simplify the problem by restricting to vertical
and horizontal line segments.
Example applications:

I Determine if wires or components of a VLSI design
cross.

I Determine if they are too close.
F Solution: Expand by 1/2 the tolerance distance and

check for intersection.
I Hidden line/hidden surface elimination for Computer

Graphics.

20
14

-0
5-

02

CS 5114

Horizontal and Vertical Segments

no notes

Sweep Line Algorithms (1)

Problem: Given a set of n horizontal and m vertical line
segments, find all intersections between them.

Assume no intersections between 2 vertical or 2
horizontal lines.

Straightforward algorithm: Make all n ×m comparisons.

If there are n ×m intersections, this cannot be avoided.

However, we would like to do better when there are fewer
intersections.

Solution: Special order of induction will be imposed by a
sweep line.

CS 5114: Theory of Algorithms Spring 2014 277 / 418

Sweep Line Algorithms (1)

Problem: Given a set of n horizontal and m vertical line
segments, find all intersections between them.

Assume no intersections between 2 vertical or 2
horizontal lines.

Straightforward algorithm: Make all n ×m comparisons.

If there are n ×m intersections, this cannot be avoided.

However, we would like to do better when there are fewer
intersections.

Solution: Special order of induction will be imposed by a
sweep line.

20
14

-0
5-

02

CS 5114

Sweep Line Algorithms (1)

This is a “classic” computational geometry problem/algorithm

Sweep Line Algorithms (2)

Plane sweep or sweep line algorithms pass an imaginary
line through the set of objects.

As objects are encountered, they are stored in a data
structure.

When the sweep passes, they are removed.

Preprocessing Step:
Sort all line segments by x coordinate.

CS 5114: Theory of Algorithms Spring 2014 278 / 418

Sweep Line Algorithms (2)

Plane sweep or sweep line algorithms pass an imaginary
line through the set of objects.

As objects are encountered, they are stored in a data
structure.

When the sweep passes, they are removed.

Preprocessing Step:
Sort all line segments by x coordinate.20

14
-0

5-
02

CS 5114

Sweep Line Algorithms (2)

The induction here is to add a special nth element.

Sweep Line Algorithms (3)

Inductive approach:
We have already processed the first k − 1 end points
when we encounter endpoint k .
Furthermore, we store necessary information about the
previous line segments to efficiently calculate
intersections with the line for point k .

Possible approaches:
1 Store vertical lines, calculate intersection for horizontal

lines.
2 Store horizontal lines, calculate intersection for vertical

lines.
CS 5114: Theory of Algorithms Spring 2014 279 / 418

Sweep Line Algorithms (3)

Inductive approach:
We have already processed the first k − 1 end points
when we encounter endpoint k .
Furthermore, we store necessary information about the
previous line segments to efficiently calculate
intersections with the line for point k .

Possible approaches:
1 Store vertical lines, calculate intersection for horizontal

lines.
2 Store horizontal lines, calculate intersection for vertical

lines.

20
14

-0
5-

02

CS 5114

Sweep Line Algorithms (3)

Since we processed by x coordinate (i.e., sweeping
horizontally) do (2). When we process a vertical line, it is clear
which horizontal lines would be relevent (the ones that cross
that include the x coordinate of the vertical line), and so could
hope to find them in a data structure. If we stored vertical lines,
when we process the next horizontal line, it is not so obvious
how to find all vertical lines in the horizontal range.

Organizing Sweep Info

What do we need when encountering line L?
NOT horizontal lines whose right endpoint is to the left
of L.
Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:
Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k .x , and to eliminate horizontal
lines to the left of k .

CS 5114: Theory of Algorithms Spring 2014 280 / 418

Organizing Sweep Info

What do we need when encountering line L?
NOT horizontal lines whose right endpoint is to the left
of L.
Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:
Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k .x , and to eliminate horizontal
lines to the left of k .

20
14

-0
5-

02

CS 5114

Organizing Sweep Info

See Figure 8.17 in Manber.

y coordinates of the active horizontal lines.

Sweep Line Tasks

Things to do:
1 (k + 1)th endpoint is right endpoint of horizontal line.

I Delete horizontal line.
2 (k + 1)th endpoint is left endpoint of horizontal line.

I Insert horizontal line.
3 (k + 1)th endpoint is vertical line.

I Find intersections with stored horizontal lines.

CS 5114: Theory of Algorithms Spring 2014 281 / 418

Sweep Line Tasks

Things to do:
1 (k + 1)th endpoint is right endpoint of horizontal line.

I Delete horizontal line.
2 (k + 1)th endpoint is left endpoint of horizontal line.

I Insert horizontal line.
3 (k + 1)th endpoint is vertical line.

I Find intersections with stored horizontal lines.

20
14

-0
5-

02

CS 5114

Sweep Line Tasks

Deleting horizontal line is O(log n).

Inserting horizontal line is O(log n).

Finding intersections is O(log n + r) for r intersections.

Data Structure Requirements (1)

To have an efficient algorithm, we need efficient
Intersection
Deletion
1 dimensional range query

Example solution: Balanced search tree
Insert, delete, locate in log n time.
Each additional intersection calculation is of constant
cost beyond first (traversal of tree).

CS 5114: Theory of Algorithms Spring 2014 282 / 418

Data Structure Requirements (1)

To have an efficient algorithm, we need efficient
Intersection
Deletion
1 dimensional range query

Example solution: Balanced search tree
Insert, delete, locate in log n time.
Each additional intersection calculation is of constant
cost beyond first (traversal of tree).20

14
-0

5-
02

CS 5114

Data Structure Requirements (1)

no notes

Data Structure Requirements (2)

Time complexity:
Sort by x : O((m + n) log(m + n)).
Each insert/delete: O(log n).
Total cost is O(n log n) for horizontal lines.

Processing vertical lines includes one-dimensional range
query:

O(log n + r) where r is the number of intersections for
this line.

Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.

CS 5114: Theory of Algorithms Spring 2014 283 / 418

Data Structure Requirements (2)

Time complexity:
Sort by x : O((m + n) log(m + n)).
Each insert/delete: O(log n).
Total cost is O(n log n) for horizontal lines.

Processing vertical lines includes one-dimensional range
query:

O(log n + r) where r is the number of intersections for
this line.

Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.

20
14

-0
5-

02

CS 5114

Data Structure Requirements (2)

no notes

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

CS 5114: Theory of Algorithms Spring 2014 284 / 418

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

20
14

-0
5-

02

CS 5114

Reductions

This example we have already seen.

NOT reduce CH to sorting – that just means that we can make
CH as hard as sorting! Using sorting isn’t necessarily the only
way to solve the CH problem, perhaps there is a better way. So
just knowing that sorting is ONE WAY to solve CH doesn’t tell
us anything about the cost of CH. On the other hand, by
showing that we can use CH as a tool to solve sorting, we know
that CH cannot be faster than sorting.

Reduction Notation

We denote names of problems with all capital letters.
I Ex: SORTING, CONVEX HULL

What is a problem?
I A relation consisting of ordered pairs (I, SLN).
I I comes from the set of instances (allowed inputs).
I SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

I Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.

CS 5114: Theory of Algorithms Spring 2014 285 / 418

Reduction Notation

We denote names of problems with all capital letters.
I Ex: SORTING, CONVEX HULL

What is a problem?
I A relation consisting of ordered pairs (I, SLN).
I I comes from the set of instances (allowed inputs).
I SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

I Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.20
14

-0
5-

02

CS 5114

Reduction Notation

no notes

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

CS 5114: Theory of Algorithms Spring 2014 286 / 418

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

20
14

-0
5-

02

CS 5114

Black Box Reduction (1)

no notes

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.

CS 5114: Theory of Algorithms Spring 2014 287 / 418

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.20
14

-0
5-

02

CS 5114

Black Box Reduction (2)

no notes

Black Box Diagram

I

I’

Problem A:

Problem B

SLN

Transform 2

Transform 1

SLN’

CS 5114: Theory of Algorithms Spring 2014 288 / 418

Black Box Diagram

I

I’

Problem A:

Problem B

SLN

Transform 2

Transform 1

SLN’

20
14

-0
5-

02

CS 5114

Black Box Diagram

no notes

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

CS 5114: Theory of Algorithms Spring 2014 289 / 418

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

20
14

-0
5-

02

CS 5114

More Notation

Sorting is no harder than Convex Hull. Conversely, Convex Hull
is at least as hard as Sorting.

If T or T’ is expensive, then we have proved nothing about the
relative bounds.

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

CS 5114: Theory of Algorithms Spring 2014 290 / 418

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

20
14

-0
5-

02

CS 5114

Reduction Example

no notes

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.

CS 5114: Theory of Algorithms Spring 2014 291 / 418

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.20
14

-0
5-

02

CS 5114

Notation Warning

no notes

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

CS 5114: Theory of Algorithms Spring 2014 292 / 418

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

20
14

-0
5-

02

CS 5114

Bounds Theorems

Notice o, not O.So, given good transformations, both problems
take at least Ω(P1) and at most O(P2).

System of Distinct Representatives
(SDR)

Instance: Sets S1,S2, · · · ,Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1,2,4}, {2,3}, {1,3,4}.
Solution: R = {1,2,3,4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1,S2, · · · ,Sk of SDR, transform it
to an instance G = (U,V ,E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1,S2, · · · ,Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

CS 5114: Theory of Algorithms Spring 2014 293 / 418

System of Distinct Representatives
(SDR)

Instance: Sets S1,S2, · · · ,Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1,2,4}, {2,3}, {1,3,4}.
Solution: R = {1,2,3,4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1,S2, · · · ,Sk of SDR, transform it
to an instance G = (U,V ,E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1,S2, · · · ,Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

20
14

-0
5-

02

CS 5114

System of Distinct Representatives (SDR)

Since it is a set, there are no duplicates.

Or, R = {1,4,2,3}

U is the sets.
V is the elements from all of the sets (union the sets).
E matches elements to sets.

SDR Example

{1} 1

{1,2,4} 2

{2,3} 3

{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

CS 5114: Theory of Algorithms Spring 2014 294 / 418

SDR Example

{1} 1

{1,2,4} 2

{2,3} 3

{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

20
14

-0
5-

02

CS 5114

SDR Example

Need better figure here.

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

I In linear time, find M = max |xi |.
I Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,
√

M2 − x2
i), · · · , (xn,

√
M2 − x2

n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

CS 5114: Theory of Algorithms Spring 2014 295 / 418

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

I In linear time, find M = max |xi |.
I Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,
√

M2 − x2
i), · · · , (xn,

√
M2 − x2

n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

20
14

-0
5-

02

CS 5114

Simple Polygon Lower Bound (1)

Need a figure here showing the curve.

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.
By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

CS 5114: Theory of Algorithms Spring 2014 296 / 418

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.
By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

20
14

-0
5-

02

CS 5114

Simple Polygon Lower Bound (2)

no notes

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.[
0 A

AT 0

] [
0 BT

B 0

]
=

[
AB 0
0 AT BT

]
CS 5114: Theory of Algorithms Spring 2014 297 / 418

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.[
0 A

AT 0

] [
0 BT

B 0

]
=

[
AB 0
0 AT BT

]20
14

-0
5-

02

CS 5114

Matrix Multiplication

Clearly SYM is not harder than MM. Is it easier? No...

So, having a good SYM would give a good MM. The other way
of looking at it is that SYM is just as hard as MM.

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[
0 A
B 0

]2

=

[
AB 0
0 BA

]

CS 5114: Theory of Algorithms Spring 2014 298 / 418

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[
0 A
B 0

]2

=

[
AB 0
0 BA

]

20
14

-0
5-

02

CS 5114

Matrix Squaring

no notes

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.

CS 5114: Theory of Algorithms Spring 2014 299 / 418

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.20
14

-0
5-

02

CS 5114

Linear Programming (LP)

Example of a “super problem” that many problems can reduce
to.

Objective function defeinse what we want to minimize.

Ai is a vector – k vectors give the k b’s.

Not all of the constraint types are used for every problem.

Use of LP

Reasons for considering LP:
Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

CS 5114: Theory of Algorithms Spring 2014 300 / 418

Use of LP

Reasons for considering LP:
Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

20
14

-0
5-

02

CS 5114

Use of LP

no notes

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize ∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .∑
Z (V)

xi −
∑
Y (V)

xi = 0.

CS 5114: Theory of Algorithms Spring 2014 301 / 418

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize ∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .∑
Z (V)

xi −
∑
Y (V)

xi = 0.

20
14

-0
5-

02

CS 5114

Network Flow Reduction (1)

Obviously, maximize the objective function by maximizing the
Xi ’s!! But we can’t do that arbirarily because of the constraints.

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4
x2 ≤ 3
x3 ≤ 2
x4 ≤ 5
x5 ≤ 7

x1 + x3 − x2 = 0
x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 0

CS 5114: Theory of Algorithms Spring 2014 302 / 418

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4
x2 ≤ 3
x3 ≤ 2
x4 ≤ 5
x5 ≤ 7

x1 + x3 − x2 = 0
x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 020
14

-0
5-

02

CS 5114

Network Flow Reduction (2)

Need graph:
Vertices: s, a, b, t.

Edges:

• s→ a with capacity c1 = 4.

• a→ t with capacity c2 = 3.

• a→ b with capacity c3 = 2.

• s→ b with capacity c4 = 5.

• b→ t with capacity c5 = 7.

Matching

Start with graph G = (V ,E).
Let x1, x2, · · · , xn represent the edges in E .

I xi = 1 means edge i is matched.
Objective function: Maximize

n∑
i=1

xi .

subject to: (Let N(v) denote edges incident on v)∑
N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

CS 5114: Theory of Algorithms Spring 2014 303 / 418

Matching

Start with graph G = (V ,E).
Let x1, x2, · · · , xn represent the edges in E .

I xi = 1 means edge i is matched.
Objective function: Maximize

n∑
i=1

xi .

subject to: (Let N(v) denote edges incident on v)∑
N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

20
14

-0
5-

02

CS 5114

Matching

no notes

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

CS 5114: Theory of Algorithms Spring 2014 304 / 418

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

20
14

-0
5-

02

CS 5114

Summary

no notes

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

CS 5114: Theory of Algorithms Spring 2014 305 / 418

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

20
14

-0
5-

02

CS 5114

Summary of Reduction

no notes

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!

CS 5114: Theory of Algorithms Spring 2014 306 / 418

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!20
14

-0
5-

02

CS 5114

Another Warning

no notes

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS
CS 5114: Theory of Algorithms Spring 2014 307 / 418

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS

20
14

-0
5-

02

CS 5114

Common Problems used in Reductions

no notes

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

CS 5114: Theory of Algorithms Spring 2014 308 / 418

Tractable Problems
We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)

20
14

-0
5-

02

CS 5114

Tractable Problems

Log-polynomial is O(n log n)

Like any simple rule of thumb for catagorizing, in some cases
the distinction between polynomial and exponential could break
down. For example, one can argue that, for practical problems,
1.01n is preferable to n25. But the reality is that very few
polynomial-time algorithms have high degree, and
exponential-time algorithms nearly always have a constant of 2
or greater. Nearly all algorithms are either low-degree
polynomials or “real” exponentials, with very little in between.

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

CS 5114: Theory of Algorithms Spring 2014 309 / 418

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.

20
14

-0
5-

02

CS 5114

Tractable Problems (cont)

no notes

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

CS 5114: Theory of Algorithms Spring 2014 310 / 418

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
Usually formulated as a question.

Example:
Instance: A weighted graph G = (V ,E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”

20
14

-0
5-

02

CS 5114

Decision Problems

Need a graph here.

Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 311 / 418

Decision Problems (cont)

Can also be formulated as a language recognition problem:
Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

20
14

-0
5-

02

CS 5114

Decision Problems (cont)

Following our graph example: It is possible to translate from a
graph to a string representation, and to define a subset of such
strings as corresponding to graphs with a path from s to t . This
subset defines a language to “recognize.”

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

CS 5114: Theory of Algorithms Spring 2014 312 / 418

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.

20
14

-0
5-

02

CS 5114

Polynomial Reducibility

Or one decision problem to another.

Specialized case of reduction from Chapter 10.

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 313 / 418

Examples

CLIQUE ≤p INDEPENDENT SET.
An instance I of CLIQUE is a graph G = (V ,E) and an
integer K .
The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V ,E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .
f is computable in polynomial time.

20
14

-0
5-

02

CS 5114

Examples

no notes

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

CS 5114: Theory of Algorithms Spring 2014 314 / 418

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .
Therefore, CLIQUE ≤p INDEPENDENT SET.
IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

20
14

-0
5-

02

CS 5114

Transformation Example

Need a graph here.

If nodes in G′ are independent, then no connections. Thus, in
G they all connect.

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.

CS 5114: Theory of Algorithms Spring 2014 315 / 418

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.

20
14

-0
5-

02

CS 5114

Nondeterminism

no notes

Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}
CS 5114: Theory of Algorithms Spring 2014 316 / 418

Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}

20
14

-0
5-

02

CS 5114

Nondeterministic CLIQUE Algorithm

What makes this different than random guessing is that all
choices happen “in parallel.”

Nondeterministic Acceptance

(G,K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

I An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
I There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

I It provides insight into the nature of certain hard
problems.

CS 5114: Theory of Algorithms Spring 2014 317 / 418

Nondeterministic Acceptance

(G,K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

I An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
I There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

I It provides insight into the nature of certain hard
problems.

20
14

-0
5-

02

CS 5114

Nondeterministic Acceptance

no notes

Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.
There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.
Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.

CS 5114: Theory of Algorithms Spring 2014 318 / 418

Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.
There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.
Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.20

14
-0

5-
02

CS 5114

Class NP

Note that Towers of Hanoi is not in NP.

Class NP(cont)

Alternative Interpretation:
NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.
If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

CS 5114: Theory of Algorithms Spring 2014 319 / 418

Class NP(cont)

Alternative Interpretation:
NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.
If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

20
14

-0
5-

02

CS 5114

Class NP(cont)

This is worded a bit loosely. Specifically, we assume that we
can get the answer fast enough – that is, in polynomial time
non-deterministically.

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:
Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.

CS 5114: Theory of Algorithms Spring 2014 320 / 418

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem:
Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.20

14
-0

5-
02

CS 5114

How to Get Famous

no notes

NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.

CS 5114: Theory of Algorithms Spring 2014 321 / 418

NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.

20
14

-0
5-

02

CS 5114

NP-completeness

A is not permitted to be harder than NP. For example, Tower of
Hanoi is not in NP. It requires exponential time to verify a set
of moves.

Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.
CS 5114: Theory of Algorithms Spring 2014 322 / 418

Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem: SAT is NP-complete.

20
14

-0
5-

02

CS 5114

Satisfiability

Is there a truth assignment for the variables that makes E true?

Cook won a Turing award for this work.

Proof Sketch
SAT ∈ NP:

A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .

CS 5114: Theory of Algorithms Spring 2014 323 / 418

Proof Sketch
SAT ∈ NP:

A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .

20
14

-0
5-

02

CS 5114

Proof Sketch

The proof of this last step is usually several pages long. One
approach is to develop a nondeterministic Turing Machine
program to solve an arbitrary problem B in NP.

Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.

CS 5114: Theory of Algorithms Spring 2014 324 / 418

Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.

20
14

-0
5-

02

CS 5114

Implications

no notes

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.
(a) Show A ∈ NP.
(b) Pick an NP-complete problem B and show B ≤p A.

CS 5114: Theory of Algorithms Spring 2014 325 / 418

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.
(a) Show A ∈ NP.
(b) Pick an NP-complete problem B and show B ≤p A.

20
14

-0
5-

02

CS 5114

Implications (cont)

Proving A ∈ NP is usually easy.

Don’t get the reduction backwards!

NP-completeness Proof Template

To show that decision problem B is NP-complete:
1 B ∈ NP

I Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .
2 B is NP-hard.

I Choose a known NP-complete problem, A.
I Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

I Show that X ∈ A if and only if T (X) ∈ B.

CS 5114: Theory of Algorithms Spring 2014 326 / 418

NP-completeness Proof Template

To show that decision problem B is NP-complete:
1 B ∈ NP

I Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .
2 B is NP-hard.

I Choose a known NP-complete problem, A.
I Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

I Show that X ∈ A if and only if T (X) ∈ B.

20
14

-0
5-

02

CS 5114

NP-completeness Proof Template

B ∈ NP is usually the easy part.

The first two steps of the NP-hard proof are usually the
hardest.

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

CS 5114: Theory of Algorithms Spring 2014 327 / 418

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.20
14

-0
5-

02

CS 5114

3-SATISFIABILITY (3SAT)

What about 2SAT? This is in P.

Effectively a 2-coloring graph problem. Join 2 vertices if they
are in same clause, also join xi and xi . Then, try to 2-color the
graph with a DFS.

How to solve 1SAT? Answer is “yes” iff xi and xi are not both in
list for any i .

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

CS 5114: Theory of Algorithms Spring 2014 328 / 418

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

20
14

-0
5-

02

CS 5114

3SAT is NP-complete

no notes

Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
I We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.
CS 5114: Theory of Algorithms Spring 2014 329 / 418

Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
I We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · ·+ yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.

20
14

-0
5-

02

CS 5114

Proving 3SAT NP-hard

SAT is the only choice that we have so far!

Replacing (y1) with (y1 + y1 + y1) seems like a reasonable
alternative. But some of the theory behind the definitions
rejects clauses with duplicated literals.

Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · ·+ yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.
After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.

CS 5114: Theory of Algorithms Spring 2014 330 / 418

Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · ·+ yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.
After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.

20
14

-0
5-

02

CS 5114

Proving 3SAT NP-hard (cont)

no notes

Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.
Assume E has a satisfying truth assignment.
Then that extends to a satisfying truth assignment for
cases (a) and (b).
In case (c), assume ym is assigned “true”.
Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.
Then all the clauses in case (c) are satisfied.

CS 5114: Theory of Algorithms Spring 2014 331 / 418

Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.
Assume E has a satisfying truth assignment.
Then that extends to a satisfying truth assignment for
cases (a) and (b).
In case (c), assume ym is assigned “true”.
Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.
Then all the clauses in case (c) are satisfied.20

14
-0

5-
02

CS 5114

Proving 3SAT NP-hard (cont)

no notes

Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

F If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

F But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.

CS 5114: Theory of Algorithms Spring 2014 332 / 418

Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

F If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

F But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.20
14

-0
5-

02

CS 5114

Proving 3SAT NP-hard (cont)

no notes

Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

Manber

Manber

done

GJ
will do

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.

CS 5114: Theory of Algorithms Spring 2014 333 / 418

Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

Manber

Manber

done

GJ
will do

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.20
14

-0
5-

02

CS 5114

Tree of Reductions

Refer to handout of NP-complete problems

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.

CS 5114: Theory of Algorithms Spring 2014 334 / 418

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.

20
14

-0
5-

02

CS 5114

Perspective

Hundreds of problems, from many fields, have been shown to
be NP-complete.

More on this observation later.

SAT ≤p CLIQUE

(1) Easy to show CLIQUE in NP.
(2) An instance of SAT is a Boolean expression

B = C1 · C2 · · ·Cm,

where
Ci = y [i ,1] + y [i ,2] + · · ·+ y [i , ki].

Transform this to an instance of CLIQUE G = (V ,E) and K .

V = {v [i , j]|1 ≤ i ≤ m,1 ≤ j ≤ ki}

Two vertices v [i1, j1] and v [i2, j2] are adjacent in G if i1 6= i2
AND EITHER y [i1, j1] and y [i2, j2] are the same literal
OR y [i1, j1] and y [i2, j2] have different underlying variables.
K = m.

CS 5114: Theory of Algorithms Spring 2014 335 / 418

SAT ≤p CLIQUE

(1) Easy to show CLIQUE in NP.
(2) An instance of SAT is a Boolean expression

B = C1 · C2 · · ·Cm,

where
Ci = y [i ,1] + y [i ,2] + · · ·+ y [i , ki].

Transform this to an instance of CLIQUE G = (V ,E) and K .

V = {v [i , j]|1 ≤ i ≤ m,1 ≤ j ≤ ki}

Two vertices v [i1, j1] and v [i2, j2] are adjacent in G if i1 6= i2
AND EITHER y [i1, j1] and y [i2, j2] are the same literal
OR y [i1, j1] and y [i2, j2] have different underlying variables.
K = m.

20
14

-0
5-

02

CS 5114

SAT ≤p CLIQUE

One vertex for each literal in B.

No join if one is the negation of the other

SAT ≤p CLIQUE (cont)

Example: B = (x + y + (z)) · (x + y + z) · (y + z).
K = 3.

(3) B is satisfiable iff G has clique of size ≥ K .
B is satisfiable implies there is a truth assignment such
that y [i , ji] is true for each i .
But then v [i , ji] must be in a clique of size K = m.
If G has a clique of size ≥ K , then the clique must have
size exactly K and there is one vertex v [i , ji] in the clique
for each i .
There is a truth assignment making each y [i , ji] true.
That truth assignment satisfies B.

We conclude that CLIQUE is NP-hard, therefore
NP-complete.

CS 5114: Theory of Algorithms Spring 2014 336 / 418

SAT ≤p CLIQUE (cont)

Example: B = (x + y + (z)) · (x + y + z) · (y + z).
K = 3.

(3) B is satisfiable iff G has clique of size ≥ K .
B is satisfiable implies there is a truth assignment such
that y [i , ji] is true for each i .
But then v [i , ji] must be in a clique of size K = m.
If G has a clique of size ≥ K , then the clique must have
size exactly K and there is one vertex v [i , ji] in the clique
for each i .
There is a truth assignment making each y [i , ji] true.
That truth assignment satisfies B.

We conclude that CLIQUE is NP-hard, therefore
NP-complete.

20
14

-0
5-

02

CS 5114

SAT ≤p CLIQUE (cont)

See Manber Figure 11.3.

It must connect to the other m − 1 literals that are also true.

No clique can have more than one member from the same
clause, since there are no links between members of a clause.

Co-NP

Note the asymmetry in the definition of NP.
I The non-determinism can identify a clique, and you can

verify it.
I But what if the correct answer is “NO”? How do you

verify that?
Co-NP: The complements of problems in NP.

I Is a boolean expression always false?
I Is there no clique of size k?

It seems unlikely that NP= co-NP.

CS 5114: Theory of Algorithms Spring 2014 337 / 418

Co-NP

Note the asymmetry in the definition of NP.
I The non-determinism can identify a clique, and you can

verify it.
I But what if the correct answer is “NO”? How do you

verify that?
Co-NP: The complements of problems in NP.

I Is a boolean expression always false?
I Is there no clique of size k?

It seems unlikely that NP= co-NP.20
14

-0
5-

02

CS 5114

Co-NP

Co-NPmight be a bigger (“harder”) class that includes NP.

Is NP-complete = NP?

It has been proved that if P6= NP, then NP-complete 6=
NP.
The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in NP.

I GRAPH ISOMORPHISM: Are two graphs isomorphic?
I COMPOSITE NUMBERS: For positive integer K , are

there integers m,n > 1 such that K = mn?
I LINEAR PROGRAMMING

CS 5114: Theory of Algorithms Spring 2014 338 / 418

Is NP-complete = NP?

It has been proved that if P6= NP, then NP-complete 6=
NP.
The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in NP.

I GRAPH ISOMORPHISM: Are two graphs isomorphic?
I COMPOSITE NUMBERS: For positive integer K , are

there integers m,n > 1 such that K = mn?
I LINEAR PROGRAMMING20

14
-0

5-
02

CS 5114

Is NP-complete = NP?

These problems seem easier than typical NP-complete
problems, but are still probably harder than P. They are
obviously in NP, but don’t appear to be “hard” enough to solve
any NP-complete problem.

PARTITION ≤p KNAPSACK

PARTITION is a special case of KNAPSACK in which

K =
1
2

∑
a∈A

s(a)

assuming
∑

s(a) is even.

Assuming PARTITION is NP-complete, KNAPSACK is
NP-complete.

CS 5114: Theory of Algorithms Spring 2014 339 / 418

PARTITION ≤p KNAPSACK

PARTITION is a special case of KNAPSACK in which

K =
1
2

∑
a∈A

s(a)

assuming
∑

s(a) is even.

Assuming PARTITION is NP-complete, KNAPSACK is
NP-complete.20

14
-0

5-
02

CS 5114

PARTITION ≤p KNAPSACK

The assumption about PARITION is true, though we do not
prove it.

The “transformation” is simply to pass the input of PARTITION
to KNAPSACK.

“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?
Input size for KNAPSACK is O(N log K)

I Thus O(KN) is exponential in N log K .
The dynamic programming algorithm counts through
numbers 1, · · · ,K . Takes exponential time when
measured by number of bits to represent K .
If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2014 340 / 418

“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?
Input size for KNAPSACK is O(N log K)

I Thus O(KN) is exponential in N log K .
The dynamic programming algorithm counts through
numbers 1, · · · ,K . Takes exponential time when
measured by number of bits to represent K .
If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

20
14

-0
5-

02

CS 5114

“Practical” Exponential Problems

This is an important point, about the input size. It has to do with
the “size” of a number (a value). We represent the value n with
log n bits, or more precisely, log N bits where N is the maximum
value. In the case of KNAPSACK, K (the knapsack size) is
effectively the maximum number. We will use this observation
frequently when we analyze numeric algorithms.

“Practical” Problems (cont)

Lesson: While KNAPSACK is NP-complete, it is often
not that hard.
Many NP-complete problems have no pseudo-
polynomial time algorithm unless P= NP.

CS 5114: Theory of Algorithms Spring 2014 341 / 418

“Practical” Problems (cont)

Lesson: While KNAPSACK is NP-complete, it is often
not that hard.
Many NP-complete problems have no pseudo-
polynomial time algorithm unless P= NP.

20
14

-0
5-

02

CS 5114

“Practical” Problems (cont)

The issue is what size input is practical. The problems we want
to solve for Traveling Salesman are not practical.

Coping with NP-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.

(3) Randomized Algorithms.

(4) Backtracking; Branch and Bound.

(5) Heuristics.
Greedy.
Simulated Annealing.
Genetic Algorithms.

CS 5114: Theory of Algorithms Spring 2014 342 / 418

Coping with NP-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.

(3) Randomized Algorithms.

(4) Backtracking; Branch and Bound.

(5) Heuristics.
Greedy.
Simulated Annealing.
Genetic Algorithms.

20
14

-0
5-

02

CS 5114

Coping with NP-completeness

The subproblems need to be “significant” special cases.

Approximation works for optimization problems (and there are a
LOT of those).

Randomized Algorithms typically work well for problems with a
lot of solutions.

(4) gives ways to (relatively efficiently) implement nd-choice.

Subproblems
Restrict attention to special classes of inputs.
Examples:

VERTEX COVER, INDEPENDENT SET, and CLIQUE,
when restricted to bipartite graphs, all have
polynomial-time algorithms (for VERTEX COVER, by
reduction to NETWORK FLOW).
2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and
EXACT COVER BY 2-SETS all have polynomial time
algorithms.
PARTITION and KNAPSACK have polynomial time
algorithms if the numbers in an instance are all O(p(n)).
However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain NP-complete even for a
planar graph.

CS 5114: Theory of Algorithms Spring 2014 343 / 418

Subproblems
Restrict attention to special classes of inputs.
Examples:

VERTEX COVER, INDEPENDENT SET, and CLIQUE,
when restricted to bipartite graphs, all have
polynomial-time algorithms (for VERTEX COVER, by
reduction to NETWORK FLOW).
2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and
EXACT COVER BY 2-SETS all have polynomial time
algorithms.
PARTITION and KNAPSACK have polynomial time
algorithms if the numbers in an instance are all O(p(n)).
However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain NP-complete even for a
planar graph.

20
14

-0
5-

02

CS 5114

Subproblems

Assuming the subclass covers the inputs you are interested in!

Backtracking

We may view a nondeterministic algorithm executing on a
particular instance as a tree:

1 Each edge represents a particular nondeterministic
choice.

2 The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a
clique of size ≥ K can be done in polynomial time.

CS 5114: Theory of Algorithms Spring 2014 344 / 418

Backtracking

We may view a nondeterministic algorithm executing on a
particular instance as a tree:

1 Each edge represents a particular nondeterministic
choice.

2 The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a
clique of size ≥ K can be done in polynomial time.

20
14

-0
5-

02

CS 5114

Backtracking

Example for k-CLIQUE

Need a figure here. Manber Figure 11.7 has a similar example.

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

1 A leaf that accepts is found.
2 A partial solution that could not possibly lead to

acceptance is reached.
Example:

There cannot possibly be a set S of cardinality ≥ 2 under
this node, so backtrack.

Since (1, 2) /∈ E , no S under this node can be a clique, so
backtrack.

CS 5114: Theory of Algorithms Spring 2014 345 / 418

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

1 A leaf that accepts is found.
2 A partial solution that could not possibly lead to

acceptance is reached.
Example:

There cannot possibly be a set S of cardinality ≥ 2 under
this node, so backtrack.

Since (1, 2) /∈ E , no S under this node can be a clique, so
backtrack.

20
14

-0
5-

02

CS 5114

Backtracking (cont)

Need Figure here.

Need Figure here.

Branch and Bound
For optimization problems.
More sophisticated kind of backtracking.
Use the best solution found so far as a bound that
controls backtracking.
Example Problem: Given a graph G, find a minimum
vertex cover of G.
Computation tree for nondeterministic algorithm is
similar to CLIQUE.

I Every leaf represents a different subset S of the vertices.
Whenever a leaf is reached and it contains a vertex
cover of size B, B is an upper bound on the size of the
minimum vertex cover.

I Use B to prune any future tree nodes having size ≥ B.
Whenever a smaller vertex cover is found, update B.

CS 5114: Theory of Algorithms Spring 2014 346 / 418

Branch and Bound
For optimization problems.
More sophisticated kind of backtracking.
Use the best solution found so far as a bound that
controls backtracking.
Example Problem: Given a graph G, find a minimum
vertex cover of G.
Computation tree for nondeterministic algorithm is
similar to CLIQUE.

I Every leaf represents a different subset S of the vertices.
Whenever a leaf is reached and it contains a vertex
cover of size B, B is an upper bound on the size of the
minimum vertex cover.

I Use B to prune any future tree nodes having size ≥ B.
Whenever a smaller vertex cover is found, update B.

20
14

-0
5-

02

CS 5114

Branch and Bound

When the corresponding decision problem is NP-complete.

Branch and Bound (cont)

Improvement:
I Use a fast, greedy algorithm to get a minimal (not

minimum) vertex cover.
I Use this as the initial bound B.

While Branch and Bound is better than a brute-force
exhaustive search, it is usually exponential time, hence
impractical for all but the smallest instances.

I ... if we insist on an optimal solution.

Branch and Bound often practical as an approximation
algorithm where the search terminates when a “good
enough” solution is obtained.

CS 5114: Theory of Algorithms Spring 2014 347 / 418

Branch and Bound (cont)

Improvement:
I Use a fast, greedy algorithm to get a minimal (not

minimum) vertex cover.
I Use this as the initial bound B.

While Branch and Bound is better than a brute-force
exhaustive search, it is usually exponential time, hence
impractical for all but the smallest instances.

I ... if we insist on an optimal solution.

Branch and Bound often practical as an approximation
algorithm where the search terminates when a “good
enough” solution is obtained.

20
14

-0
5-

02

CS 5114

Branch and Bound (cont)

no notes

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V ,E), find a vertex
cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in
G and let V ′ be the set of matched vertices.
If OPT is the size of a minimum vertex cover, then

|V ′| ≤ 2OPT

because at least one endpoint of every matched edge must
be in any vertex cover.

CS 5114: Theory of Algorithms Spring 2014 348 / 418

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V ,E), find a vertex
cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in
G and let V ′ be the set of matched vertices.
If OPT is the size of a minimum vertex cover, then

|V ′| ≤ 2OPT

because at least one endpoint of every matched edge must
be in any vertex cover.

20
14

-0
5-

02

CS 5114

Approximation Algorithms

Vertex cover: A set of vertices such that every edge is incident
on at least one vertex in the set.

Then every edge will be have at least one matched vertex (i.e.,
vertex in the set). Thus the matching qualifies as a vertex cover.

Since a vertex of M cannot cover more than one edge of M.
In fact, we always know how far we are from a perfect cover
(though we don’t always know the size of OPT).

Bin Packing

We have numbers x1, x2, · · · , xn between 0 and 1 as well as
an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so
that the sum of the numbers in any one bin does not exceed
1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].

CS 5114: Theory of Algorithms Spring 2014 349 / 418

Bin Packing

We have numbers x1, x2, · · · , xn between 0 and 1 as well as
an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so
that the sum of the numbers in any one bin does not exceed
1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].20
14

-0
5-

02

CS 5114

Bin Packing

Optimal in that the sum is 3 1/8, and we packed into 4 bins.
There is another optimal solution with the first 3 bins packed,
but this is more than we need to solve the problem.

First Fit Algorithm

Place x1 into the first bin.

For each i ,2 ≤ i ≤ n, place xi in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.

CS 5114: Theory of Algorithms Spring 2014 350 / 418

First Fit Algorithm

Place x1 into the first bin.

For each i ,2 ≤ i ≤ n, place xi in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.

20
14

-0
5-

02

CS 5114

First Fit Algorithm

Otherwise, the items in the second half-full bin would be put
into the first!

First Fit Does Poorly

Let ε be very small, e.g., ε = .00001.
Numbers (in this order):

6 of (1/7 + ε).
6 of (1/3 + ε).
6 of (1/2 + ε).

First fit returns:
1 bin of [6 of 1/7 + ε]
3 bins of [2 of 1/3 + ε]
6 bins of [1/2 + ε]

Optimal solution is 6 bins of [1/7 + ε,1/3 + ε,1/2 + ε].

First fit is 5/3 larger than optimal.
CS 5114: Theory of Algorithms Spring 2014 351 / 418

First Fit Does Poorly

Let ε be very small, e.g., ε = .00001.
Numbers (in this order):

6 of (1/7 + ε).
6 of (1/3 + ε).
6 of (1/2 + ε).

First fit returns:
1 bin of [6 of 1/7 + ε]
3 bins of [2 of 1/3 + ε]
6 bins of [1/2 + ε]

Optimal solution is 6 bins of [1/7 + ε,1/3 + ε,1/2 + ε].

First fit is 5/3 larger than optimal.

20
14

-0
5-

02

CS 5114

First Fit Does Poorly

no notes

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:
Sort the numbers in decreasing order.
Apply first fit.
This is called decreasing first fit.

The worst case performance of decreasing first fit is close to
11/9 times optimal.

CS 5114: Theory of Algorithms Spring 2014 352 / 418

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:
Sort the numbers in decreasing order.
Apply first fit.
This is called decreasing first fit.

The worst case performance of decreasing first fit is close to
11/9 times optimal.

20
14

-0
5-

02

CS 5114

Decreasing First Fit

no notes

Summary

The theory of NP-completeness gives us a technique
for separating tractable from (probably) intractable
problems.
When faced with a new problem requiring algorithmic
solution, our thought process might resemble this
scheme:

Is it
NP-complete?
 Is it

in P?

Alternately think about each question. Lack of progress
on either question might give insights into the answer to
the other question.
Once an affirmative answer is obtained to one of these
questions, one of two strategies is followed.

CS 5114: Theory of Algorithms Spring 2014 353 / 418

Summary

The theory of NP-completeness gives us a technique
for separating tractable from (probably) intractable
problems.
When faced with a new problem requiring algorithmic
solution, our thought process might resemble this
scheme:

Is it
NP-complete?
 Is it

in P?

Alternately think about each question. Lack of progress
on either question might give insights into the answer to
the other question.
Once an affirmative answer is obtained to one of these
questions, one of two strategies is followed.

20
14

-0
5-

02

CS 5114

Summary

no notes

Strategies

(1) The problem is in P.
This means there are polynomial-time algorithms for the
problem, and presumably we know at least one.
So, apply the techniques learned in this course to
analyze the algorithms and improve them to find the
lowest time complexity we can.

(2) The problem is NP-complete.
Apply the strategies for coping with NP-completeness.
Especially, find subproblems that are in P, or find
approximation algorithms.

CS 5114: Theory of Algorithms Spring 2014 354 / 418

Strategies

(1) The problem is in P.
This means there are polynomial-time algorithms for the
problem, and presumably we know at least one.
So, apply the techniques learned in this course to
analyze the algorithms and improve them to find the
lowest time complexity we can.

(2) The problem is NP-complete.
Apply the strategies for coping with NP-completeness.
Especially, find subproblems that are in P, or find
approximation algorithms.

20
14

-0
5-

02

CS 5114

Strategies

That is the only way we could have proved it is in P.

Algebraic and Numeric Algorithms

Measuring cost of arithmetic and numerical operations:
I Measure size of input in terms of bits.

Algebraic operations:
I Measure size of input in terms of numbers.

In both cases, measure complexity in terms of basic
arithmetic operations: +,−, ∗, /.

I Sometimes, measure complexity in terms of bit
operations to account for large numbers.

Size of numbers may be related to problem size:
I Pointers, counters to objects.
I Resolution in geometry/graphics (to distinguish between

object positions).

CS 5114: Theory of Algorithms Spring 2014 355 / 418

Algebraic and Numeric Algorithms

Measuring cost of arithmetic and numerical operations:
I Measure size of input in terms of bits.

Algebraic operations:
I Measure size of input in terms of numbers.

In both cases, measure complexity in terms of basic
arithmetic operations: +,−, ∗, /.

I Sometimes, measure complexity in terms of bit
operations to account for large numbers.

Size of numbers may be related to problem size:
I Pointers, counters to objects.
I Resolution in geometry/graphics (to distinguish between

object positions).

20
14

-0
5-

02

CS 5114

Algebraic and Numeric Algorithms

no notes

Exponentiation

Given positive integers n and k , compute nk .

Algorithm:

p = 1;
for (i=1 to k)
p = p * n;

Analysis:
Input size: Θ(log n + log k).
Time complexity: Θ(k) multiplications.
This is exponential in input size.

CS 5114: Theory of Algorithms Spring 2014 356 / 418

Exponentiation

Given positive integers n and k , compute nk .

Algorithm:

p = 1;
for (i=1 to k)

p = p * n;

Analysis:
Input size: Θ(log n + log k).
Time complexity: Θ(k) multiplications.
This is exponential in input size.

20
14

-0
5-

02

CS 5114

Exponentiation

no notes

Faster Exponentiation

Write k as:

k = bt2t + bt−12t−1 + · · ·+ b12 + b0,b ∈ {0,1}.

Rewrite as:

k = ((· · · (bt2 + bt−1)2 + · · ·+ b2)2 + b1)2 + b0.

New algorithm:
p = n;
for (i = t-1 downto 0)

p = p * p * exp(n, b[i])

Analysis:
Time complexity: Θ(t) = Θ(log k) multiplications.
This is exponentially better than before.

CS 5114: Theory of Algorithms Spring 2014 357 / 418

Faster Exponentiation

Write k as:

k = bt2t + bt−12t−1 + · · ·+ b12 + b0,b ∈ {0,1}.

Rewrite as:

k = ((· · · (bt2 + bt−1)2 + · · ·+ b2)2 + b1)2 + b0.

New algorithm:
p = n;
for (i = t-1 downto 0)

p = p * p * exp(n, b[i])

Analysis:
Time complexity: Θ(t) = Θ(log k) multiplications.
This is exponentially better than before.

20
14

-0
5-

02

CS 5114

Faster Exponentiation

no notes

Greatest Common Divisor

The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly.
Observation: If k divides n and m, then k divides n −m.
So,

f (n,m) = f (n −m,n) = f (m,n −m) = f (m,n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.
n = bn/mcm + n mod m.

So,
f (n,m) = f (m, l) = f (m,n mod m).

CS 5114: Theory of Algorithms Spring 2014 358 / 418

Greatest Common Divisor

The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly.
Observation: If k divides n and m, then k divides n −m.
So,

f (n,m) = f (n −m,n) = f (m,n −m) = f (m,n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.
n = bn/mcm + n mod m.

So,
f (n,m) = f (m, l) = f (m,n mod m).

20
14

-0
5-

02

CS 5114

Greatest Common Divisor

Assuming n > m, then n = ak , m = bk , n −m = (a− b)k for
integers a, b.

This comes from definition of mod .

GCD Algorithm

f (n,m) =

{
n m = 0
f (m,n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

CS 5114: Theory of Algorithms Spring 2014 359 / 418

GCD Algorithm

f (n,m) =

{
n m = 0
f (m,n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}20
14

-0
5-

02

CS 5114

GCD Algorithm

no notes

Analysis of GCD

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1
⇒ 2bn/mc > n/m
⇒ mbn/mc > n/2
⇒ n − n/2 > n −mbn/mc = n mod m
⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.
Total cost:

CS 5114: Theory of Algorithms Spring 2014 360 / 418

Analysis of GCD

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1
⇒ 2bn/mc > n/m
⇒ mbn/mc > n/2
⇒ n − n/2 > n −mbn/mc = n mod m
⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.
Total cost:

20
14

-0
5-

02

CS 5114

Analysis of GCD

Can split in half log n times. So 2 log n is upper bound.

Note that this is linier on problem size, since problem size is
2 log n (2 numbers).

Multiplying Polynomials (1)

P =
n−1∑
i=0

pix i Q =
n−1∑
i=0

qix i .

Our normal algorithm for computing PQ requires Θ(n2)
multiplications and additions.

CS 5114: Theory of Algorithms Spring 2014 361 / 418

Multiplying Polynomials (1)

P =
n−1∑
i=0

pix i Q =
n−1∑
i=0

qix i .

Our normal algorithm for computing PQ requires Θ(n2)
multiplications and additions.

20
14

-0
5-

02

CS 5114

Multiplying Polynomials (1)

no notes

Multiplying Polynomials (2)
Divide and Conquer:

P1 =

n/2−1∑
i=0

pix i P2 =
n−1∑

i=n/2

pix i−n/2

Q1 =

n/2−1∑
i=0

qix i Q2 =
n−1∑

i=n/2

qix i−n/2

PQ = (P1 + xn/2P2)(Q1 + xn/2Q2)

= P1Q1 + xn/2(Q1P2 + P1Q2) + xnP2Q2.

Recurrence:

T (n) = 4T (n/2) + O(n).

T (n) = Θ(n2).

CS 5114: Theory of Algorithms Spring 2014 362 / 418

Multiplying Polynomials (2)
Divide and Conquer:

P1 =

n/2−1∑
i=0

pix i P2 =
n−1∑

i=n/2

pix i−n/2

Q1 =

n/2−1∑
i=0

qix i Q2 =
n−1∑

i=n/2

qix i−n/2

PQ = (P1 + xn/2P2)(Q1 + xn/2Q2)

= P1Q1 + xn/2(Q1P2 + P1Q2) + xnP2Q2.

Recurrence:

T (n) = 4T (n/2) + O(n).

T (n) = Θ(n2).

20
14

-0
5-

02

CS 5114

Multiplying Polynomials (2)

Do this to make the subproblems look the same.

Multiplying Polynomials (3)
Observation:

(P1 + P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q2

(Q1P2 + P1Q2) = (P1 + P2)(Q1 + Q2)− P1Q1 − P2Q2

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:

T (n) = 3T (n/2) + O(n)

= aT (n/b) + cn1.

logb a = log23 ≈ 1.59.
T (n) = Θ(n1.59).

CS 5114: Theory of Algorithms Spring 2014 363 / 418

Multiplying Polynomials (3)
Observation:

(P1 + P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q2

(Q1P2 + P1Q2) = (P1 + P2)(Q1 + Q2)− P1Q1 − P2Q2

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:

T (n) = 3T (n/2) + O(n)

= aT (n/b) + cn1.

logb a = log23 ≈ 1.59.
T (n) = Θ(n1.59).

20
14

-0
5-

02

CS 5114

Multiplying Polynomials (3)

In the second equation, the sums in the first term are half the
original problem size, and the second two terms were needed
for the first equation.

PQ = P1Q1 +X n/2((P1 +P2)(Q1 +Q2)−P1Q1−P2Q2)+xnP2Q2

A significant improvement came from algebraic manipulation to
express the product in terms of 3, rather than 4, smaller
products.

Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A× B.

cij =
n∑

k=1

aikbkj .

Straightforward algorithm:
Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).
CS 5114: Theory of Algorithms Spring 2014 364 / 418

Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A× B.

cij =
n∑

k=1

aikbkj .

Straightforward algorithm:
Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).

20
14

-0
5-

02

CS 5114

Matrix Multiplication

no notes

Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
CS 5114: Theory of Algorithms Spring 2014 365 / 418

Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2× 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2× 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.

20
14

-0
5-

02

CS 5114

Strassen’s Algorithm

no notes

Another Approach (1)

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

CS 5114: Theory of Algorithms Spring 2014 366 / 418

Another Approach (1)

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b1120
14

-0
5-

02

CS 5114

Another Approach (1)

no notes

Another Approach (2)

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.

CS 5114: Theory of Algorithms Spring 2014 367 / 418

Another Approach (2)

Then:

c11 = m1 + m2 −m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 −m3 + m5 −m7

7 multiplications and 18 additions/subtractions.20
14

-0
5-

02

CS 5114

Another Approach (2)

c12 = m4 + m5

= (a11 + a12)b22 + a11(b12 + b22)

= a11b22 + a11b12 − a11b22

= a12b22 + b11b12

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A× B in terms of n
2 ×

n
2 matrices.[

c11 c12

c21 c22

]
=

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]

CS 5114: Theory of Algorithms Spring 2014 368 / 418

Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A× B in terms of n
2 ×

n
2 matrices.[

c11 c12

c21 c22

]
=

[
a11 a12

a21 a22

] [
b11 b12

b21 b22

]

20
14

-0
5-

02

CS 5114

Strassen’s Algorithm (cont)

no notes

Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2× n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)
Open question: Can matrix multiplication be done in O(n2)
time?

CS 5114: Theory of Algorithms Spring 2014 369 / 418

Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2× n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)
Open question: Can matrix multiplication be done in O(n2)
time?

20
14

-0
5-

02

CS 5114

Strassen’s Algorithm (cont)

But, this has a high constant due to the additions. This makes it
rather impractical in real applications.

But this “fastest” algorithm is even more impractical due to
overhead.

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
CS 5114: Theory of Algorithms Spring 2014 370 / 418

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?

20
14

-0
5-

02

CS 5114

Introduction to the Sliderule

no notes

Introduction to the Sliderule (2)

The sliderule does exactly this!
It is essentially two rulers in log scale.
Slide the scales to add the lengths of the two numbers
(in log form).
The third scale shows the value for the total length.

CS 5114: Theory of Algorithms Spring 2014 371 / 418

Introduction to the Sliderule (2)

The sliderule does exactly this!
It is essentially two rulers in log scale.
Slide the scales to add the lengths of the two numbers
(in log form).
The third scale shows the value for the total length.

20
14

-0
5-

02

CS 5114

Introduction to the Sliderule (2)

This is an example of a transform. We do transforms to convert
a hard problem into a (relatively) easy problem.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1∑
i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation.
Finding the coefficients for the polynomial given the
values at n points is called interpolation.

CS 5114: Theory of Algorithms Spring 2014 372 / 418

Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1∑
i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation.
Finding the coefficients for the polynomial given the
values at n points is called interpolation.

20
14

-0
5-

02

CS 5114

Representing Polynomials

That is, a polynomial can be represented by it coefficients.

Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
Evaluate polynomials A and B at enough points.
Pairwise multiplications of resulting values.
Interpolation of resulting values.

CS 5114: Theory of Algorithms Spring 2014 373 / 418

Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
Evaluate polynomials A and B at enough points.
Pairwise multiplications of resulting values.
Interpolation of resulting values.

20
14

-0
5-

02

CS 5114

Multiplication of Polynomials

no notes

Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

CS 5114: Theory of Algorithms Spring 2014 374 / 418

Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?20

14
-0

5-
02

CS 5114

Multiplication of Polynomials (2)

no notes

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8
AB(0) = (1)(1) = 1
AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

CS 5114: Theory of Algorithms Spring 2014 375 / 418

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8
AB(0) = (1)(1) = 1
AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

20
14

-0
5-

02

CS 5114

An Example

−1 0 1
A 2 1 2
B 4 1 2

AB 8 1 4

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:
For n = 4, ω = i or ω = −i .

CS 5114: Theory of Algorithms Spring 2014 376 / 418

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:
For n = 4, ω = i or ω = −i .

20
14

-0
5-

02

CS 5114

Nth Root of Unity

For the first circle, n = 4, ω = i .

For the second circle, n = 8, ω =
√

i .

Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .

CS 5114: Theory of Algorithms Spring 2014 377 / 418

Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .20

14
-0

5-
02

CS 5114

Nth Root of Unity (cont)

no notes

Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Let a = [a0,a1, ...,an−1]T be a vector.
The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

CS 5114: Theory of Algorithms Spring 2014 378 / 418

Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


Let a = [a0,a1, ...,an−1]T be a vector.
The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

20
14

-0
5-

02

CS 5114

Discrete Fourier Transform

In the array, indexing begins with 0.

Example:
1 + 2x + 3x2 + 4x3

Values to evaluate at: 1, i ,−1,−i .

Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i

CS 5114: Theory of Algorithms Spring 2014 379 / 418

Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i20

14
-0

5-
02

CS 5114

Array example

no notes

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

CS 5114: Theory of Algorithms Spring 2014 380 / 418

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω = a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

20
14

-0
5-

02

CS 5114

Inverse Fourier Transform

Just replace each ω with 1/ω

After substituting 1/ω for ω.

Observe the sharable parts in the matrix.

Fast Polynomial Multiplication

Polynomial multiplication of A and B:
Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0,a1, ...,an−1,0, ...,0]

Perform DFT on representations for A and B.
Pairwise multiply results to get 2n − 1 values.
Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.

CS 5114: Theory of Algorithms Spring 2014 381 / 418

Fast Polynomial Multiplication

Polynomial multiplication of A and B:
Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0,a1, ...,an−1,0, ...,0]

Perform DFT on representations for A and B.
Pairwise multiply results to get 2n − 1 values.
Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.20

14
-0

5-
02

CS 5114

Fast Polynomial Multiplication

Θ(n log n)

Θ(n)

Θ(n log n)

Total time: Θ(n log n).

FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin
if n=1 then V[0] = a0;
else
FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do
V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

CS 5114: Theory of Algorithms Spring 2014 382 / 418

FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin

if n=1 then V[0] = a0;
else

FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do

V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

20
14

-0
5-

02

CS 5114

FFT Algorithm

no notes

Parallel Algorithms

Running time: T (n,p) where n is the problem size, p is
number of processors.
Speedup: S(p) = T (n,1)/T (n,p).

I A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for∞ processors.
Efficiency: E(n,p) = S(p)/p = T (n,1)/(pT (n,p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

I Measure of how much the p processors are used (not
wasted).

I Optimal efficiency = 1 = speedup by factor of p.
CS 5114: Theory of Algorithms Spring 2014 383 / 418

Parallel Algorithms

Running time: T (n,p) where n is the problem size, p is
number of processors.
Speedup: S(p) = T (n,1)/T (n,p).

I A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for∞ processors.
Efficiency: E(n,p) = S(p)/p = T (n,1)/(pT (n,p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

I Measure of how much the p processors are used (not
wasted).

I Optimal efficiency = 1 = speedup by factor of p.

20
14

-0
5-

02

CS 5114

Parallel Algorithms

As opposed to T (n) for sequential algorithms.

Question: What algorithms should be compared?

pT (n,p) is total amount of “processor power” put into the
problem.

If E(n,p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against – very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.
Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p =∞, then convert to
run on p processors.

Hopefully, if T (n,p) = X , then T (n,p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle.

CS 5114: Theory of Algorithms Spring 2014 384 / 418

Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.
Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p =∞, then convert to
run on p processors.

Hopefully, if T (n,p) = X , then T (n,p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle.

20
14

-0
5-

02

CS 5114

Parallel Algorithm Design

no notes

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n,1) = n
T (n,n) = log n

S(n) = n/ log n
E(n,n) = 1/ log n

For p = 256, n = 1024.
T (1024,256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.

CS 5114: Theory of Algorithms Spring 2014 385 / 418

Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n,1) = n
T (n,n) = log n

S(n) = n/ log n
E(n,n) = 1/ log n

For p = 256, n = 1024.
T (1024,256) = 4 log 1024 = 40.
For p = 16, running time = (1024/16) ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.

20
14

-0
5-

02

CS 5114

Parallel Algorithm Design (2)

Good in terms of speedup.

1024/256, assuming one processor emulates 4 in 4 times the
time.
E(1024,256) = 1024/(256 ∗ 40) = 1/10.

But note that efficiency goes down as the problem size grows.

Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,
for S = serial fraction, P = parallel fraction, S + P = 1.

CS 5114: Theory of Algorithms Spring 2014 386 / 418

Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,
for S = serial fraction, P = parallel fraction, S + P = 1.

20
14

-0
5-

02

CS 5114

Amdahl’s Law

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM
5/88 and follow-up technical correspondance in CACM 8/89.

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
see a nonlinear curve going down.

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S + P × N)/(S + P)

= S + P × N
= S + (1− S)× N
= N + (1− N)× S.

CS 5114: Theory of Algorithms Spring 2014 387 / 418

Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S + P × N)/(S + P)

= S + P × N
= S + (1− S)× N
= N + (1− N)× S.

20
14

-0
5-

02

CS 5114

Amdahl’s Law Revisited

How long sequential process would take / How long for N
processors.

Since S + P = 1 and P = 1− S.

The point is that this equation drops off much less slowly in N:
Graphing (sequential fraction for fixed N) vs. speedup, you get
a line with slope 1− N.

All of this seems to assume the same algorithm for sequential
and parallel. But that’s OK – we want to see how much
parallelism is possible for the parallel algorithm.

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)
All processors operate the same instruction in step.
Example: Vector processor.

Pipelined Processing:
Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
Processors are independent.

CS 5114: Theory of Algorithms Spring 2014 388 / 418

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)
All processors operate the same instruction in step.
Example: Vector processor.

Pipelined Processing:
Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
Processors are independent.

20
14

-0
5-

02

CS 5114

Models of Parallel Computation

Vector: IBM 3090, Cray

Pipelined: Graphics coprocessor boards

MIMD: Modern clusters.

MIMD Communications (1)

Interconnection network:
Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter: Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.

CS 5114: Theory of Algorithms Spring 2014 389 / 418

MIMD Communications (1)

Interconnection network:
Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter: Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.20

14
-0

5-
02

CS 5114

MIMD Communications (1)

no notes

MIMD Communications (2)

Shared memory:
Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).

CS 5114: Theory of Algorithms Spring 2014 390 / 418

MIMD Communications (2)

Shared memory:
Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).

20
14

-0
5-

02

CS 5114

MIMD Communications (2)

no notes

Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:
Start at the low end, add two bits.
If necessary, carry bit is brought forward.
Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)

CS 5114: Theory of Algorithms Spring 2014 391 / 418

Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:
Start at the low end, add two bits.
If necessary, carry bit is brought forward.
Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)

20
14

-0
5-

02

CS 5114

Addition

no notes

Parallel Addition

Divide and conquer to the rescue:
Do the sum for top and bottom halves.
What about the carry bit?

Strengthen induction hypothesis:
Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L,Lc,R, and Rc.

Can combine pieces in constant time.

CS 5114: Theory of Algorithms Spring 2014 392 / 418

Parallel Addition

Divide and conquer to the rescue:
Do the sum for top and bottom halves.
What about the carry bit?

Strengthen induction hypothesis:
Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L,Lc,R, and Rc.

Can combine pieces in constant time.

20
14

-0
5-

02

CS 5114

Parallel Addition

Two possibilities: carry or not carry.

Also, for each a boolean indicating if it returns a carry.

If right has carry then
Sum = Lc |R

Else
Sum = L|R

If Sum has carry then
Carry = TRUE

For Sumc

Do the same using Rc since it is computing value having
received carry.

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n,n) = T (n/2,n/2) + O(1) = O(log n).

We need only the EREW memory model.

CS 5114: Theory of Algorithms Spring 2014 393 / 418

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n,n) = T (n/2,n/2) + O(1) = O(log n).

We need only the EREW memory model.

20
14

-0
5-

02

CS 5114

Parallel Addition (2)

Not 2T (n/2,n/2) because done in parallel!

Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n,n/2) ≈ 1/ log n.

Why is the efficiency so low?
CS 5114: Theory of Algorithms Spring 2014 394 / 418

Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n,n/2) ≈ 1/ log n.

Why is the efficiency so low?

20
14

-0
5-

02

CS 5114

Maximum-finding Algorithm: EREW

Since T (n,1)
nT (n,n) = n

n log n

Lots of idle processors after the first round.

More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n,n/ log n) = O(log n).
E(n,n/ log n) = O(1).

CS 5114: Theory of Algorithms Spring 2014 395 / 418

More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n,n/ log n) = O(log n).
E(n,n/ log n) = O(1).

20
14

-0
5-

02

CS 5114

More Efficient EREW Algorithm

In log n time.

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.
All comparisons are pre-arranged.

CS 5114: Theory of Algorithms Spring 2014 396 / 418

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.
All comparisons are pre-arranged.20

14
-0

5-
02

CS 5114

More Efficient EREW Algorithm (2)

Cannot improve time past O(log n).

Doesn’t depend on a specific input value.

As an analogy to help understand the concept of static:
Bubblesort and Mergesort are static in this way. We always
know the positions to be compared next.
In contrast, Insertion Sort is not static.

Brent’s Lemma
Lemma 12.1: If there exists an EREW static algorithm with
T (n,p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai ,1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with dai/(s/t)e steps, where
the s/t processors emulate the steps taken by the
original p processors.

CS 5114: Theory of Algorithms Spring 2014 397 / 418

Brent’s Lemma
Lemma 12.1: If there exists an EREW static algorithm with
T (n,p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai ,1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with dai/(s/t)e steps, where
the s/t processors emulate the steps taken by the
original p processors.

20
14

-0
5-

02

CS 5114

Brent’s Lemma

Note that we are using t as the actual number of steps, as well
as the variable in the big-Oh analysis, which is a bit informal.

Brent’s Lemma (2)

The total number of steps is now
t∑

i=1

dai/(s/t)e ≤
t∑

i=1

(ai t/s + 1)

= t + (t/s)
t∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

CS 5114: Theory of Algorithms Spring 2014 398 / 418

Brent’s Lemma (2)

The total number of steps is now
t∑

i=1

dai/(s/t)e ≤
t∑

i=1

(ai t/s + 1)

= t + (t/s)
t∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

20
14

-0
5-

02

CS 5114

Brent’s Lemma (2)

If s is sequential complexity, then the modified algorithm has
O(1) efficiency.

Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

I Now, only one v is “1”.
Second step: Look at all vi ,1 ≤ i ≤ n.

I The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”

CS 5114: Theory of Algorithms Spring 2014 399 / 418

Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

I Now, only one v is “1”.
Second step: Look at all vi ,1 ≤ i ≤ n.

I The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”

20
14

-0
5-

02

CS 5114

Maximum-finding: CRCW

Need O(n2)processors
Need only constant time.
Efficiency is 1/n.

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:
Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).

CS 5114: Theory of Algorithms Spring 2014 400 / 418

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:
Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).

20
14

-0
5-

02

CS 5114

Maximum-finding: CRCW (2)

n/2 processors
n processors, using previous “divide and crush” algorithm.

This leaves n/8 elements which can be broken into n/128
groups of 16 elements with 128 processors assigned to each
group. And so on.

Efficiency is 1/ log log n.

Parallel Prefix

Let · be any associative binary operation.
I Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k ,1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

I O(n) time required (using previous prefix)
Approach: Divide and Conquer

I IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1,m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1,m) – from IH.

CS 5114: Theory of Algorithms Spring 2014 401 / 418

Parallel Prefix

Let · be any associative binary operation.
I Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k ,1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

I O(n) time required (using previous prefix)
Approach: Divide and Conquer

I IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1,m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1,m) – from IH.

20
14

-0
5-

02

CS 5114

Parallel Prefix

We don’t just want the sum or min of all – we want all the
partials as well.

We have the lower half done, and the upper half values are
each missing the contribution from the lower half.

Parallel Prefix (2)

Complexity: (2) requires n/2 processors and CREW for
parallelism (all read middle position).
T (n,n) = O(log n); E(n,n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.

CS 5114: Theory of Algorithms Spring 2014 402 / 418

Parallel Prefix (2)

Complexity: (2) requires n/2 processors and CREW for
parallelism (all read middle position).
T (n,n) = O(log n); E(n,n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.

20
14

-0
5-

02

CS 5114

Parallel Prefix (2)

That is – no processors are “excessively” idle. This is because
we needed to copy PR(1, n/2) into n/2 positions on the last
step.

E =
n

n · log n
=

1
logn

Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

I Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
I Solve for E (by induction).
I Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n,n) = O(log n).
S(n) = S(n/2) + n − 1, so S(n) = O(n) for S(n) the

total number of steps required to process n elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.

CS 5114: Theory of Algorithms Spring 2014 403 / 418

Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

I Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
I Solve for E (by induction).
I Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n,n) = O(log n).
S(n) = S(n/2) + n − 1, so S(n) = O(n) for S(n) the

total number of steps required to process n elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.

20
14

-0
5-

02

CS 5114

Better Parallel Prefix

Since the E’s already include their left neighbors, all info is
available to get the odds.

There is only one recursive call, instead of two in the previous
algorithm.

Need EREW model for Brent’s Lemma.

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor Pσ(i) such that no processor is the destination
for more than one message.

Problem:
In an n-cube, each processor is connected to n other
processors.
At the same time, each processor can send (or receive)
only one message per time step on a given connection.
So, two messages cannot use the same edge at the
same time – one must wait.

CS 5114: Theory of Algorithms Spring 2014 404 / 418

Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor Pσ(i) such that no processor is the destination
for more than one message.

Problem:
In an n-cube, each processor is connected to n other
processors.
At the same time, each processor can send (or receive)
only one message per time step on a given connection.
So, two messages cannot use the same edge at the
same time – one must wait.

20
14

-0
5-

02

CS 5114

Routing on a Hypercube

Need a figure

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:
(a) Route each message from i to j to a random processor

r (by a randomly selected route).
(b) Continue the message from r to j by the shortest route.

CS 5114: Theory of Algorithms Spring 2014 405 / 418

Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:
(a) Route each message from i to j to a random processor

r (by a randomly selected route).
(b) Continue the message from r to j by the shortest route.20

14
-0

5-
02

CS 5114

Randomizing Switching Algorithm

n-dimensional hypercube has 2n nodes.

Remember that we want parallel algorithms with cost log n, not
cost na!
The distance from any processor i to another processor j is
only log n steps.

Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin
for (k = 1 to n)

T[i, k] = RANDOM(0, 1);
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;

CS 5114: Theory of Algorithms Spring 2014 406 / 418

Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin

for (k = 1 to n)
T[i, k] = RANDOM(0, 1);

for (k = 1 to n)
if (T[i, k] = 1)

Transmit i along dimension k;
coend;20

14
-0

5-
02

CS 5114

Randomized Switching (2)

no notes

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)

T[i, k] =
Current[i, k] EXCLUSIVE_OR Dest[i, k];

for (k = 1 to n)
if (T[i, k] = 1)

Transmit i along dimension k;
coend;

CS 5114: Theory of Algorithms Spring 2014 407 / 418

Randomized Switching (3)

Phase (b):
for (each message i)
cobegin

for (k = 1 to n)
T[i, k] =

Current[i, k] EXCLUSIVE_OR Dest[i, k];
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;20
14

-0
5-

02

CS 5114

Randomized Switching (3)

no notes

Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely (by chance).
In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.

CS 5114: Theory of Algorithms Spring 2014 408 / 418

Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely (by chance).
In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.

20
14

-0
5-

02

CS 5114

Randomized Switching (4)

no notes

Sorting on an array

Given: n processors labeled P1,P2, · · · ,Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?
CS 5114: Theory of Algorithms Spring 2014 409 / 418

Sorting on an array

Given: n processors labeled P1,P2, · · · ,Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?

20
14

-0
5-

02

CS 5114

Sorting on an array

Any algorithm that correctly sorts 1’s and 0’s by comparisons
will also correctly sort arbitrary numbers.

Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

CS 5114: Theory of Algorithms Spring 2014 410 / 418

Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 820
14

-0
5-

02

CS 5114

Parallel Array Sort

Manber Figure 12.8.

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.

CS 5114: Theory of Algorithms Spring 2014 411 / 418

Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.

20
14

-0
5-

02

CS 5114

Correctness of Odd-Even Transpose

no notes

Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.
Remove this diagonal, moving comparisons in the upper
triangle one step closer.
The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).

CS 5114: Theory of Algorithms Spring 2014 412 / 418

Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.
Remove this diagonal, moving comparisons in the upper
triangle one step closer.
The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).

20
14

-0
5-

02

CS 5114

Correctness (2)

Map the execution of n to an execution of n − 1 elements.

See Manber Figure 12.9.

Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.

CS 5114: Theory of Algorithms Spring 2014 413 / 418

Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.

20
14

-0
5-

02

CS 5114

Sorting Networks

no notes

Batcher’s Algorithm

For n a power of 2, assume a1,a2, · · · ,an and b1,b2, · · · ,bn

are sorted sequences.

Let x1, x2, · · · , x2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.
Split a, b into odd- and even- index elements.
Merge aodd with bodd , aeven with beven, yielding
o1,o2, · · · ,on and e1,e2, · · · ,en respectively.

CS 5114: Theory of Algorithms Spring 2014 414 / 418

Batcher’s Algorithm

For n a power of 2, assume a1,a2, · · · ,an and b1,b2, · · · ,bn

are sorted sequences.

Let x1, x2, · · · , x2n be the final merged order.

Need to merge disjoint parts of these sequences in parallel.
Split a, b into odd- and even- index elements.
Merge aodd with bodd , aeven with beven, yielding
o1,o2, · · · ,on and e1,e2, · · · ,en respectively.20

14
-0

5-
02

CS 5114

Batcher’s Algorithm

No notes

Batcher’s Sort Image
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

n/2
sort

sort
n/2

network
merge
n/2

network
merge
n/2

CS 5114: Theory of Algorithms Spring 2014 415 / 418

Batcher’s Sort Image
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

n/2
sort

sort
n/2

network
merge
n/2

network
merge
n/220

14
-0

5-
02

CS 5114

Batcher’s Sort Image

No notes

Batcher’s Algorithm Correctness

Theorem 12.3: For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1,ei) and x2i+1 = max(oi+1,ei).

Proof:
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).

CS 5114: Theory of Algorithms Spring 2014 416 / 418

Batcher’s Algorithm Correctness

Theorem 12.3: For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1,ei) and x2i+1 = max(oi+1,ei).

Proof:
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).

20
14

-0
5-

02

CS 5114

Batcher’s Algorithm Correctness

See Manber Figure 12.11.

Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.

CS 5114: Theory of Algorithms Spring 2014 417 / 418

Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.

20
14

-0
5-

02

CS 5114

Batcher Sort Complexity

O(log n) sort steps, with each associated merge step counting
O(log n).

Matrix-Vector Multiplication

Problem: Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:
Use n processor elements arranged in an array, with
processor Pi initially containing element bi .
Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n + m)

CS 5114: Theory of Algorithms Spring 2014 418 / 418

Matrix-Vector Multiplication

Problem: Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:
Use n processor elements arranged in an array, with
processor Pi initially containing element bi .
Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n + m)

20
14

-0
5-

02

CS 5114

Matrix-Vector Multiplication

See Manber Figure 12.17.

