CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2014

Copyright © 2014 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2014 1/418

CS5114: Theory of Algorithms

@ Emphasis: Creation of Algorithms
@ Less important:
» Analysis of algorithms
» Problem statement
» Programming
@ Central Paradigm: Mathematical Induction
» Find a way to solve a problem by solving one or more
smaller problems
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Review of Mathematical Induction

@ The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.
@ Purpose: To prove a parameterized theorem of the
form:
Theorem: Vn > ¢, P(n).
» Use only positive integers > c for n.
@ Sample P(n):
n+1<nr?
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Principle of Mathematical Induction

@ IF the following two statements are true:
@ P(c) is true.
@ Forn> ¢,P(n—1)is true — P(n) is true.
... THEN we may conclude: Vn > ¢, P(n).
@ The assumption “P(n — 1) is true” is the
induction hypothesis.
@ Typical induction proof form:
@ Base case

@ State induction Hypothesis
© Prove the implication (induction step)

@ What does this remind you of?
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Students should be familiar with inductive proofs, recursion,
data structures, and programming at the CS3114 level.
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LCSS1 14: Theory of Algorithms

Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).

We will use Analysis of Algorithms as a tool.

Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.

Divide and conquer is a way of solving a problem by solving
one more more smaller problems.

Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.

CS 5114 Review of Mathematical Induction

LReview of Mathematical Induction

First we will refresh/expand our our familiarity with induction.
Then we will try to apply an inductive approach to algorithm
design.

P(n) is a statement containing n as a variable.

This sample P(n) is true for n > 2, but false for n = 1.
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LPrincipIe of Mathematical Induction

Important: The goal is to prove the implication, not the
theorem! That is, prove that P(n — 1) — P(n). NOT to prove
P(n). This is much easier, because we can assume that
P(n—1)is true.

Consider the truth table for implication to see this. Since A — B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway if A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.

This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.



Induction Example 1

Theorem: Let

n
S(n)=>i=1+2+--+n
=l

Then, ¥n>1,S(n) = @
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Induction Example 2

Theorem: Vn > 1,V real x such that 1 + x > 0,
(1+x)">1+nx.
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Induction Example 3

Theorem: 2¢ and 5¢ stamps can be used to form any
denomination (for denominations > 4).
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Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

@ 4: Certainly

@ 3:?

2.7

@ 1: No!

Let’s try it for 2...
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Induction Example 1
Thearem:Let

S=3 =124

L Induction Example 1

01,500 - 252

Base Case: P(n) is true since S(1) =1 =1(1+1)/2.
Induction Hypothesis: S(i) = % fori < n.
Induction Step:

S(n) = S(h—1)+n=(n-1)n/2+n
n(n+1)
2

Therefore, P(n— 1) — P(n).

By the principle of Mathematical Induction,

vn>1,5(n) = @

Ml is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help us to construct a hypothesis.
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Induction Example 2

Llnduction Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n): (1+x)">1+ nx.

Base Case: (1 +x)' =1+x>1+1x
Induction Hypothesis: Assume (14 x)"~" > 1+ (n— 1)x
Induction Step:

(14+x)"

(1 +x)(1 4 x)""
(1+x)(1+(n—1)x)

= 14+nx—x+x+nx?—x?
= 14+nx+(n—1)x>

1+ nx.

Vv

v
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Induction Example 3

Theorem: 26 a5 stanps can bausod o fom any
enominaton for denomations = 4)

Llnduction Example 3

Base case: 4 =2 + 2.
Induction Hypothesis: Assume P(k) for4 < k < n.

Induction Step:
Case 1: n— 1 is made up of all 2¢ stamps. Then, replace 2 of
these with a 5¢ stamp.

Case 2: n— 1 includes a 5¢ stamp. Then, replace this with 3 2¢
stamps.

CS 5114 Colorings.
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Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.



Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.

Rule: Two regions that share an edge cannot be the same
color.

Theorem: It is possible to two-color the regions formed by n
lines.
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Strong Induction

IF the following two statements are true:
Q P(c)

Q@ P(i),i=1,2---,n—1— P(n),

.. THEN we may conclude: Vn > ¢, P(n).

Advantage: We can use statements other than P(n — 1) in
proving P(n).
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Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem: Let G = (V, E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).

CS 5114: Theory of Algorithms Spring 2014 11/418

Graph Problem (cont)

Theorem: Let G = (V, E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Base Case: Easy if n < 3 because there can be no path of
length > 2.

Induction Hypothesis: The theorem is true if |V| < n.
Induction Step (n > 3):

Pick any v € V.

Define: N(v) = {v} U{w e V|(v,w) € E}.

H= G- N(v).

Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.
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Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can't, so try
induction on lines.

Base Case: n = 1. Any line divides the plane into two regions.
Induction Hypothesis: It is possible to two-color the regions
formed by n— 1 lines.

Induction Step: Start with the regions formed from n — 1 lines
and 2-color them. Now, introduce the n'th line.

This line cuts some colored regions in two.

Reverse the region colors on one side of the n'th line.

A valid two-coloring results.

e Any boundary surviving the addition still has opposite colors.

e Any new boundary also has opposite colors after the switch.
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Strong Induction
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The previous examples were all very straightforward — simply
add in the n'th item and justify that the IH is maintained.

Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

e go backwards from n.

e prove a stronger IH.

to make the most of the IH.
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It should be obvious that the theorem is true for an undirected
graph. Picke any independent set. Then add any node not
adjacent, one by one.

Naive approach: Assume the theorem is true for any graph of
n — 1 vertices. Now add the nth vertex and its edges. But this
won’t work for the graph 1 <« 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.

Going forward is good for proving existance.

Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.
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Graph Problem (cont)
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N(v) is all vertices reachable (directly) from v. That is, the
Neighbors of v.
H is the graph induced by V — N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is

1 — 2 — 3, and we remove 1, then the independent set for H
must be vertex 2. We can'’t just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...



Graph Proof (cont)

There are two cases:

S(H) U {v} is independent.

Then S(G) = S(H) U {v}.

S(H) U {v} is not independent.

Let w € S(H) such that (w, v) € E.

Every vertex in N(v) can be reached by w with path of

length < 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.
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Fibonacci Numbers

Define Fibonacci numbers inductively as:

Theorem: Vn > 1, F(n)? + F(n+ 1)?

F(1) = F(2)=1
F(n) = F(n—=1)+F(n—

Induction Hypothesis:
F(n—1)2+ F(n)? = F(2n—1).

2),n>2.

= F(2n+1).
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Fibonacci Numbers (3)

With a stronger theorem comes a stronger IH!

Theorem:
F(n? + F(n+1)? = F(2n+ 1) and
F(n)2+2F(n)F(n—1) = F(2n).

Induction Hypothesis:
F(n—1)2+ F(n)?>=F(2n—1) and

F(n—1)2+2F(n—1)F(n—2) =

F(2n—2).
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Another Example

Theorem: All horses are the same color.

Proof: P(n): If Siis a set of n horses, then all horses in S

have the same color.

Base case: n= 1 is easy.
Induction Hypothesis: Assume P(i),i < n.
Induction Step:

Let S be a set of horses, |S| = n.

Let S’ be S — {h} for some horse h.
By IH, all horses in S’ have the same color.

Let A be some horse in S'.
IH implies {h, i} have all the same

Therefore, P(n) holds.

color.
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LGraph Proof (cont)
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“S(H) U {v} is not independent” means that there is an edge
from something in S(H) to v.

IMPORTANT: There cannot be an edge from v to S(H)
because whatever we can reach from v is in N(v) and would
have been removed in H.

We need strong induction for this proof because we don’t know
how many vertices are in N(v).

We must remove N(v) instead of just v because of this case:
We remove just v to yield H. S(H) turns out to have something
that can be reached from v. So, when we add v back to reform
G, v cannot become part of S(G) (because that would violate
the definition of independent set). But if v is 3 steps away from
anything in S(H), we must add it to satisfy the theorem. So are
stuck.

Fibonacci Numbers (2)

Expand both sides of the theorem, then cancel like terms:
F(2n+1) = F(2n)+ F(2n—1) and,

F(n)?+ F(n+1)> = F(n)?+ (F(n)+ F(n—1))?
= F(m?+ F(n)?+2F(n)F(n—1)+ F(n—1)?
= F(m?+ F(n—1)%+ F(n)? + 2F(n)F(n - 1)
= F(2n—1)+ F(n)?+2F(n)F(n—1).

2+ F(n
2+ F(n

Want: F(n)2 + F(n+1)2 = F(2n+1) = F(2n) + F(2n—1)
Steps above left us with needing to prove:

F(2n) + F(2n—1) = F(2n—1) + F(n)? +2F(n)F(n—1)
So we need to show that: F(2n) = F(n)? + 2F(n)F(n—1)

CS 5114 Graph Proof (cont)

To prove the original theorem, we must prove this. Since we

must do it anyway, we should take advantage of this in our
IH!
Spring 2014

Fibonacci Numbers (4)

F(n)?+2F(n)F(n—1)

= F(n?+2(F(n—1)+ F(n—2))F(n—1)

= F(n?+F(n—-1)2+2F(n—1)F(n—2)+ F(n—1)?

= F(n-1)+F(2n-2)
(

= F(2n).
F(n?+F(n+1)? = F(n)?+[F(n)+F(n-1)
= F(n)®+ F(n)?> + 2F(n)F(n—1) + F(n—1)?
= F(n)®+ F(2n)+ F(n—1)2
= F(@2n-1)+F(2n)
= F(2n+1)

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.
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The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.

If it were true for 2, then the whole proof woud| work. But we
cannot get from the base case to an arbitrary 2.

15/418

17/418




Algorithm Analysis

@ We want to “measure” algorithms.
@ What do we measure?

@ What factors affect measurement?

@ Obijective: Measures that are independent of all factors
except input.
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Time Complexity

@ Time and space are the most important computer
resources.
@ Function of input: T(input)
@ Growth of time with size of input:
» Establish an (integer) size n for inputs
» nnumbers in a list
» nedges in a graph
@ Consider time for all inputs of size n:
» Time varies widely with specific input
» Best case
» Average case
» Worst case
@ Time complexity T(n) counts steps in an algorithm.
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Asymptotic Analysis

@ It is undesirable/impossible to count the exact number of
steps in most algorithms.

» Instead, concentrate on main characteristics.

@ Solution: Asymptotic analysis
> Ignore small cases:
* Consider behavior approaching infinity
» Ignore constant factors, low order terms:
* 2n? looks the same as 5 + nto us.
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O Notation

O notation is a measure for “upper bound” of a growth rate.
@ pronounced “Big-oh”

Definition: For T(n) a non-negatively valued function, T(n)
is in the set O(f(n)) if there exist two positive constants ¢
and ny such that T(n) < cf(n) for all n > ny.

Examples:
@ 5n+8 € 0(n)
@ 21 + nlogn € O(n?) € O(n® + 5n?)
@ 2n? + nlogn € O(n?) € O(n® + n?)
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What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?

Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.

Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

CS 5114 Time Complexity
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LTime Complexity

Sometimes analyze in terms of more than one variable.

Best case usually not of interest.

Average case is usually what we want, but can be hard to
measure.

Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.

Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” — not
dependent on n.

CS 5114

Asymptotic Analysis

LAsymptotic Analysis

Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

CS 5114

0 Notation

LO Notation

Remember: The time equation is for some particular set of
inputs — best, worst, or average case.



O Notation (cont)

We seek the “simplest” and “strongest” f.

Big-O is somewhat like “<”:
n? € 0(n®) and n?log n € O(n®), but
@ n? +# n?logn
@ n? € O(n?) while n?log n ¢ O(n?)
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Growth Rate Grap
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Speedups
What happens when we buy a computer 10 times faster?

Tn) | n | n | Change |n'/n
10n 1,000 | 10,000 | " = 10n 10
20n 500 | 5,000 | " =10n 10
S5nlogn| 250 | 1,842 |v10n<n'<10n|7.37
2n? 70 223 | n" = /10n 3.16
27 13 16 | =n+3 ——

n: Size of input that can be processed in one hour (10,000
steps).

n': Size of input that can be processed in one hour on the
new machine (100,000 steps).
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Some Rules for Use

Definition: f is monotonically growing if n; > n, implies
f(n1) > f(nz).

We typically assume our time complexity function is
monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.

Ve > 0andVa > 1,(f(n))° € O(@™)

In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f(n) € O(s(n)) and g(n) € O(r(n)) then
@ f(n) +g(n) € O(s(n) + r(n)) = O(max(s(n), r(n)))
e f(n)g(n) € O(s(n)r(n)).

@ If s(n) € O(h(n)) then f(n) € O(h(n))
@ For any constant k, f(n) € O(ks(n))
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LO Notation (cont)
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A common misunderstanding:

e “The best case for my algorithm is n = 1 because that is the
fastest.” WRONG!

e Big-oh refers to a growth rate as n grows to oc.

e Best case is defined for the input of size n that is cheapest
among all inputs of size n.

CS 5114

Growth Rate Graph

LGrowth Rate Graph
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27 is an exponential algorithm. 10n and 20n differ only by a
constant.
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LSpeedups
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How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.

For n?, if n = 1000, then n’ would be 1003.

Compare T(n) = n? to T(n) = nlog n. For n > 58, it is faster to
have the ©(nlog n) algorithm than to have a computer that is
10 times faster.

CS 5114

LSome Rules for Use
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Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.

Is O(21(M) e O(31(M)? Yes, but not vice versa.

37 =1.5" x 2" so no constant could ever make 2" bigger than
37 for all n.

functional composition



g CS 5114 Other Asymptotic Notation
3
1 1 < LOther Asymptotic Notation
Other Asymptotic Notation -
Q(f(n)) — lower bound (>) Q is most userful to discuss cost of problems, not algorithms.
Definition: For T(n) a non-negatively valued function, T(n) Once you have an equation, the bounds have met. So this is
is in the set Q(g(n)) if there exist two positive constants ¢ more interesting when discussing your level of uncertainty

and no such that T(n) > cg(n) for all n > no. about the difference between the upper and lower bound.

-
Ex: n*logn e Q(nz)' You have © when you have the upper and the lower bounds

meeting. So © means that you know a lot more than just

O(f(n)) — Exact bound (=) Big-oh, and so is perferred when possible.

Definition: g(n) = ©(f(n)) if g(n) € O(f(n)) and

g(n) € Q(f(n)). A common misunderstanding:

Important!: Itis © if it is both in big-Oh and in Q. ¢ Confusing worst case with upper bound.

Ex: 5m° + 4 +9n+7 = ©(n°) o Upper bound refers to a growth rate.

e Worst case refers to the worst input from among the choices
Spring2014 27418 for possible inputs of a given size.
o CS5114 Other Asymptotic Notation (cont)
=
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H H < LOther Asymptotic Notation (cont)
Other Asymptotic Notation (cont) -

o(f(n)) — little o (<) We won'’t use these too much.
Definition: g(n) € o(f(n)) if limy_ % =0
Ex: n? € o(n®)

w(f(n)) — little omega (>)
Definition: g(n) € w(f(n)) if f(n) € o(g(n)).
Ex: n° € w(n?)

oo(f(n))
Definition: T(n) = oo(f(n)) if T(n) = O(f(n)) but the
constant in the O is so large that the algorithm is impractical.

o CS5114 Aim of Algorithm Analysis
Q e
- = = O. L
Aim of Algorithm Analysis =z Aim of Algorithm Aralysis
o
N

Typically want to find “simple” f(n) such that T(n) = ©(f(n)).

. We prefer © over Big-oh because © means that we understand
@ Sometimes we settle for O(f(n)). P 9

our bounds and they met. But if we just can’t find that the

Usually we measure T as “worst case” time complexity. bottom meets the top, then we are stuck with just Big-oh. Lower
Sometimes we measure “average case” time complexity. bounds can be hard. For problems we are often interested in Q
Approach: Estimate number of “steps”

@ Appropriate step depends on the problem. — but this is often hard for non-trivial situations!

@ Ex: measure key comparisons for sorting

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

Summation: Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations: Used for counting steps in For the sorting example, key comparisons must be
recursion. constant-time to be used as a cost measure.
Spring 2014 29/418
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To an algorithm designer, what would it mean to solve a oo . .
——— Sorting: If you only know simple sorts, your upper bound is

problem? o(?)

Upper bound: The upper bound for the best algorithm that Then you learn better sorts and your upper bound is O(nlog n)
we know. ) } A naive lower bound is Q(n). Later we learn the proof that no
Lower bognd: The best (biggest) lower bound possible for (general) sorting algorithm can have a worst case better than
any algorithm to solve the problem. Q(nlog n).

At that point, we know that sorting is ©(n). Minimum Finding:
Lower bounds are hard!

We know that we understand our problem when the bounds The upper bound is O(n) because we know an algorithm to
match. solve it in that time.

The lower bound is Q2(n) because we have to look at every

! value to be sure we have the answer
Example: Sorting

Example: Find the minimum value in an unsorted list.



Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.
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Summation Example

S(n) = Z 3
i=0

Guess that S(n) is a polynomial < n®.
Equivalently, guess that it has the form
S(n) = an® + bn® + cn+ d.

For n =0 we have S(n) =0so d = 0.
Forn=1wehavea+b+c+0=1.
For n = 2 we have 8a+ 4b + 2c = 5.
For n = 3 we have 27a+ 9b + 3¢ = 14.

i i i 1 1 1
Solving these equations yields a= 3, b= 5,¢c = ¢
Now, prove the solution with induction.
SEITEDE SR

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate
intermediate terms.

n
G(n)=> ar'=a+ar+ar’+---+ar"
i=0

Shift by multiplying by r.

rG(n) = ar+ar® +--- + ar" + ar"!

Subtract.
G(n) — rG(n) = G(n)(1 —r) = a— ar""'
o n+1
Gn) = 25— r#1
Spring 2014 39/418
Example 3.3

n
G(n) =) i2'=1x2+2x22+38x2%4... 4+ nx2"
i=i

Multiply by 2.

2G(n) =1 50 P2 AL 0 S I L () S Do L L s (oI
Subtract (Note: >, 2/ = 2m1 — 2)

2G(n) — G(n) 22T o2 0
G(n) = mmt! —2mtt 42
(n—1)2™" +2
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Summation: Guess and Test

Tochiue 1 Guess o solon and us ndeton o

Tochigue 12 Gusss e form o e solton,anduee
imanscus suatons o genaat consas. Finaly, 5o
nicion ot

LSummation: Guess and Test

no notes

CS 5114 Summation Example

sm-3or

LSummation Example

This is Manber Problem 2.5.

We need to prove by induction since we don’t know that the
guessed form is correct. All that we know without doing the
proof is that the form we guessed models some low-order
points on the equation properly.

CS 5114 Technique 2: Shifted Sums

LTechnique 2: Shifted Sums

We often solve summations in this way — by multiplying by
something or subtracting something. The big problem is that it
can be a bit like finding a needle in a haystack to decide what
“move” to make. We need to do something that gives us a new
sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
an easier summation.

Shift by multiplying by r is a reasonable guess in this example
since the terms differ by a factor of r.

CS 5114 Example 3.3

LExampIe B13]

no notes
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LRecurrence Relations

Recurrence Relations

2014-05-02

)< ET )

@ A (math) function defined in terms of itself. We won'’t spend a lot of time on techniques... just enough to be
@ Example: Fibonacci numbers: able to use them.

F(n)=F(n—1)+ F(n—2) general case
F(1)=F(2) =1 base cases
@ There are always one or more general cases and one or
more base cases.
@ We will use recurrences for time complexity of recursive
(computer) functions.
@ General formatis T(n) = E(T,n) where E(T,n)is an
expression in T and n.
> T(n)=2T(n/2)+n
@ Alternately, an upper bound: T(n) < E(T, n).
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CS 5114

Solving Recurrences

LSoIving Recurrences

Solving Recurrences

2014-05-02

We would like to find a closed form solution for T(n) such Note that “finding a closed form” means that we have f(n) that
that: doesn'tinclude T.
T(n) = ©(f(n))
Can't find lower bound for the inequality because you do not
Alternatively, find lower bound know enough... you don’t know how much bigger E(T, n) is
@ Not possible for inequalities of form T(n) < E(T, n). than T(n), so the result might not be (T (n)).
Guessing is useful for finding an asymptotic solution. Use
Methods: induction to prove the guess correct.
@ Guess (and test) a solution
@ Expand recurrence

@ Theorems
Spring 2014 36/ 418
o CS5114
o
. 8
Guessing < L Guessing

S

T(n)=2T(n/2)+5m n>2

T(1)=7 For Big-oh, not many choices in what to guess.

Note that T is defined only for powers of 2.
7x18=7

Guess a solution: T(n) < ¢in® = f(n)
T(1) =7 implies that ¢, > 7 Because 23r° + 5m = 2n® when n = 1, and as n grows, the
right side grows even faster.
Inductively, assume T(n/2) < f(n/2).
T(n) 2T(n/2) + 5n°
2¢i(n/2)® + 5
ci(n®/4) + 50
¢’ if ¢y >20/3.
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CS 5114

Guessing (cont)

oot b nducion: yoigs:

LGuessing (cont)

Guessing (cont)

2014-05-02

No - try something tighter.

Therefore, if ¢; = 7, a proof by induction yields:
T(n)<7n®
T(n) € O(n®)

Is this the best possible solution?

CS 5114: Theory of Algorithms Spring 2014 38/418



Guessing (cont)

Guess again.
T(n) < cer® = g(n)
T(1) =7 implies ¢, > 7.

Inductively, assume T(n/2) < g(n/2).

T(n) = 2T(n/2)+5n?
2¢(n/2)? + 5
c(n?/2) +5n°

e if e, > 10

I IA

IA

Therefore, if co =10, T(n) < 10n2.

Is this the best possible upper bound?

T(n) = O(r?).

Spring 2014

Guessing (cont)

Now, reshape the recurrence so that T is defined for all
values of n.

T(n) <2T([n/2))+5m n>2

For arbitrary n, let 2k-1 < n < 2k,

We have already shown that T(2F) < 10(2%)2.
T(n) < T(2) <10(24)?
= 10(2%/n)?n? < 10(2)2r?
< 40r°
Hence, T(n) = O(n?) for all values of n.

Typically, the bound for powers of two generalizes to all n.

Spring 2014

Expanding Recurrences

Usually, start with equality version of recurrence.

T(n) = 2T(n/2)+5n?
TH) = 7

Assume n is a power of 2; n = 2.

CS 5114: Theory of Algorithms

Spring 2014

Expanding Recurrences (cont)

T(n) = 2T(n/2)+5n?
= 2(2T(n/4) +5(n/2)?) + 5n°
= 2(2(2T(n/8) + 5(n/4)?) + 5(n/2)?) + 5n?
= 2KT(1) +2K=1.5(n/2k=1)2 4 2k=2 . 5(n/2k=2)?
+...4+2.5(n/2)% +5n°

k—1 k—1

= 7Tn+5% /2’ =7n+5m> 1/2/
i=0 i=0

= 7n+5m(2—1/2kT)

= 7n+5n(2-2/n).

This it the exact solution for powers of 2. T(n) = O(n?).

Spring 2014

CS 5114

Guessing (cont)

LGuessing (cont)

2014-05-02

Because 12n? + 5n? = 10n? for n = 1, and the right hand side
grows faster.

Yes this is best, since T(n) can be as bad as 5n?.

39/418
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LGuessing (cont)
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no notes
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Expanding Recurrences.

LExpanding Recurrences

2014-05-02

no notes
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LExpanding Recurrences (cont)
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no notes
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Divide and Conquer Recurrences

These have the form:

T(n)
) =

... where a, b, ¢, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the

solutions.

CS 5114 Theory of Algorithms

Divide and Conquer Recurrences
(cont)

Expand the sum; n = b™.

T(n)

a(aT(n/b?) + c(n/b)k) + cn*
a"T(1) 4+ a™ 'e(n/b™ )k + ... + ac(n/b) + cnk

ca” zm:(bk /a)’
i=0

amn = alogbn — nlogsa
The summation is a geometric series whose sum depends
on the ratio

o CS5114
<
0
g L
< Divide and Conquer Recurrences
1)
(3
no notes
aT(n/b) + cn*
C
Spring2014  43/418

o CS5114
S
[Te}
g L
< Divide and Conquer Recurrences (cont)
o
(3

n=b"= m= logpn.

Set a = b'°% 2, Switch order of logs, giving
(blOQb n)logb a _ plog,a

r=bk/a

There are 3 cases.

CS 5114: Theory of Algorithms

(1) r<1.

CS 5114: Theory of Algorithms

D & C Recurrences (Case 3)

(3)r>1.

D & C Recurrences (cont)

m
d r<1/(1-r),  aconstant.
i=0

Spring 2014 44/418

CS 5114

LD & C Recurrences (cont)

2014-05-02

When r = 1, since r = bX/a= 1, we get a = b".
Recall that k = logpa.

T(n) = ©(a") = ©(n'°%3).

m
i=0

r'=m+1=log,n+1

T(n) = ©(n®%2log n) = ©(n*log n)

Spring 2014 45/418

CS 5114

LD & C Recurrences (Case 3)

2014-05-02

no notes

rm+1 1

ir’ =—— =—9(rM

So, from T(n) = ca™ . r/,

CS 5114: Theory of Algorithms

T(n) =

r—1

o(a™r™)
o(a"(b"/a)")
@(bkm)

o(n")
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Divide and Conquer Recurrences
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Divide and Conquer Recurrences
(cont)

Expandhosumi - .
T~ saTin) o) et
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G stnp ot

D & C Recurrences (cont)
et
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CS 5114

Summary

o anw
m,.{.m,.ny i
sim

LSummary

Summary

2014-05-02

Gaza (2 hlds: Tin) - )

Theorem 3.4: We simplify by approximating summations.

O(n°%a)  ifa > bk
T(n) =< ©(n*logn) ifa=b*
o(nv) if a < bk

Apply the theorem:

T(n) =3T(n/5) + 8n?.
a=3,b=5c=8k=2.
bk/a = 25/3.

Case (3) holds: T(n) = ©(n?).

o CS5114 Examples
S
3 L
< Examples
Examples - .
a by b
@ Mergesort: T(n) =2T(n/2) + n. [ G G2 ] = | an &2 ] { o2 ]
21/2 — 1,50 T(n) = ©(nlog n). Co1 Co2 a1 a2 ba1 boo
e Binary search: T(n) = T(n/2) + 2 In the straightforward implementation, 2 x 2 case is:
2°/1 =1, so T(n) = ©(log n). Ci1 = ay1b11 + ayobor
@ Insertion sort: T(n) = T(n—1) + n. Cio = ay1bia + ar2boo
Can't apply the theorem. Sorry! Co1 = ap1bi1 + anpbor
° ?_t&r;d_alrg_’l_\zls;g I\+/IL,J7I§|pIy (recursively): Cop — ap1biz + apobos
22/8 = 1/2 s0 T(n) = ©(n'°%8) = O(n®). So the recursion is 8 calls of half size, and the additions take
O(n?) work.
o CS5114 Useful log Notation
3
3 L
1 < Useful log Notation
Useful log Notation -
no notes
@ If you want to take the log of (log n), it is written log log n.
@ (log n)? can be written log? n.
@ Don't get these confused!
@ log® n means “the number of times that the log of n must
be taken before n < 1.
» For example, 65536 = 216 so log* 65536 = 4 since
log 65536 = 16, log 16 = 4, log4 = 2, log2 = 1.
g CS 5114 Amortized Analysis
g A ——
Amortlzed AnalySIS frl_ L Amortized Analysis
o
()
Consider this variation on STACK:
no notes

void init (STACK S);

element examineTop (STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given my calls to push, m» calls to pop:
Naive worst case: my + mo - n=my + my - my.
Spring 2014 50/418



Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for

future pop operations.

The cost for my pushes and m. pops:
my + (M + my) = O(my + M)

CS 5114: Theory of Algorithms Spring 2014

Creative Design of Algorithms by
Induction

Analogy: Induction « Algorithms

Begin with a problem:
@ “Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances.

Example: Sorting
@ Q contains all finite sequences of integers.

Solving Q
First step:

@ Parameterize problem by size: Q(n)

Example: Sorting
@ Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:
e Q(1),Q(2),...,Q(n)

Algorithm: Solve for an instance in Q(n) by solving
instances in Q(i), i < nand combining as necessary.

CS 5114: Theory of Algorithms Spring 2014

Induction

Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem: Vn > 1, we can solve instances in Q(n).
@ This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
@ Different inductive proofs are possible.
@ We want the most efficient algorithm!

CS 5114: Theory of Algorithms Spring 2014
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CS 5114 Alternate Analysis

Use amartzad analsis n mulple cal o e,
anno oo mors ament ha g pushod ol e siac

LAIternale Analysis ERRI TS
et e e i

Tho cotfor  pushos and m ops:
) = O+ me)

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this — we won’t go into this much,
but we use Amortized Analysis implicitly sometimes.

CS 5114

Creative Design of Algorithms by
Ansoay nucton <+ Agaritms

Begvin a pobiem:
«Fid 2 soluon o prolom 0°

LCreative Design of Algorithms by Induction

ik 10 2 st codaning an e umbor ot
problem ntances.

Exangl: Soring
G conans 34t sequances o rgers.

Now that we have completed the tool review, we will do two
things:

1. Survey algorithms in application areas
2. Try to understand how to create efficient algorithms

This chapter is about the second. The remaining chapters do
the second in the context of the first.

| + A is reasonably obvious — we often use induction to prove
that an algorithm is correct. The intellectual claim of Manber is
that | — A gives insight into problem solving.

CS 5114

Solving Q
T Peenceispotomby e a0
\—Solving Q s

Qs row an s ssquenceof proties:
« 001 0)....0fn)

Rpr—

Agortn: Soa frsnnstance i (o) by sohing
g™ Q). < nandcombining 8 ecessary.

This is a “meta” algorithm — An algorithm for finding algorithms!

CS 5114 Induction

L Induction

The goal is using Strong Induction.

Correctness is proved by induction.

Example: Sorting
e Sort n— 1 items, add nth item (insertion sort)
e Sort 2 sets of n/2, merge together (mergesort)
e Sort values < x and > x (quicksort)



Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9].[5.7],[0,3],[4,8],[6,10],[7.8],[0,5],[1, 3], [6, 8]

I I Y I I I |
T T 1T T 1T T T T
012345678910

Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
@ Mark [6, 9] since [6,9] C [6,10]

CS 5114: Theory of Algorithms Spring 2014 56 /418

Interval Containment (cont)

@ Q(n): Instances of nintervals
@ Base case: Q(1) is easy.
@ Inductive Hypothesis: For n > 1, we know how to
solve an instance in Q(n — 1).
@ Induction step: Solve for Q(n).
» Solve for first n — 1 intervals, applying inductive
hypothesis.
» Check the nth interval against intervals i = 1,2, - -
» [f interval i contains interval n, mark interval n. (stop)
> If interval n contains interval i, mark interval /.
@ Analysis:
T(n)=T(n—1)+cn
T(n) = ©(n?)

CS 5114: Theory of Algorithms Spring 2014 57/418

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.

(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n — 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.
Sping 2014 58/418
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CS 5114

Llnterval Containment

no notes

CS 5114

Interval Containment (cont)

Probiem: oty and mark anerals at e coraned
Came aimar en,

Llnterval Containment (cont)

Eanpl:
o Wk 6,51 sca 16,91 < [5.10]

[56,71 C [4,8]
[0,3] € [0,5]
[7,8] € [6,10]
[1,3] € [0,9]
[6,8] € [6,10]
[6,9] C [6,10]

CS 5114

Llnterval Containment (cont)

Base case: Nothing is contained

CS 5114

L“Creative" Algorithm

In the example, the nth interval is [7, 8].

Every other interval has left endpoint to left, or right endpoint to
right.

We must keep track of the current right-most endpont.



“Creative” Solution Induction

Induction Hypothesis: Can solve for Q(n — 1) AND interval

n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n — 1 segments.

Induction Step: (to solve Q(n))
@ Sort by left endpoints
@ Solve for first n — 1 intervals recursively, remembering
R.
@ If the rightmost endpoint of nth interval is < R, then
mark the nth interval.
@ Else R < right endpoint of nth interval.

Analysis: ©(nlog n) + ©(n).
Lesson: Preprocessing, often sorting, can help sometimes.
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Maximal Induced Subgraph

Problem: Given a graph G = (V, E) and an integer k, find a
maximal induced subgraph H = (U, F) such that all vertices
in H have degree > k.

Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in

advance if somebody won'’t come. ©
Example: For k = 3. ‘
o

. ©)

O ®
Solution:

©)
CS 5114: Theory of Algorithms Spring 2014 60/418

Max Induced Subgraph Solution

Q(s, k): Instances where |V| = s and k is a fixed integer.
Theorem: Vs, k > 0, we can solve an instance in Q(s, k).

Analysis: Should be able to implement algorithm in time
(VI + [E).
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Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem: If we can ask questions of the form “does person i

know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?

CS 5114: Theory of Algorithms Spring 2014 62/418
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CS 5114 “Creative” Solution Induction
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L“Creative" Solution Induction

We strengthened the induction hypothesis. In algorithms, this
does cost something.

We must sort.

Analysis: Time for sort + constant time per interval.

CS 5114 Maximal Induced Subgraph

LMaximaI Induced Subgraph

Induced subgraph: U is a subset of V, F is a subset of E such
that both ends of e € E are members of U.
Solutionis: U = {1,3,4,5}

CS 5114 Max Induced Subgraph Solution

(.4 Instances wher V1 = 5 and s  thod igar:

Theorem: v - 0, v can sl st n O K).

LMax Induced Subgraph Solution

Anaysis: Srould bo sl o mpiement agorinm i e
irac

Base Case: s = 1 H is the empty graph.

Induction Hypothesis: Assume s > 1. we can solve instances
of Q(s —1,k).

Induction Step: Show that we can solve an instance of
G(V,E)in Q(s, k). Two cases:

(1) Every vertex in G has degree > k. H = G is the only solution.

(2) Otherwise, let v € V have degree < k. G — v is an instance
of Q(s — 1, k) which we know how to solve.

By induction, the theorem follows.

Visit all edges to generate degree counts for the vertices. Any
vertex with degree below k goes on a queue. Pull the vertices
off the queue one by one, and reduce the degree of their
neighbors. Add the neighbor to the queue if it drops below k.

CS 5114 Celebrity Problem
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LCeIebrity Problem
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no notes



Celebrity Problem (cont)

Formulate as an n x n boolean matrix M.
Mj; = 1 iff i knows j.

Example:

(D) o e
—~—oco-so0
—~— o= a0
TP
—~— 0o = =0

A celebrity has all 0’s in his row and all 1’s in his column.
There can be at most one celebrity.

Clearly, O(n?) questions suffice. Can we do better?
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Efficient Celebrity Algorithm

Appeal to induction:

@ If we have an n x n matrix, how can we reduce it to an
(n—1) x (n— 1) matrix?

What are ways to select the n'th person?
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Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

@ Strike one row and one column.

10010
11111
10111
00010
11111

Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

Sering 2014 65413
Celebrity Algorithm
Algorithm:

@ Ask n— 1 questions to eliminate n — 1 non-celebrities.
This leaves one candidate who might be a celebrity.
@ Ask 2(n— 1) questions to check candidate.

Analysis:
@ O(n) questions are asked.
Example:
@ Does 1 know 2? No. Eliminate 2 1 ? (1) 1 (1)
@ Does 1 know 3? No. Eliminate 3 101 1 1
@ Does 1 know 4? Yes. Eliminate 1 000410
@ Does 4 know 5? No. Eliminate 5 1111 1

4 remains as candidate.
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CS 5114 Celebrity Problem (cont)

LCeIebrity Problem (cont)

A ooty has all O i i row and il 15 i clumn.

2014-05-02

“Thrs can b i o one celebry

Cloaty,0(7)cvesions st Gan wodo boter?

The celebrity in this example is 4.

CS 5114 Efficient Celebrity Algorithm

Appea o ducton
s o a1 < 1 mar, b can wo recuce 1.0

LEfficienl Celebrity Algorithm G e

Whatae ways o st he i person?”

2014-05-02

This induction implies that we go backwards. Natural thing to
try: pick arbitrary n'th person.

Assume that we can solve for n — 1. What happens when we
add nth person?

e Celebrity candidate in n — 1 — just ask two questions.

e Celebrity is n— must check 2(n — 1) positions. O(r?).

« No celebrity. Again, O(r?).
So we will have to look for something special. Who can we
eliminate? There are only two choices: A celebrity or a
non-celebrity. It doesn’t make sense to eliminate a celebrity. Is

there an easy way to guarentee that we eliminate a
non-celeberity on each question?

CS 5114 Efficient Celebrity Algorithm (cont)

LEfficienl Celebrity Algorithm (cont)

2014-05-02

no notes

CS 5114 Celebrity Algorithm.

LCeIebrity Algorithm

2014-05-02

Why do we need to verify that 4 really is a celebrity?
Becasue we never checked it against 2 and 3, just against 1
and 5.



Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.

@ It follows that the maximum subsequence of a sequence

of all negative numbers is the empty subsequence.

Example:
2,11,-9,3,4,-6,-7,7,-3,5, 6, -2

Maximum subsequence:
7,-3,5,6 Sum: 15
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Finding an Algorithm

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.
@ First, figure out how to compute the sum.

@ Then, figure out how to get the subsequence that
computes that sum.
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Finding an Algorithm (cont)

Induction Hypothesis: We can find the maximum
subsequence sum for a sequence of < n numbers.
Let S= xq,x,- -, X, be the sequence.
Base case: n =1

Either x; < 0 = sum = 0

Or sum = xy.
Induction Step:

@ We know the maximum subsequence SUM(n-1) for

X1,X2, " , Xn—1.
@ Where does x, fit in?
» Either it is not in the maximum subsequence or it ends
the maximum subsequence.
@ If x, ends the maximum subsequence, it is appended to

trailing maximum subsequence of x, - -+, Xp_1.

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a
subsequence that ends xi, -, X,_1.

To get this, we need a stronger induction hypothesis.
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LMaximum Consecutive Subsequence

2014-05-02

no notes

CS 5114

LFinding an Algorithm

2014-05-02

no notes

CS 5114

LFinding an Algorithm (cont)

2014-05-02

That is, of the numbers seen so far.

CS 5114

LFinding an Algorithm (cont)

2014-05-02

no notes

Maximum Consecutive Subsequence

i asequence ofgers,fnd a ontuous

e ot soqurce
iy suosequence

Eanci:
211.9.9.4,6.7.7.3,55.2

Marirun subsoquoce:
T5ae  Sum 15

Finding an Algorithm

Finding an Algorithm (cont)

Finding an Algorithm (cont)

NoodTRALNGSUMI(1) ich he masimum sum of a
et ond x, 7.1

T ot i, we oo asngor ncucion ypaness



CS 5114

Maximum Subsequence Solution

LMaximum Subsequence Solution

2014-05-02

Maximum Subsequence Solution

no notes
New Induction Hypothesis: We can find SUM(n-1) and

TRAILINGSUM(n-1) for any sequence of n — 1 integers.

Base case:
SUM(1) = TRAILINGSUM(1) = Max(0, xy).

Induction step:
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xp).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xp).
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CS 5114

Maximum Subsequence Solution
(cont)

LMaximum Subsequence Solution (cont)

Maximum Subsequence Solution
(cont)

2014-05-02

o(n). T(n)=T(n—1)+2.
Remember position information as well.
Analysis:
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?

o CS5114 The Knapsack Problem
3
3
The KnapsaCk PrObIem < LThe Knapsack Problem
Problem: EroenomD
@ Given an integer capacity K and n items such that item i This version of Knapsack is one of several variations.
has an integer size k;, find a subset of the nitems Think about solving this for 163. An answer is:
whose sizes exactly sum to K, if possible.
@ Thatis, find S C {1,2,--- , n} such that §=1{9,27,54,73}
> k=K.
ics Now, try solving for K = 164. An answer is:
S=1{19,44,101}.
Example: {19.44.101}
Knapsack capacity K = 163.
10 items with sizes There is no relationship between these solutions!
4,9,15,19,27,44,54 68,73,101
o CS5114 Knapsack Algorithm Approach
3
8
1 < LKnapsack Algorithm Approach
Knapsack Algorithm Approach -

- . Is there a subset S such that 3~ S; = K?
Instead of parameterizing the problem just by the number of

items n, we parameterize by both n and by K.

P(n, K) is the problem with n items and capacity K.

First consider the decision problem: Is there a subset S?
Induction Hypothesis:

We know how to solve P(n— 1, K).
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o CS 5114
2
A
Knapsack Induction z s
(3]
Induction Hypothesis: But... I don’tl know how tq s'olve P(n—1,K — kp) since it is not
We know how to solve P(n — 1, K). in my induction hypothesis! So, we must strengthen the

induction hypothesis.
el b2 ) . . New Induction Hypothesis:
@ If P(n— 1, K) has a solution, then it is also a solution for We know how to solve P(n — 1,k),0 < k < K.
P(n,K). I

@ Otherwise, P(n, K) has a solution iff P(n — 1, K — k)
has a solution.

So what should the induction hypothesis really be?
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CS 5114

Knapsack: New Induction

LKnapsack: New Induction

Knapsack: New Induction

2014-05-02

Need to solve two subproblems: P(n— 1, k) and
@ New Induction Hypothesis: P(n—1,k = kn).
We know how to solve P(n—1,k),0 < k < K.
@ To solve P(n, K):
If P(n—1,K) has a solution,
Then P(n, K) has a solution.
Else If P(n— 1, K — k,) has a solution,
Then P(n, K) has a solution.
Else P(n, K) has no solution.
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CS 5114

Algorithm Complexity

LAIgorithm Complexity

Algorithm Complexity

2014-05-02

Problem: Can’'t use Theorem 3.4 in this form.

@ Resulting algorithm complexity:
T(n)=2T(n—1)+¢c n>2
T(n)=06(2") by expanding sum.

@ But, there are only n(K + 1) problems defined.

» |t must be that problems are being re-solved many times
by this algorithm. Don’t do that.
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Efficient Algorithm Implementation

LEfficienl Algorithm Implementation

Efficient Algorithm Implementation

2014-05-02

The key is to avoid re-computing subproblems. To solve P(i, k) look at entry in the table.
If it is marked, then OK.
Otherwise solve recursively.

Implementation: Initially, fill in all P(i, 0).

@ Store an n x (K + 1) matrix to contain solutions for all
the P(i, k).
@ Fill in the table row by row.
@ Alternately, fill in table using logic above.
Analysis:
T(n) = ©(nK).
Space needed is also ©(nK).
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Example

K =10, with 5 items having size 9, 2, 7, 4, 1.

0|1(2[3|4|5/6| 7 |8| 9 |10
k=9|0|—|—|—|— [ =1=17 1=
k=2|0|—|T|—|- —T=1=ro@]=
ks=7|0]—|O0[=]— — 7 =10 =
k=4]0|-|O0|-|1 Il O |-| O] -
k=100l ]|O|Il|O|l/O|!I]| O /
Key:

— No solution for P(i, k)

O Solution(s) for P(i, k) with i omitted.

I Solution(s) for P(i, k) with i included.

1/ O Solutions for P(i, k) both with i included and with i
omitted.

CS 5114: Theory of Algorithms Spring 2014 79/418

Solution Graph

Find all solutions for P(5,10).
M(1, 0) M(1,9)
N}(Z, 2) 1\/}(2, 9)
N}(S, 9)
1\/}(4, 9)
M5, 10)

The result is an n-level DAG.

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming.

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems.
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Fibonacci Sequence

int Fibr (int n) {
if (n <= 1) return 1; // Base case
return Fibr (n-1) + Fibr (n-2); // Recursion

@ Cost is Exponential. Why?

@ If we could eliminate redundancy, cost would be greatly
reduced.
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o CS5114

o

8

< LExampIe

1)

N
Example: M(3, 9) contains O because P(2,9) has a solution.
It contains / because P(2,2) = P(2,9 — 7) has a solution.
How can we find a solution to P(5, 10) from M?
How can we find all solutions for P(5,10)?

o CS5114

o

8

< LSqution Graph

1)

N
Alternative approach:
Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and
retrieving) subproblem solutions.

o CS5114

o

8

< LDynamic Programming

1)

N
no notes

o CS 5114

o

8

< LFibonacci Sequence

1)

N

Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
two function calls of size n — 1 each.



Fibonacci Sequence (cont)
@ Keep a table

int Fibrt (int n, intx Values) {

// Assume Values has at least n slots, and

// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0)
Values[n] = Fibrt(n-1, Values) +
Fibrt (n-2, Values);
return Values|[n];
}
@ Cost?
@ We don'’t need table, only last 2 values.
» Key is working bottom up.

Spring 2014

Chained Matrix Multiplication

Problem: Compute the product of n matrices

M=M; x M x ---x M,
as efficiently as possible.

If Aisr x sand Bis s x t, then
COST(A x B) =
SIZE(A x B) =

If Cis t x uthen
COST((Ax B) x C) =
COST((Ax (B x C))) =

Spring 2014
Order Matters
Example:
A=2x8B=8x5C0C=5x%x20
COST((Ax B) x C) =
COST(Ax (Bx C)) =
View as binary trees:
Spring 2014

Chained Matrix Induction

Induction Hypothesis: We can find the optimal evaluation
tree for the multiplication of < n— 1 matrices.

Induction Step: Suppose that we start with the tree for:

M1 X Mg X e X Mn_1
and try to add M,.

Two obvious choices:
@ Multiply M, x M, and replace M,_; in the tree with a
subtree.
@ Multiply M, by the result of P(n — 1): make a new root.

Visually, adding M, may radically order the (optimal) tree.

Spring 2014

// Compute and store

83/418

84/418

85/418

86/418

2014-05-02

2014-05-02

2014-05-02

2014-05-02

CS 5114 Fibonacci Sequence (cont)

LFibonacci Sequence (cont)

no notes

CS 5114

Chained Matrix Multiplication

LChained Matrix Multiplication

Ax B:
COST: rst
SIZE:r x t

rst+ (r x t)(t x u) = rst + rtu.
(rxs)[(sx t)(txu) = (rxs)(sxu).
rsu + stu.

CS 5114

Order Matters.

LOrder Matters

2-8-5+2-5-20 = 280.
8-5-20+2-8-20=1120.

Tree for (A x B) x C) =: -- ABC
Tree for (Ax (Bx C)=:-A-BC

We would like to find the optimal order for computation before
actually doing the matrix multiplications.

CS 5114

LChained Matrix Induction

Problem: There is no reason to believe that either of these

yields the optimal ordering.



CS 5114

Alternate Induction

Induction Step: Pick some multiplication as the root, then
recursively process each subtree.

@ Which one? Try them all!

@ Choose the cheapest one as the answer.

@ How many choices?
Observation: If we know the ith multiplication is the root,
then the left subtree is the optimal tree for the first i — 1
multiplications and the right subtree is the optimal tree for
the last n — i — 1 multiplications.

LAIternale Induction

2014-05-02

n — 1 choices for root.

Notation: for1 </ <j <n,
cli. j] = minimum cost to multiply M; x M4 x --- x M;.

So,c[1,n] = 1<rljlilr7171 rofirn + c[1,i] + cli + 1, n].
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CS 5114 Analysis

Fort <K< cfic k-0

Analysis

LAnaIysis

2014-05-02

Base Cases: For 1 < k < n, c[k, k] = 0.
More generally:

only () vaos cf oo cactad!

2 calls for each root choice, with (j — i) choices for root. But,
cli,j]l = 1<T<i” 1 rioarr + cli, k] + clk +1, ] these don't all have equal cost.
<k<j-

Solving cli, ] requires 2(j — i) recursive calls. T(n+1)=2%0,T(k)
Analysis: So:
1 n—1

(T(k)+ T(n—k)) =2 T(k) T(n+1) - T(n)

1 k=1

n

T(n) =

[

n n—1
2) T(k)-2> T(k)
o7y
3T(n)

—_
Il

(1) =
T(n+1) T(n)+2T(n)=3T(n) T(n+1)
T(n) = ©(3") Ugh!
But there are only ©(n?) values c[i, ] to be calculated!
Spring 2014 88/418

Actually, since j > i, only about half that needs to be done.
CS5114

Dynamic Programming

LDynamic Programming

2014-05-02

Make an n x n table with entry (i, j) = c[i, ]].

c[t,1]|c[1,2]|--- | c[1,n The array is processed starting with the middle diagonal (all
c[2,2] |--- | c[2,n zeros), diagonal by diagonal toward the upper left corner.
c[n, n]

Only upper triangle is used.

Fill in table diagonal by diagonal.
cli,i]=0.

For1<i<j<n,

cli.= min i+ cli, k] + ek +1,].

g CS 5114 Dynamic Programming Analysis
O
g L
H H H < Dynamic Programming Analysis
Dynamic Programming Analysis =

For middle diagonal of size n/2, each costs n/2.

@ The time to calculate cf/, ] is proportional to j — /. For each ci, ], remember the k (the root of the tree) that
@ There are ©(n?) entries to fill. minimizes the expression.
e T(n) = O(m). So, store in the table the next place to go.

@ Also, T(n) = Q(n®).
@ How do we actually find the best evaluation order?
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o CS5114
2
e}
e
Summary <+ L summary
S
()
@ Dynamic programming can often be added to an 16 notes
inductive proof to make the resulting algorithm as
efficient as possible.
@ Can be useful when divide and conquer fails to be
efficient.
@ Usually applies to optimization problems.
@ Requirements for dynamic programming:
@ Repeated solution of subproblems
@ Small number of subproblems, small amount of
information to store for each subproblem.
© Base case easy to solve.
@ Easy to solve one subproblem given solutions to smaller
subproblems.
o CS5114
2
3
Sorting < LSorting
S
()
Each record contains a field called the key. )
Linear order: comparison —= Linear order means: a< bandb<c=a<c.
The Sorting Problem More simply, sorting means to put keys in ascending order.
Given a sequence of records Ry, Ro, ..., R, with key values
ki, ko, ..., Kn, respectively, arrange the records into any order
s such that records Rs,, As,, ..., As, have keys obeying the
property ks, < ks, < ... < Kq,.
Measures of cost:
@ Comparisons
@ Swaps
o CS5114
2
3
Insertion Sort < L Insertion Sort
&
void inssort (Elem* A, int n) { // Insertion Sort
for (int i=1; i<n; i++) // Insert i’th record Best case is 0 swaps, n — 1 comparisons.
for (int j=i; (3>0) && (A[]j].key<A[j-1].key); Worst case is n°/2 swaps and compares.
=) Average case is n?/4 swaps and compares.
swap (®, J, j-1);
! = 2 3 4 5 6 7 Insertion sort has great best-case performance.
ﬁoj 20] 17°] 18 13_ 18 13 13
2 42 20 17 17 14 14 14
17 A7 42 20 20 17 17 15
13 13 13 E] 28 | 20_ 20 | 17
28 28 28 28 42 28 23 20
14 14 14 14 14 42] 28 23
23 23 23 23 23 23— 42| 28
15 15 15 15 15 15 42
Best Case: -
Worst Case:
Average Case:
g CS 5114 Exchange Sorting
)
3 L Exchange Sorti
H < xchange Sorting
Exchange Sorting =
@ Theorem: Any sort restricted to swapping adjacent n? /4 is the average distance from a record to its position in the
records must be Q(n?) in the worst and average cases. sorted output.
@ Proof:

» For any permutation P, and any pair of positions i and j,
the relative order of i and j must be wrong in either P or
the inverse of P.

» Thus, the total number of swaps required by P and the
inverse of P MUST be

Zi:w.
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Quicksort

Divide and Conquer: divide list into values less than pivot
and values greater than pivot.

void gsort (Elem* A, int i, int j) { // Quicksort
int pivotindex = findpivot (A, i, 3j);
swap (A, pivotindex, J); // Swap to end
// k will be first position in right subarray
int k = partition(a, i-1, j, A[J].key;
swap (A, k, J); // Put pivot in place
if ((k-i) > 1) gsort (A, i, k-1); // Sort left
if ((j-k) > 1) gsort (A, k+1, j); // Sort right

int findpivot (Elemx A, int i, int j)
{ return (i+3j)/2; }

CS 5114: Theory of Algorithms Spring 2014 95/418

Quicksort Partition

int partition(Elemx A, int 1, int r, int pivot) {

do { // Move bounds inward until they meet
while (A[++1].key < pivot); // Move right
while (r && (A[--r].key > pivot));// Left

swap (A, 1, r); // Swap out-of-place vals
} while (1 < r); // Stop when they cross
swap (A, 1, r); // Reverse wasted swap
return 1; // Return first position in right

The cost for Partition is ©(n).
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Partition Example

Initial 72 6 57 88 85 42 83 73 48 60
| r
Pass 1 72 6 57 88 85 42 83 73 48 60
| r
Swap 1 48 6 57 88 85 42 83 73 72 60
| r
Pass 2 48 6 57 88 85 42 83 73 72 60
| r
Swap 2 48 6 57 42 85 88 83 73 72 60
| r
Pass 3 48 6 57 42 85 88 83 73 72 60
Ir

Quicksort Example

[72 6 57 88 60 42 83 73 48 85|

Pivot = 60
[48 6 57 42[60[88 83 73 72 85]
) Pivot = 6 Pivot = 73 : .
[72[73[e5 @8 @)
 Pivot=57 " Pivot=88 -

| Pivot = 85
[e3]es]

‘6 42 48 57 60 72 73 83 85 88‘
Final Sorted Array
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o CS5114 Quicksort
=) v e b b e ot
3
< LQuickson
)
(3
Initial call: gsort (array, 0, n-1);
CS 5114
g, Quicksort Parition
3
< LQuickson Partition
S '
N o ot b Pt 90
no notes
g, CS 5114 Partition Example
Iy o
< LPartition Example
)
(3
no notes
g, CS 5114 Quicksort Example
3
< LQuickson Example
)
(3

no notes



CS 5114 Cost for Quicksort

BestCaso: Abays prtion .

LCost for Quicksort

Cost for Quicksort

2014-05-02

Best Case: Always partition in half.

Think about when the partition is bad. Note the FindPivot
function that we used is pretty good, especially compared to
taking the first (or last) value.

Also, think about the distribution of costs: Line up all the

Worst Case: Bad partition.

Average Case:

il ) ) permuations from most expensive to cheapest. How many can
f(n)=n—-1+ = Z(f(’) +f(n—i—1)) be expensive? The area under this curve must be low, since
=0 the average cost is ©(nlog n), but some of the values cost
Optimizations for Quicksort: ©(n?). So there can be VERY few of the expensive ones.

@ Better pivot.

@ Use better algorithm for small sublists. This optimization means, for list threshold T, that no element is

@ Eliminate recursion. more than T positions from its destination. Thus, insertion sort’s

@ Best: Don't sort small lists and just use insertion sort at best case is nearly realized. Cost is at worst nT.

the end.
o CS5114 Quicksort Average Cost
o
g [ R R
QUICkSOI’t Average COSt frl_ LQuickson Average Cost
f(n) = { g 1 <t . BE This is a “recurrence with full history”.
n—1+ 2> (f()+f(n—i—1)) n>1
Think about what the pieces correspond to.
Since the two halves of the summation are identical, To do Quicksort on an array of size n, we must:
0 n<i e Partation: Cost n
M=\ n-14251 i) n>1
n 24i=0 e Findpivot: Cost ¢

Multiplying both sides by n yields e Do the recursion: Cost dependent on the pivot’s final position.

n—1 These parts are modeled by the equation, including the
nf(n)=n(n—1)+2 Z f(f). average over all the cases for position of the pivot.
i=0
o CS5114 Average Cost (cont.)
Q Get rd of the fullhistory by subiracting () from
Average Cost (cont.) < —Average Cost (cont)
b= ,
N

Get rid of the full history by subtracting nf(n) from
(n+1)f(n+1) no notes

nf(n)

n—1
n(n—1)+2> (i)
i=1

(n+Df(n+1) = (n+1)n+2) (i)
i=1

(n+1)f(n+1) — nf(n)
(n+1)f(n+1)

2n+ 2f(n)
2n+ (n+2)f(n)

2n n+2

f(n+1) = f(n).

(n+1) n+1+n+1()
g CS 5114 Average Cost (cont.)
3 oy

Average Cost (cont.) T Average Costcom)

o
N

Note that 2% < 2forn > 1.

Expand the recurrence to get: no notes

n+2

<

f(n+1) < 2+n+1f(n)

- 2+”+2<2+”+1f(n—1)>

n+1 n
24025 NtV (5 N g

n+1 n n—1
n+2 4 3

= 2+n+1 <2+~-+§(2+§f(1))>
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Average Cost (cont.)

n+2+n+2n+1
n+1 n+1 n

n+2n+1 3)

f(n+1) < 2(1+

n+ti n 2

— 2<1+(n+2) (,,%*15++%>>
= 2+2(n+2)(Hppt — 1)

= ©(nlogn).
Mergesort

List mergesort (List inlist) {
if (inlist.length() <= 1) return inlist;;
List 11 = half of the items from inlist;
List 12 = other half of the items from inlist;
return merge (mergesort (11), mergesort (12));

36 20 17 13 28 14 23 15

[20 36][13 17|[14 28|[15 23|

[13 17 20 36/[14 15 23 28]

[18 14 15 17 20 23 28 36|

CS 5114: Theory of Algorithms Spring 2014 104 /418

Mergesort Implementation (1)

Mergesort is tricky to implement.

void mergesort (Elemx A, Elemx temp,
int left, int right) {
int mid = (left+right)/2;
if (left == right) return; // List of one
mergesort (A, temp, left, mid); // Sort half
mergesort (A, temp, mid+1l, right);// Sort half
for (int i=left; i<=right; i++) // Copy to temp

temp[i] = A[i];

Mergesort Implementation (2)

// Do the merge operation back to array
int il = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (il == mid+1) // Left list exhausted
Alcurr] = temp[i2++];

else if (i2 > right) // Right list exhausted
Alcurr] = temp[il++];

else if (temp[il].key < temp[i2].key)
Alcurr] = temp[il++];

else Aflcurr] = temp[i2++];

H}

Mergesort cost:
Mergesort is good for sorting linked lists.
Spring 2014 106/418

CS 5114

LAverage Cost (cont.)

2014-05-02

Hn+1 = @(|Og n)

CS 5114

LMergeson

2014-05-02

no notes

CS 5114

LMergeson Implementation (1)

2014-05-02

This implementation requires a second array.

CS 5114

LMergeson Implementation (2)

2014-05-02

Mergesort cost: ©(nlog n)

Average Cost (cont,)

Mergesort

Mergesort Implementation (1)

Margosors ik o implament.

Mergesort Implementation (2)

Mergosor cost:
Margooragood for oring kst

Linked lists: Send records to alternating linked lists, mergesort

each, then merge.



o CS5114 Heaps
o
8' e with the Heap Property:
. [ e
< Heaps
Heaps z R
(3] maly e aray based complte
Heap: Complete binary tree with the Heap Property: no notes
@ Min-heap: all values less than child values.
@ Max-heap: all values greater than child values.
The values in a heap are partially ordered.
Heap representation: normally the array based complete
binary tree representation.
g CS 5114 Building the Heap
Building the H S :
< Building the Heap 5 %
uilding the Heap z £a—En
" " s rge 52, 7.1 €1
This is a Max Heap
©, (3) () (e) . .
How to get a good number of exchanges? By induction.
®© & 6 @ O @ 6 G Heapify the root’s subtrees, then push the root to the correct
@ level.
©, (@)
©, (3 O, (®)
ONONONO ONONONO
(b)
(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).
o CS5114 Siftdown
o
)
H 3 LS'ﬂdown
< i
Siftdown =
()
void heap::siftdown (int pos) { // Sift ELEM down no notes
assert ((pos >= 0) && (pos < n));
while (!isLeaf (pos)) {
int j = leftchild(pos);
if ((j<(n-1)) &&
(Heap[]j] .key < Heap[j+1l].key))
j++; // j now index of child with > value
if (Heap([pos].key >= Heap[j].key) return;
swap (Heap, pos, J);
pos = j; // Move down
}
}
o CS5114 BuildHeap
o
2 .
: 3 L BuildHeap
< ul
BuildHeap 5
o Ficogan
For fast heap construction: (i — 1) is number of steps down, n/2' is number of nodes at that
@ Work from high end of array to low end. level.
@ Call siftdown for each item.
o Don’t need to call si £tdown on leaf nodes The intuition for why this cost is ©(n) is important.
Fundamentally, the issue is that nearly all nodes in a tree are
void heap::buildheap () // Heapify contents close to the bottom, and we are (worst case) pushing all nodes
{ for (int i=n/2-1; i>=0; i--) siftdown(i); } down to the bottom. So most nodes have nowhere to go,

. leading to low cost.
Cost for heap construction:

logn

N
> - 1)z ~n.
i
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Heapsort

Heapsort uses a max-heap.

void heapsort (Elem A, int n) { // Heapsort
heap H(A, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort
H.removemax (); // Value placed at end of heap
}

Cost of Heapsort:

Cost of finding k largest elements:
Spring 20147 111/418

Binsort

A simple, efficient sort:

for (i=0; i<n; i++)
Blkey (A[i])] = A[i];

Ways to generalize:
@ Make each bin the head of a list.
@ Allow more keys than records.

void binsort (ELEM *A, int n) {
list B[MaxKeyValue];
for (i=0; i<n; i++) Blkey(A[i])].append(A[i]);
for (i=0; i<MaxKeyValue; i++)
for (each element in order in B[i])
output (B[i].currValue());
}

Cost:
Radix Sort
Initial List: 27 91 1 97 17 23 84 28 72 5 67 25
First pass Second pass
(on right digit) (on left digit)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 I g 1 g S o VA
8 8
C 9
Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28
Result of secondpass: 1 5 17 23 25 27 28 67 72 84 91 97

Radix Sort Algorithm (1)

void radix (Elem* A, Elem* B, int n, int k, int r,
int* count) {
// Count[i] stores number of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtokx=r) {
for (int j=0; Jj<r; Jj++) count[j] = 0; // Init

// Count # of records for each bin this pass
for (j=0; j<n; Jj++)
count [ (key (A[]J]) /rtok)$r]l++;

//Index B: count[j] is index of j’s last slot
for (3=1; J<r; Jj++)
count [j] = count[j-1l]+count[j];
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CS 5114

LHeapsort

Cost of Heapsort: ©(nlog n)
Cost of finding k largest elements: ©(k log n+ n).

e Time to build heap: ©(n).

e Time to remove least element: ©(log n).

Compare Heapsort to sorting with BST:

e BST is expensive in space (overhead), potential bad balance,
BST does not take advantage of having all records available
in advance.

e Heap is space efficient, balanced, and building initial heap is
efficient.

CS 5114 Binsort

LBinsort

Cost:

The simple version only works for a permutation of 0to n — 1,
but it is truly O(n)!

Support duplicatesl.e., larger key spaceCost might look like
o(n).

Oops! It is ctually, ©(n = Maxkeyvalue).

Maxkeyvalue could be O(n?) or worse.

CS 5114 e
LRadix Sort
no notes

CS 5114 Radix Sort Algorithm (1)

L Radix Sort Algorithm (1)

no notes



CS 5114

Radix Sort Algorithm (2)

LRadix Sort Algorithm (2)

2014-05-02

Radix Sort Algorithm (2)

Cost (k- 1)

Howdo n kand rolas?

r can be viewed as a constant.
// Put recs into bins working from bottom k > log n if there are n distinct keys.

//Bins fill from bottom so j counts downwards
for (j=n-1; 3>=0; j-—-)
B[--count [ (key (A[]])/rtok)%r]l] = A[]];
for (j=0; 3j<n; Jj++) A[j] = B[Jjl; // Copy B—>A
}

Cost: ©(nk + rk).

How do n, k and r relate?
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CS 5114

Radix Sort Example

L Radix Sort Example

2014-05-02

Radix Sort Example

Inital Input: Aray A [27]91] 1 [o7[17]23]84]28]72] 5 [67] 5]

no notes

0123456789

Fistpass valoes orOount. [ [ 2 | 2 o4t ]o]

0 1 2 6
B (DJE]E [7Tn[ez]re]

End of Pass 1: Array A. [91] 1 [72]28] 4] 5 [25]27]o7]17]67 28]
01234 5678 9100

0 1 2 3 45 6 7 8 9
s o can (4T T4 o o [o 4 T+ ]:]

0

123 456 7
Count array:
oramays. (2131 7]7[7|7]8]9|10]12

End of Pass 2: Array A [1]5 [17[23]25]27]28]67[ 72[84]01]o7]
0123456780101
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CS 5114 Sorting Lower Bound

W1 prove  ower b for a sl soring
agorins

Sortng s (g,

Sorting Lower Bound

LSorting Lower Bound

2014-05-02

Want to prove a lower bound for all possible sorting

algorithms. no notes

Sorting is O(nlog n).
Sorting I/O takes Q(n) time.
Will now prove Q(nlog n) lower bound.

Form of proof:
@ Comparison based sorting can be modeled by a binary
tree.
@ The tree must have Q(n!) leaves.
@ The tree must be Q(nlog n) levels deep.
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CS 5114

Decision Trees.

LDecision Trees

Decision Trees

XYZ
XYZ YZX
XZY ZXY
YXz zvx no notes
Yes " pr1]<Apo]? \No

(Y<X?)

2014-05-02

@ There are n! permutations, and at least 1 node for each.
@ A tree with n nodes has at least log n levels.
@ Where is the worst case in the decision tree?
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Lower Bound Analysis

log n' <logn” = nlogn.

log n! > log (g)é > %(nlogn— n).

@ So, logn! = ©(nlog n).

@ Using the decision tree model, what is the average
depth of a node?

@ This is also ©(log n!).

CS 5114: Theory of Algorithms Spring 2014 119/418

A Search Model (1)

Problem:

Given:
@ Alist L, of n elements
@ A search key X

Solve: Identify one element in L which has key value X, if
any exist.

Model:
@ The key values for elements in L are unique.
@ One comparison determines <, =, >.
@ Comparison is our only way to find ordering information.
@ Every comparison costs the same.
Spring2014 120/ 418

A Search Model (2)

Goal: Solve the problem using the minimum number of
comparisons.
@ Cost model: Number of comparisons.

@ (Implication) Access to every item in L costs the same
(array).

Is this a reasonable model and goal?
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Linear Search

General algorithm strategy: Reduce the problem.
@ Compare X to the first element.
@ If not done, then solve the problem for n — 1 elements.

Position linear_search (L, lower, upper, X) {
if L[lower] = X then
return lower;
else if lower = upper then
return -1;
else
return linear_search(L, lower+l, upper, X);

}

What equation represents the worst case cost?

CS 5114

Lower Bound Analysis

L*LowerBoundAnaIysis

2014-05-02

log n— (1 or 2).

CS 5114

A Search Model (1)

Provlem:

LA Search Model (1)

2014-05-02

What if the key values are not unique? Probably the cost goes
down, not up. This is an assumption for analysis, not for
implementation.

We would have a slightly different model (though no asymptotic
change in cost) if our only comparison test was <. We would
have a very different model if our only comparison was = / #.

A comparison-based model.

String data might require comparisons with very different costs.

CS 5114

A Search Model (2)

(ot Sove theprsi usig the i numbor o
compareons.

LA Search Model (2)

2014-05-02

e We are assuming that the # of comparisons is proportional to
runtime.

e Might not always share an array (assumption that all
accesses are equal). For example, linked lists.

e We assume there is no relationship between value X and its
position.

CS 5114

Linear Search

(Geneal aiortm satgy: R re bl
= Con men.

L*Liru-)ar&‘,earch

2014-05-02

=
S
=
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—
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o CS5114 Lower Bound on Problem
5%
3
Lower Bound on Problem 3 —Lower Bound on Problem

o
(3]

Theorem: Lower bound (in the worst case) for the problem

is n comparisons. Be careful about assumptions on how an algorithm might

(must) behave.
Proof: By contradiction. After all, where do new, clever algorithms come from? From

@ Assume an algorithm A exists that requires only n — 1 different behavior than was previously assumed!

(or less) comparisons of X with elements of L.

@ Since there are n elements of L, A must have avoided
comparing X with L[] for some value i.

@ We can feed the algorithm an input with X in position i.

@ Such an input is legal in our model, so the algorithm is
incorrect.

Is this proof correct?
Sping2014 123/ 418

CS 5114 Fixing the Proof (1)

LFixing the Proof (1)

2014-05-02

Fixing the Proof (1)
no notes

Error #1: An algorithm need not consistently skip position i.
Fix:
@ On any given run of the algorithm, some element i gets
skipped.
@ It is possible that X is in position i at that time.
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CS 5114 Fixing the Proof (2)

LFixing the Proof (2)

Fixing the Proof (2)

2014-05-02

Error #2: Must allow comparisons between elements of L. no notes
Fix:

@ Include the ability to “preprocess” L.

@ View L as initially consisting of n “pieces.”

@ A comparison can join two pieces (without involving X).

@ The total of these comparisons is k.

@ We must have at least n — k pieces.

@ A comparison of X against a piece can reject the whole

piece.
@ This requires n — k comparisons.
@ The total is still at least n comparisons.
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CS 5114 Average Cost

How many comparisens doss near serch o on averags?

o must now e proabity fcecuence o sach
poschls ot

L ave rage Cost o xooin )

Ianorssvryingaxce the posien o X n L Wiy
e p—

Average Cost

2014-05-02

LT » )
How many comparisons does linear search do on average?
No, X might not be in L! What is this probability?

We must know the probability of occurrence for each

possible input. The actual values of other elements is irrelevent to the search
routine.

(Must X be in L?)
L[1], L[2], ..., L[n] and not found.

Ignore everything except the position of X in L. Why?

TR S (1= ] YD Assume that array bounds are 1..n.

P(X¢L)=1-— Z P(X = L[i]).

i=1
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Average Cost Equation

Let k; = i be the number of comparisons when X = LJ[i].
Let ko = n be the number of comparisons when X ¢ L.

Let p; be the probability that X = L][/].
Let py be the probability that X ¢ L[i] for any i.

n
Kopo + Z Kipi

i=1

f(n)

npo + > ip;

i=1

What happens to the equation if we assume all p;’s are
equal (except py)?
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Computation

f(n) = pon+ iip

i=1
n
= pon+py i
i=1
1
= p0n+pw

B 1—pon(n+1)
- Py 2

n+1+4po(n—1)
2

Depending on the value of py, ”T“ < f(n) < n.
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Problems with Average Cost

@ Average cost is usually harder to determine than worst
cost.

@ We really need also to know the variance around the
average.

@ Our computation is only as good as our knowledge
(guess) on distribution.
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Sorted List

Change the model: Assume that the elements are in
ascending order.

Is linear search still optimal? Why not?

Optimization: Use linear search, but test if the element is
greater than X. Why?

Observation: If we look at L[5] and find that X is bigger, then
we rule out L[1] to L[4] as well.

More is Better: If we look at L[n] and find that X is bigger,
then we know in one test that X is not in L. Great!
@ What is wrong here?
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CS 5114 Average Cost Equation
Lot e o of comparore wh X )
Lo et o oo o 1

Lot b th provatiy et X - 11,
Lot oot proabily nat X L forany

LAverage Cost Equation 0 - ket Sko
- meSe
Uttt e ot et s
no notes

CS 5114 Computation

LComputation

_1-p

P n

Show a graph of pg vs. cost for 0 < py < 1, with y axis going
from 0 to n.

CS 5114 Problems with Average Cost

LProbIems with Average Cost o

 Wo rally o s o know e variance around the
awrage.

= Our computaionis ol a goo s o knowledge
{auess) oncsiton

Example: Quicksort variance is rather low. For this linear
search, the variances is higher (normal curve).

CS 5114 Sorted List

Grango e model: Assums hat o laments o
S rdr
Ielinoar searh sl optmat? Whynot?

L Sorted List st et s, st et

Obsaratn:fwe ook a ] an i hat X s igger, th
o ot i 4] 25 ol

oo L) and o at X ' biggr,
ane st X ntin L Great
aners?

We have more information a priori.

Can quit early.
What is best, worst, average cost? 1, n, n/2, respectively.
Effectively eliminates case of x not on list.

If we find that x is smaller, we only rule out one element.

Cost is 1 either way, but we don’t get much information in worst
case.

Small probability for big information, but big probability for small
information.



o CS5114 Jump Search
o
O
3 LJ Search
< ump
Jump Search - e
Algorithm: no notes
@ From the beginning of the array, start making jumps of
size k, checking L[k] then L[2k], and so on.
@ So long as X is greater, keep jumping by k.
@ If X is less, then use linear search on the last sublist of
k elements.
This is called Jump Search.
What is the right amount to jump?
Spring 2014 131/418
o CS5114
o
8
Ana|ySIS Of Jump SearCh frl_ LAnaIysis of Jump Search
&
@ If mk < n < (m+ 1)k, then the total cost is at most
m + k — 1 3-way comparisons. m is number of big steps, k is size of big step.
n
f(nk)=m+k—1= w Y k1.
@ What should k be?
. n
min {PJ +k—1}
1<k<n LKk
@ Take the derivative and solve for f'(x) = 0 to find the
minimum.
@ This is @ minimum when k = \/n.
@ What is the worst case cost?
» Roughly 2¢/n.
Spring 2014 132/ 418
o CS5114 Lessons
o We want o balance he work done whie selectng a sublst
3 e
LeSSOHS frl_ LLessons
o
()
We want to balance the work done while selecting a sublist
with the work done while searching a sublist. This could lead us to binary search. It could also lead us to
interpolation search.
In general, make subproblems of equal effort. P
This is an example of divide and conquer
What if we extend this to three levels?
@ We'd jump to get a sublist, then jump to get a
sub-sublist, then do sequential search
@ While it might make sense to do a two-level algorithm
(like jump search), it almost never makes sense to do a
three-level algorithm
@ Instead, we resort to recursion
Spring 2014 133/ 418
o CS5114 Binary Search
o
O
1 3 LB' Search
< inary
Binary Search =
int binary(int K, intx array, int left, int right) { fUn — { 1 n=1
// Return position of element (if any) with value K f(Ln/2J)4’1 n>
int 1 = left-1;
int r = right+1; // 1 and r beyond array bounds
while (1+1 != r) { // Stop when 1 and r meet
int i = (l4r)/2; // Middle of remaining subarray
if (K < arrayl[il) r = i; // In left half
if (K == array([i]) return i; // Found it
if (K > arrayl[i]) 1 = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array
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Lower Bound (for Problem Worst Case)

How does n compare to v/n compare to log n?
Can we do better?

Model an algorithm for the problem using a decision tree.
@ Consider only comparisons with X.
@ Branch depending on the result of comparing X with
L[f].
@ There must be at least n leaf nodes in the tree. (Why?)
@ Some path must be at least log n deep. (Why?)
Thus, binary search has optimal worst cost under this model.
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Average Cost of Binary Search (1)

An estimate given these assumptions:
@ Xisin L.
@ X is equally likely to be in any position.
@ n = 2K for some non-negative integer k.

Cost?
@ One chance to hit in one probe.
@ Two chances to hit in two probes.
@ 27" to hitin / probes.
o i <Kk.

Average costislogn— 1.
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Average Cost Lower Bound

@ Use decision trees again.
@ Total Path Length: Sum of the level for each node.

@ The cost of an outcome is the level of the corresponding
node plus 1.

@ The average cost of the algorithm is the average cost of
the outcomes (total path length/n).

@ What is the tree with the least average depth?

@ This is equivalent to the tree that corresponds to binary
search.

@ Thus, binary search is optimal.
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Interpolation Search

(Also known as Dictionary Search) Search L at a position

that is appropriate to the value of X.

_X—1]
P= T — L

Repeat as necessary to recalculate p for future searches.
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CS 5114

Lower Bound (for Problem Worst Case)

LLower Bound (for Problem Worst Case)

Assumption: A deterministic algorithm: For a given input, the
algorithm always does the same comparisons.

Since L is sorted, we already know the outcome of any
comparisons between elements in L, so such comparisons are
useless.

There must be some point in the algorithm, for each position in
the array, where only that position remains as the possible
outcome. Each such place corresponds to a (leaf) node.

Because a tree of n nodes requires at least this depth.

CS 5114

Average Cost of Binary Search (1)

A stinato g rese assumptons:

LAverage Cost of Binary Search (1)

no notes

CS 5114

Average Cost Lower Bound

LAverage Cost Lower Bound

(In worst case.)

Fill in tree row by row, left to right. So node i is at depth |logi|.

CS 5114

Interpolation Search

A knoun 2 Dcionary Seach) Searh L a2 poston
Patis sprcprit o o vake of X.

_xeu
=T

Llnterpolalion Search

Rt s necessary o el p for e searches

That is, readjust for new array bounds.

Note that p is a fraction, so | pn| is an index position between 0
andn—1.



o CS 5114
8
Quad I’atiC Binary SearCh frl_ LQuadralic Binary Search
o
N
This is easier to analyze:
@ Compute p and examine L[[pn]]. This is following the induction in a different way than Binary
; Search. Binary Search says break down list by (repeatedly)
O et Bl e e e el splitting in half. Interpolation search says break down list by
L[[pn—ivn]],i=1,2,3, ... (repeatedly) finding a square root-sized sublist.
until we reach a value less than or equal to X. ) ) ) )
e Similar for X > L[[pn]]. We will come back and examine this assumption.

@ We are now within v/n positions of X.

@ ASSUME (for now) that this takes a constant number of
comparisons.

@ Now we have a sublist of size v/n.

@ Repeat the process recursively.

How many times can we take the square root of n?

Keep dividing the exponent by 2 until we reach 1 —that is, take
the log of the exponent.

What is the exponent? It is log n.

log log n is the number of times that we can take the square

@ What is the cost? root.
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o CS5114 QBS Probe Count (1)
CID costie

8

QBS Probe Count (1) ¥ L_aBS Probe Count (1)
o
N

Cost is ©(log log n) IF the number of probes on jump search
is constant. no notes

Number of comparisons needed is:
NG
>~ iP(need exactly i probes)
i=1

=1P1+ 2P, +3P3+--- + VnP

This is equal to:
NG
> P(need at least i probes)
i=1

Spring 2014 140418

CS 5114

QBS Probe Count (2)

L_aBS Probe Count (2)

2014-05-02

QBS Probe Count (2)

no notes
NG
> P(need at least i probes)

i=1

1+(1—-P)+(1—-Pi—P3)+---+P 5
= (Pi+..+P gz +P2+..+P )+

Py oo =Py 4F o
= 1Py + 2P, +3P3 + -+ VNP s
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CS 5114 GBS Probe Count (3)

L_aBS Probe Count (3)

QBS Probe Count (3)

We require at least two probes to set the bounds, so cost is:

N
2+ > P(need at least i probes) p(t=p) < 1/4.
P

2014-05-02

Original C’s Inequality < the result of recognizing that

Important assumption!

Useful fact (Cebysev’s Inequality):
The probability that we need probe i times (P;) is:

p(1 —p)n 1
Pi<i—2pn S 3i-2p

since p(1 — p) < 1/4.

This assumes uniformly distributed data.
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o CS5114 GBS Probe Count (4)
o
0 e
; L et
< QBS Probe Count (4)
QBS Probe Count (4) g e
The assumption of uniform distribution (resulting in constant
Final result: number of probes on average) is much stronger than the
’ J 1 assumptions used by the lower bounds proof.
2 ——— ~ 24112
+2 4(i— 2y
i=3
Is this better than binary search?
What happened to our proof that binary search is optimal?
o CS5114 Comparison (1)
o
- 8
Comparlson (1 ) Sr'_ L Gomparison (1)
o
(9]
Let’'s compare loglog n to log n.
n logn loglogn Diff no notes
16 4 2 2
256 8 3 2.7
64K 16 4 4
2% 32 5 6.4
Now look at the actual comparisons used.
@ Binary search ~logn — 1
@ Interpolation search ~ 2.4 loglog n
n logn—1 2.4loglogn Diff
16 3 4.8 worse
256 7 7.2 ~ same
64K 15 9.6 1.6
22 gl 12 2.6
g CS 5114 Comparison (2)
O
i 3 Lcomparison (2)
< omparison
Comparison (2) = P
Taking an interpolation point.
Not done yet! This is only a count of comparisons! QBS
@ Which is more expensive: calculating the midpoint or
calculating the interpolation point?
Which algorithm is dependent on good behavior by the
input?
o CS5114 Order Statistics
o
O
1 H 3 LO der Statistics
< I
Order Statistics =
Finding max: Compare element n to the maximum of the
Definition: Given a sequence S = Xy, Xy, - - - , X,, of elements, previous n — 1 elements. Cost: n— 1 comparisons. This is
X; has rank k in S if x; is the kth smallest element in S. optimal since you must look at every element to be sure that it

is not the maximum.
@ Easy to find for a sorted list.

@ What if list is not sorted?
@ Problem: Find the maximum element.

@ Change the model: Count exact number of
comparisons

@ Solution:
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Two problems

@ Find the max and the min
@ Find (max and) the second biggest value

Is one of these harder than the other?
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Finding the Second Best

In a single-elimination tournament, is the second best the
one who loses in the finals?

Simple algorithm:
@ Find the best.
@ Discard it.

@ Now, find the second best of the n — 1 remaining
elements.

Cost? s this optimal?
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Lower Bound for Second (1)

Lower bound:

@ Anyone who lost to anyone who is not the max cannot
be second.

@ So, the only candidates are those who lost to max.
@ Find_max might compare max to n — 1 others.

@ Thus, we might need n — 2 additional comparisons to
find second.

@ Wrong!
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Lower Bound for Second (2)

The previous argument exhibits the necessity fallacy:
@ Our algorithm does something, therefore all algorithms
solving the problem must do the same.

Alternative: Divide and conquer
@ Break the list into two halves.
@ Run Find_max on each half.
@ Compare the winners.
@ Run Find_max on the winner’s half for second.
@ Compare that second to second winner.

Cost: [3n/2] — 2.
Is this optimal?
What if we break the list into four pieces? Eight?
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CS 5114

Two problems,

LTwo problems

Tsane ot thse hrderhan e thr?

Of course both can be done in ©(n) time, but we want to count
exact number of comparisons.

Both can also be done by finding max, then finding min or
second max. So both can be done in 2n-1 comparisons.

CS 5114

Finding the Second Best

Ina sngosiminaton ounamont s 7 socond best o
onewho oses i e ls?

LFinding the Second Best s"ﬁal’l

eeeeeee

As we discuss this problem, we consider exact counts, not
asymptotics.

Not necessarily — the best 2 could compete in the first round!
Note that we ignore variations in performance, the outcome
between two players will always be the same.

2n—3.

To know, need a lower bound on the problem.
Naive: ~ n might work. Clearly not optimal here! But, tighten
lower bound.

CS 5114

Lower Bound for Second (1)

LLower Bound for Second (1)

What is wrong with this argument?
It relies on the behavior of a particular algorithm.

CS 5114 Lower Bound for Second (2)

LLower Bound for Second (2)

1< apna
i —

In particular, it is not necessary that the max element compare
with n — 1 others, even in the worst case.

[n/2] =1+ [n/2] =1 .. +1=n—-1.

Worst case: [n/2] — 1 elements, since winner need not
compete again.

+1.

Cost of [3n/2] — 2 just closed half of the gap between our old
lower bound and our old algorithm — pretty good progress!

4: about 5/4.

8:n—-1+[n/8] —1=[9n/8] — 2.

What if we do this recursively?

f(n) = 2f(n/2) + 2; f(1) = 0 which is 3n/2 — 2, which is no
better than halves. So recursive divide & conquer (in a naive
way) does not work! Quarters would be better!



Binomial Trees (1)
@ Pushing this idea to its extreme, we want each

comparison to be between winners of equal numbers of
comparisons.
@ The only candidates for second are losers to the
eventual winner.
@ A binomial tree of height m has 2™ nodes organized
as:
» a single node, if m= 0, or
» two height m — 1 binomial trees with one tree’s root
becoming a child of the other.

iiii*g%g%»gﬁ%
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Binomial Trees (2)

Algorithm:
@ Build the tree.
@ Compare the [log n] children of the root for second.

Cost?

CS 5114: Theory of Algorithms Spring 2014 152/418

Adversarial Lower Bounds Proof (1)

Many lower bounds proofs use the concept of an adversary.

The adversary’s job is to make an algorithm’s cost as high as
possible.

The algorithm asks the adversary for information about the
input.

The adversary may never lie.
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Adversarial Lower Bounds Proof (2)

Imagine that the adversary keeps a list of all possible inputs.

@ When the algorithm asks a question, the adversary
answers, and crosses out all remaining inputs
inconsistent with that answer.

@ The adversary is permitted to give any answer that is
consistent with at least one remaining input.

Examples:

@ Hangman.
@ Search an unordered list.

CS 5114: Theory of Algorithms Spring 2014 154 /418

CS 5114

LBinomiaI Trees (1)

2014-05-02

but, we want as few of these as possible.

CS 5114

LBinomiaI Trees (2)

2014-05-02

n+ [logn] —2.

CS 5114

LAdversariaI Lower Bounds Proof (1)

2014-05-02

no notes

CS 5114

LAdversariaI Lower Bounds Proof (2)

2014-05-02

Binomial Trees (2)

i
= Bul e vee
Compar h g enrenof h oot for secon.

Adversarial Lower Bounds Proof (1)

Many ks bounds proos use e concept o an aversary
e adversay's 0 s 10 make an gt cotas g a5
possel.

Tho gt aks tho aversryfor formaton bouth
g

e ahersry may eve e

Adversarial Lower Bounds Proof (2)

imagne

2 o a8 possil s
eston e shersry

o Hargran.
o —r—

Adversary maintains dictionary, and can give any answer that

conforms with at least one entry in the dictionary.

Adversary always says “not found” until last element.



Lower Bound for Second Best

At least n — 1 values must lose at least once.
@ Atleast n— 1 compares.

In addition, at least kK — 1 values must lose to the second
best.

@ |l.e., k direct losers to the winner must be compared.

There must be at least n+ k — 2 comparisons.

How low can we make k?
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Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[/]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a+ b+ 1.

What should the adversary do?
@ Minimize the rate at which any element improves.
@ Do this by making the stronger element always win.
@ Is this legal?
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Lower Bound (Cont.)

What should the algorithm do?

If a> b,then2a > a+ b.

@ From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

@ This happens when a = b.

@ All strengths begin at zero, so the winner must make at
least k comparisons for 2k—1 < n < 2k,

Thus, there must be at least n+ [log n| — 2 comparisons.
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Min and Max

Problem: Find the minimum AND the maximum values.
Naive Solution: Do independently, requires 2n — 3
comparisons.

Solution: By induction.

Base cases:
@ 1 element: It is both min and max.
@ 2 elements: One comparison decides.

Induction Hypothesis:
@ Assume that we can solve for n — 2 elements.

Try to add 2 elements to the list.
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CS 5114

Lower Bound for Second Best

LLower Bound for Second Best

2014-05-02

Ho lowcan wa maka 7

What does your intuition tell you as a lower bound for k? Q(n)?
Q(logn)? Q(c)?

g CS 5114 Adversarial Lower Bound

S gt i
=) o

< L Adversarial Lower Bound e e
S

o

«

The winner has now proved stronger than a + b+ the one who
just lost.

Yes. The adversary cannot “fix” the fight to give contradictory
answers. But, it can give answers consistent with some legal
input.

CS 5114

Lower Bound (Cont.)

W hou h algrih o7

LLower Bound (Cont.)

2014-05-02

Need to get the final strength up to n — 1.
These k losers are candidates for 2nd place.

CS 5114 Min and Max
S ——
Nave St D mpocans o 253
ptidcs

LMin and Max

2014-05-02

Ty to 304 2 damens o s,

We are adding items nand n— 1.

Conceptually: ? compares for n — 2 elements, plus one
compare for last two items, plus cost to join the partial solutions.



CS 5114 Min and Max (2)

L—Min and Max (2)

Min and Max (2)

2014-05-02

Wt hgpans f e et i o il concision?

Induction Hypothesis: Total work is about 3n/2 comparisons.
@ Assume that we can solve for n — 2 elements.

It doesn’t get any better if we split the sequence into two

Try to add 2 elements to the list. halves. The recurrence is:

@ Find min and max of elements n — 1 and n (1 compare). T(n) { 1 n=2
q . n) =
@ Combine these two with n — 2 elements (2 compares). 2T(n/2)+2 n>2
@ Total incremental work was 3 compares for 2 elements. This is 3/2n — 2 for n a power of 2.
Total Work:
What happens if we extend this to its logical conclusion?
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o CS5114 ‘The Lower Bound (1)
S
g S
<+ The Lower Bound (1) ot T st
The Lower Bound (1) -
Is [3n/2] — 2 optimal? no notes
Consider all states that a successful algorithm must go
through: The state space lower bound.
At any given instant, track the following four categories:
@ Novices: not tested.
@ Winners: Won at least once, never lost.
@ Losers: Lost at least once, never won.
@ Moderates: Both won and lost at least once.
Sping2014 160/ 418
o CS5114 The Lower Bound (2)
3
9 5 P
< The Lower Bound (2) e et st
The Lower Bound (2) - e~

Moderates — Can’t be min or max.

Who can get ignored? Initial: (n, 0, 0, 0).
What is the initial state? Final: (0, 1, 1, n-2).
What is the final state? We must go from the initial state to the final state to solve the
problem.
How is this relevant? So, we can analyze how this gets done.
g CS 5114 Lower Bound (3)
O
DI LL E— (3) Every algorthm mustgo fom (1,0,0.0)10 (0.1,1,0 - 2
< ower AR D
Lower Bound (3) - S

That gets rid of 4 types of comparisons.
Every algorithm must go from (n,0,0,0) to (0,1,1,n — 2).
There are 10 types of comparison.

Comparing with a moderate cannot be more efficient than
other comparisons, so ignore them.
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o CS5114
<
3 L
< L Bound (3)
Lower Bound (3) - ower Boun
no notes
If we are in state (i, /, k, /) and we have a comparison, then:
N:N (i—-2, j+1, k+1, I
W:Ww (i, j—1, k, I+1)
L:L (i, s k—1, I+1)
L:N (i—1, j+1, Kk, 1)
or (i—1, j, K, I+1)
W:N (i—-1, j, k+1, 1)
or (i—=1, j, K, I+1)
wiL (. j. koD
or (i, j—1, k=1, 1+2)
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o CS5114
S
e}
Adversarlal Argument ‘:'_ LAdversariaI Argument
o
(9]
What should an adversary do?
@ Comparing a winner to a loser is of no value. Minimize information gained.
Only the following five transitions are of interest: Adversary will just make the winner win — No new information is
N:N (i-=2, j+1, k+1, 1) provided.
L:N (i—1, j+1, k, 1)
w ,|>,V 87_ 1, j,’i 1 Zﬁ_ 1, ?Jr ) This provides an algorithm.
L:L (i, J, k—1, I+1)

Only the last two types increase the number of moderates,
so there must be n — 2 of these.

The number of novices must go to 0, and the first is the most
efficient way to do this: [n/2] are required.
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CS 5114

Kth Smallest Element

amates sment o seauence S

LKth Smallest Element

Kth Smallest Element

2014-05-02

Problem: Find the kth smallest element from sequence S. no notes

(Also called selection.)

Solution: Find min value and discard (k times).
@ If kis large, find n — k max values.

Cost: O(min(k, n — k)n) — only better than sorting if k is
O(log n) or O(n — log n).
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CS 5114

Better Kth Smallest Algorithm

LBetter Kth Smallest Algorithm

Better Kth Smallest Algorithm

2014-05-02

ueragacasa cos:O{) tre.

; . Like Quicksort, it is possible for this to take O(n?) time!!
Use quicksort, but take only one branch each time. It is possible to guarentee average case O(n) time.

Average case analysis:

n

f(n):n—1+%2(f(i—1))

i=1

Average case cost: O(n) time.
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CS 5114 String Matching

LotA= 218 2,200 8= 05 b= b0 W0
sungs o caacors.

LString Matching bl Gtentus s A, it

ocourencs () o Bin A
o Fnd o smallst such rat forall 11 m.
an=b.

String Matching

2014-05-02

no notes

Let A=ajax---a,and B = byb, - - - b, m < n, be two
strings of characters.

Problem: Given two strings A and B, find the first
occurrence (if any) of B in A.
@ Find the smallest k such that, for all i, 1 <i < m,
axyi = by
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CS 5114 String Matching Example

String Matching Example

LString Matching Example

2014-05-02

A = XyXXYXYXYYXYXYXYYXYXYXX B = xyxyyxyxyxx
S A A A A A A A A A O(mn) comparisons in worst case.
Xy xy
X
Xy

X
=
b
<

y

XY XYY XY XY XX
X

® J o U WwN
X

Xy X
X

©

10: X

11: XYV XV Yy

123 X

13: Xy XYY XYy XYy XX

O(mn) comparisons.
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CS 5114 String Matching Worst Case

Bute oo 100 b o smal paterns and arge

L String Matching Worst Case R

Atamatvey,consdrsearcting for 7y

String Matching Worst Case

2014-05-02

Our example was a little pessimistic... but it wasn’t worst case!

Brute force isn’t too bad for small patterns and large
alphabets. In the second example, we can quickly reject a position - no

However, try finding: yyyyyx backtracking.
in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy
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CS 5114 Finding a Better Algorithm

LFinding a Better Algorithm

Finding a Better Algorithm

2014-05-02

Not only can we skip down several letters if we track the
potential prefix, we don’t need even to repeat the check of the
prefix letters — just start that many characters down.

Find B = xyxyyxyxyxx in

A = XyXXYXYXYYXYXYXYYXYXYXX
When things go wrong, focus on what the prefix might be.

XYXXYRYRYYRYXYXYYXYXYXX

Xyxy —— no chance for prefix until third x
Xyxyy —— xXyx could be prefix
XYXYYXyxyxx —— last xyxy could be prefix
XYXYYXYXYXX —— success!
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CS 5114 Knuth-Morris-Pratt Algorithm

LKnuth-Morris-Praﬂ Algorithm

Knuth-Morris-Pratt Algorithm

2014-05-02

@ Key to success: In all cases other than B[1] we compare current A value to
appropriate B value. The test told us there was no match at
that position. If B[1] does not match a character of A, that
character is completely rejected. We must slide B over it.

» Preprocess B to create a table of information on how far
to slide B when a mismatch is encountered.

@ Notation: B(/) is the first i characters of B.
@ For each character:

» We need the maximum suffix of B(/) that is equal to a
prefix of B.

@ next(i) = the maximum j (0 < j < i — 1) such that
bi_jbi_j1 - - bi—1 = B(j), and 0 if no such j exists.

@ We define next(1) = —1 to distinguish it.

@ next(2) = 0. Why?
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Why? All that we know is that the 2nd letter failed to match.
There is no value j such that 0 < j < i — 1. Conceptually,
compare beginning of B to current character.

CS 5114 Computing the table

LComputing the table

2014-05-02

Computing the table

.
111 hore, P manyltrs

B— no notes

@ The third line is the “next” table.

@ At each position ask “If | fail here, how many letters
before me are good?”
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CS 5114 How to Compute Table?

LHow to Compute Table?

How to Compute Table?

2014-05-02

@ By induction. Induction step: Each step can only improve by 1.

@ Base cases: next(1) and next(2) already determined.
@ Induction Hypothesis: Values have been computed up
to next(i —1).
@ Induction Step: For next(i): at most next(i — 1) + 1.
> When? b;_1 = bpext(i—1)+1-
» That is, largest suffix can be extended by b;_1.
@ If bi_1 # bpext(i—1)+1, then need new suffix.
@ But, this is just a mismatch, so use next table to
compute where to check.

While this is complex to understand, it is efficient to implement.

g CS 5114 Complexity of KMP Algorithm
8
. a ) L ) )
< Complexity of KMP Algorithm
Complexity of KMP Algorithm -
no note

@ A character of A may be compared against many
characters of B.
» For every mismatch, we have to look at another position
in the table.

@ How many backtracks are possible?
@ If mismatch at by, then only k mismatches are possible.

@ But, for each mismatch, we had to go forward a
character to get to by.

@ Since there are always n forward moves, the total cost is
o(n).
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Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B 2 y & y Yy 2 y y
0 2 1 3

b
b
b

o
i

A XY XXYXYXYVYYVYXYXY XYY XY XY XX

Xy XY next (4) = 1, compare B(2) to this
-X y next (2) = 0, compare B(l) to this
XYV XYV next (5) = 2, compare to B(3)
-X-y X Yy Y Xy Xy X x next(ll) = 3

“X-y-X Y Y XYy XYy X X

Note: —x means don’t actually compute on that character.

Boyer-Moore String Match Algorithm

@ Similar to KMP algorithm
@ Start scanning B from end of B.
@ When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
@ Ex: If “Z2” is not in B, can move m steps to right when
encountering “Z”.
@ If “Z” in B at position i, move m — i steps to the right.
@ This algorithm might make less than n comparisons.
@ Example: Find abc in
xbycabc
abc
abc
abc
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Probabilistic Algorithms
All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

@ Pick maximum: n — 1 comparisons.

@ Pick maximum from just over 1/2 of the elements: n/2
comparisons.

Can we do better? Not if we want a guarantee.
Spring 2014 177/ 418

Probabilistic Algorithm

@ Pick 2 numbers and choose the greater.

@ This will be in the upper half with probability 3/4.

@ Not good enough? Pick more numbers!

@ For k r)(umbers, greatest is in upper half with probability
1—27%

@ Monte Carlo Algorithm: Good running time, result not
guaranteed.

@ Las Vegas Algorithm: Result guaranteed, but not the
running time.
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CS 5114

LExampIe Using Table

2014-05-02

no note

CS 5114

LBoyer-Moore String Match Algorithm

2014-05-02

Better for larger alphabets.

CS 5114

L probabilistic Algorithms

2014-05-02

no notes

CS 5114

L probabilistic Algorithm

2014-05-02

Example Using Table

Boyer-Moore String Match Algorithm

Probabilistic Algorithms
A siorims discussos s oo deterministe

Brobabilstie agorifns ncuc e oo foctod by
random e

Exanpl: Pk ne s i th uppe hallof he vlus

(Can s dbear? Nt f v went s guarant,

Probabilistic Algorithm

Pick k big enough and the chance for failure becomes less than
the chance that the machine will crash (i.e., probability of even

getting an answer from a deterministic algorithm).

Rather have no answer than a wrong answer? If k is big
enough, the probability of a wrong answer is less than any

calamity with finite probability — with this probability
independent of n.



Searching Linked Lists

Assume the list is sorted, but is stored in a linked list.
Can we use binary search?

@ Comparisons?
@ “Work?”

What if we add additional pointers?
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“Perfect” Skip List

[ (5] [ [l [ [e] [ee] [e2] [e9]
o[ FH I G A A T T I

o

[/]
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=
[ Ts]

l
I [69]
B

ne
[ T3]

=
[ T&]

-
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Building a Skip List

Pick the node size at random (from a suitable probability
distribution). T
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Skip List Analysis (1)

What distribution do we want for the node depths?

int randomLevel (void) { // Exponential distrib
for (int level=0; Random(2) == 0; level++);
return level;

What is the worst cost to search in the “perfect” Skip List?
What is the average cost to search in the “perfect” Skip List?
What is the cost to insert?

What is the average cost in the “typical” Skip List?
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2014-05-02

2014-05-02

CcS 5114 Searching Linked Lists

Assme th it o, sored n ke

L Searching Linked Lists Zomime

o Wor

Iy TTp——

Same. Is this a good model? No.

Much higher since we must move around a lot (without
comparisons) to get to the same position.

Might get to desired position faster.

CS 5114

g
g
¢

ip List

|

L—Perfect” Skip List

Gnpapeas
B83R3RERY

HBEAREAAS
HEEE858]

fnmanaRasy
fEatacatnzatnEatny
Ty

What is the access time? log n.
We can insert/delete in log n time as well.

CS 5114

L Building a Skip List

no notes

CS 5114 Skip List Analysis (1)

Whatdstuton o we et for o noce degs?

L oapi s :
ST LSt ATl () I ——
Vnattm et e
e
P S

Exponential decay. 1 link half of the time, 2 links one quarter, 3
links one eighth, and so on.

log n.
Close to log n.
log n.

log n.



Skip List Analysis (2)

How does this differ from a BST?
@ Simpler or more complex?
@ More or less efficient?

@ Which relies on data distribution, which on basic laws of
probability?
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Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution: Randomize input order.
@ Chance of worst case is then 2/n!.
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Random Number Generators

@ Most computers systems use a deterministic algorithm
to select pseudorandom numbers.
@ Linear congruential method:
» Pick a seed r(1). Then,

r(i) = (r(i—1) x b) mod t.

@ Must pick good values for b and t.
@ Resulting numbers must be in the range:
@ What happens if r(i) = r(j)?
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Random Number Generators (cont)

Some examples:
r(i) = 6r(i—1)mod13=
-.-1,6,10,8,9,2,12,7,3,5,4,11,1 -
r(i) = 7r(i—1)mod13=
-..1,7,10,5,9,11,12,6,3,8,4,2,1 - - -
5r(i—1)mod 13 =
voa B, 12,8, aco
..2,10,11,3,2---
--4,7,9,6,4---
2o, @aoo

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i — 1) mod 23" — 1
Spring 2014 186/418

CS 5114

Skip List Analysis (2)

How dos this it rom 2 BST?
. et

L_Skip List Analysis (2)

2014-05-02

About the same.
On average, about the same if data are well distributed.

BST relies on data distribution, while skiplist merely relies on
chance.

CS 5114

Probabilistic Quicksort

Quicksort rns it votlean gy srctred s

LProbabiIislic Quicksort soton: ezt

(Cranceof wost csa s e 2/

2014-05-02

This principle is why, for example, the Skip List data structure
has much more reliable performance than a BST. The BST’s
performance depends on the input data. The Skip List's
performance depends entirely on chance. For random data, the
two are essentially identical. But you can't trust data to be
random.

CS 5114

Random Number Generators.

Nt campurs systoms uso 2 dearminsic lorfm.

LRandom Number Generators

2014-05-02

Lots of “commercial” random number generators have poor
performance because they don’t get the numbers right.
Must be inrange 0 to ¢t — 1.

They generate the same number, which leads to a cycle of
length |j — i].

CS 5114

Random Number Generators (cont)

LRandom Number Generators (cont)

2014-05-02

T st onocaponds o h sart vaeof h s
Soggestod enertr: ()~ 168071 1) mod 2% 1

no notes



o CS5114 Graph Algorithms
o
O
H 3 LGra h Algorithms
p
Graph Algorithms =
. . . e A graph G = (V,E) consists of a set of vertices V, and a set
Graphs are useful for representing a variety of concepts: of edges E, such that each edge in E is a connection
@ Data Structures between a pair of vertices in V.
@ Relationships o Directed vs. Undirected
@ Families !
o e Labeled graph, weighted graph
@ Communication Networks
@ Road Maps o Labels for edges vs. weights for edges
e Multiple edges, loops
e Cycle, Circuit, path, simple path, tours
e Bipartite, acyclic, connected
* Rooted tres, unrooted trae, free tree
o CS5114 ATree Proot
CID -
e}
A Tree PI‘OOf ‘3'_ LA Tree Proof
o
(9]
@ Definition: A free tree is a connected, undirected graph
that has no cyc!es. . . This is close to a satisfactory definition for free tree. There are
@ Theorem: If T is a free tree having n vertices, then T several equivalent definitions for free trees, with similar proofs
has exactly n — 1 edges. to relate them.
@ Proof: By induction on n.
@ Base Case: n= 1. T consists of 1 vertex and 0 edges. Why do we know that some vertex has degree 1? Because the
@ Inductive Hypothesis: The theorem is true for a tree definition says that the Free Tree has no cycles.
having n — 1 vertices.
@ Inductive Step:
» If T has n vertices, then T contains a vertex of degree 1.
» Remove that vertex and its incident edge to obtain 77, a
free tree with n — 1 vertices.
» By IH, T" has n— 2 edges.
» Thus, T has n— 1 edges.
o CS5114 Graph Traversals
o
O
3 LGra h Traversals
p
Graph Traversals =
Various problems require a way to traverse a graph — that is, a vertex may be visited multiple times
visit each vertex and edge in a systematic way.
Three common traversals:
@ Eulerian tours
Traverse each edge exactly once
@ Depth-first search
Keeps vertices on a stack
@ Breadth-first search
Keeps vertices on a queue
o CS5114 Eulerian Tours.
o
Lfl) B s
H 3 LEuIerian Tours T
Eulerian Tours = =g
A circuit that contains every edge exactly once. Why no tour? Because some vertices have odd degree.
Example: f
A @ All even nodes is a necessary condition. Is it sufficient?
b g

Tour:bafcde.

Example:

g
No Eulerian tour. How can you tell for sure?
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Eulerian Tour Proof

@ Theorem: A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.

@ Proof: By induction on m.

@ Base Case:

@ Inductive Hypothesis:

@ Inductive Step:

» Start with an arbitrary vertex and follow a path until you
return to the vertex.

» Remove this circuit. What remains are connected
components Gy, Go, ..., Gk each with nodes of even
degree and < m edges.

» By IH, each connected component has an Eulerian tour.

» Combine the tours to get a tour of the entire graph.
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Depth First Search

void DFS(Graph G, int v) { // Depth first search

PreVisit (G, v); // Take appropriate action
G.setMark (v, VISITED);
for (Edge w = each neighbor of v)
if (G.getMark (G.v2(w)) == UNVISITED)
DFS (G, G.v2(w));
PostVisit (G, Vv); // Take appropriate action

Initial call: DFs (G, r) where r is the root of the DFS.

Cost: ©(|V| + [E|).
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Depth First Search Example

(b)
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DFS Tree

If we number the vertices in the order that they are marked,
we get DFS numbers.

Lemma 7.2: Every edge e € E is either in the DFS tree T,
or connects two vertices of G, one of which is an ancestor of
the otherin T.

Proof: Consider the first time an edge (v, w) is examined,
with v the current vertex.
@ If wis unmarked, then (v, w)isin T.
@ If wis marked, then w has a smaller DFS number than
v AND (v, w) is an unexamined edge of w.
@ Thus, w is still on the stack. That is, w is on a path from
v.
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o CS5114 Eulerian Tour Proof
OI o
3
< LEuIerian Tour Proof
o
(3]
Base case: 0 edges and 1 vertex fits the theorem.
IH: The theorem is true for < m edges.
Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.
o CS5114 Depth First Search
S
3
< LDepth First Search
o
(9]
ooy
no notes
CS 5114
g, Depth First Search Example
[Te} o} © o} ©
< L "
< Depth First Search Example e‘ o
- 9] ©
(=} — o
()
The directions are imposed by the traversal. This is the Depth
First Search Tree.
o CS5114 DFS Tree
OI \'l:;:mb:m-vlmnmmmmmmw-lmm
3
+ L DFS Tree
o
()

Results: No “cross edges.” That is, no edges connecting
vertices sideways in the tree.



g CS 5114
8
1 < LDFS for Directed Graphs
DFS for Directed Graphs =
@ Main problem: A connected graph may not give a single no notes
DFS tree. @ ©—=0
@ Forward edges: (1, 3)
@ Back edges: (5, 1) ® EF=—0—O
@ Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
@ Solution: Maintain a list of unmarked vertices.
» Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.
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g CS 5114
8
Dlrected CVCIeS frl_ LDirected Cycles
o
(9]
Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge. See earlier lemma.
Proof:
@ Suppose a DFS produces a back edge (v, w).
» v and w are in the same DFS tree, w an ancestor of v.
> (v, w) and the path in the tree from w to v form a
directed cycle.
@ Suppose G has a directed cycle C.
» DoaDFSon G.
» Let w be the vertex of C with smallest DFS number.
> Let (v, w) be the edge of C coming into w.
» v is a descendant of w in a DFS tree.
» Therefore, (v, w) is a back edge.
g CS 5114
g [
1 < Breadth First Search
Breadth First Search -
no notes
@ Like DFS, but replace stack with a queue.
@ Visit vertex’s neighbors before going deeper in tree.
g CS 5114
)
Breadth FirSt SeaI’Ch A|gOI‘ithm ‘:'_ LBreadth First Search Algorithm
o
()

void BFS (Graph G, int start) {
Queue Q(G.n()); no notes
Q.enqueue (start) ;
G.setMark (start, VISITED);
while (!'Q.isEmpty()) {

int v = Q.dequeue();
PreVisit (G, v); // Take appropriate action
for (Edge w = each neighbor of v)

if (G.getMark (G.v2(w)) == UNVISITED) {

G.setMark (G.v2 (w), VISITED) ;
Q.enqueue (G.v2 (w) ) ;
}
PostVisit (G, v); // Take appropriate action
+}

CS 5114: Theory of Algorithms Spring 2014 198/418

DFS for Directed Graphs

Directed Cycles

Lomma 7.4: Lol Gbo a drctad graph. Gras a ecied
crd vy OFS o G procvos a bac ecge.

Proot

Breadth First Search

Lk DS, but olac stack wi g
« Vit voriosnaghoors beore gong dspar i s

Breadth First Search Algorithm




Breadth First Search Example
™ ®

()
Non-tree edges connect vertices at levels differing by 0 or 1.
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Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.

@ 12 (35 @)

()—=)
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Topological Sort Algorithm

void topsort (Graph G) { // Top sort: recursive

for (int i=0; i<G.n(); i++) // Initialize Mark
G.setMark (i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices
if (G.getMark (i) == UNVISITED)
tophelp (G, 1i); // Call helper

}

void tophelp(Graph G, int v) { // Helper function
G.setMark (v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark (G.v2(w)) == UNVISITED)
tophelp (G, G.v2(w));
printout (v) ; // PostVisit for Vertex v
}

Queue-based Topological Sort

void topsort (Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge
for (Edge w each neighbor of v)
Count [G.v2 (w) ]++; // Add to v2’s count
for (v=0; v<G.n(); v++) // Initialize Queue

if (Count[v] == 0) Q.enqueue (V) ;

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout (v) ; // PreVisit for v

for (Edge w = each neighbor of wv) {
Count [G.Vv2 (W) ]——; // One less prereq
if (Count[G.v2 (w)]==0) Q.enqueue (G.v2 (w));
Fr}

CS 5114
g, Breadth First Search Example
e}
<
< LBreadth First Search Example M
S A e
(3]
We know this because if an edge had connected to a deeper
level, then that target node would have been placed on the
queue when the edge was encountered.
g CS 5114 Topological Sort
5
< LTopoIogicaI Sort R
& S
no notes
o CS5114 Topological Sort Algorithm
CID =
[Te}
< L
< Topological Sort Algorithm
o
()
Prints in reverse order.
o CS5114 Queue-based Topological Sort
CID .
e}
< L
< Queue-based Topological Sort
o
()

no notes
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Shortest Paths Problems

Input: A raph wihwelghs o sostsassriatewithoach
e,

LShortest Paths Problems

Shortest Paths Problems

2014-05-02

Input: A graph with weights or costs associated with each

no notes
edge.

Output: The list of edges forming the shortest path.

Sample problems:
@ Find the shortest path between two specified vertices.
@ Find the shortest path from vertex S to all other vertices.
@ Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.
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CS 5114

LShortest Paths Definitions

Shortest Paths Definitions

2014-05-02

d(A, B) is the shortest distance from vertex A to B. W(A, D) = 20; d(A, D) = 10 (through ACBD).

w(A, B) is the weight of the edge connecting A to B.
@ If there is no such edge, then w(A, B) = cc.
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CS 5114

Single Source Shortest Paths

LSingIe Source Shortest Paths

Single Source Shortest Paths

2014-05-02

Given start vertex s, find the shortest path from s to all other no notes

vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x.

Problem: Shortest path to a vertex already processed might
go through x.
Solution: Process vertices in order of distance from s.
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CS 5114

Dijkstra’s Algorithm Example

LDijkstra’s Algorithm Example

Dijkstra’s Algorithm Example

2014-05-02

|D|E no notes

Process A
Process C
Process B
Process D

Initial
Process E
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Dijkstra’s Algorithm: Array (1)

LDijkstra’s Algorithm: Array (1)

2014-05-02

void Dijkstra(Graph G, int s) { // Use array

int D[G.n()]; no notes

for (int i=0; i<G.n(); i++) // Initialize
D[i] = INFINITY;

D[s] = 0;

for (i=0; i<G.n(); 1i++) { // Process vertices
int v = minVertex (G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark (v, VISITED);
for (Edge w = each neighbor of v)

if (D[G.v2(w)] > (D[v] + G.weight (w)))
D[G.v2(w)] = D[v] + G.weight (w);

}
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CS 5114 Dilkstra's Algorithm: Array (2)

Dijkstra’s Algorithm: Array (2)

LDijkstra’s Algorithm: Array (2)

2014-05-02

pass for csest et

Approch 1 Soan n e on o3
ot et VP 4 ) - OV

// Get mincost vertex
int minVertex (Graph G, int* D) { no notes
int v; // Initialize v to an unvisited vertex;
for (int i1=0; i<G.n(); i++)
if (G.getMark (i) == UNVISITED)
{ v = 1i; break; }
for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark (i)==UNVISITED) && (D[1]<D[Vv]))
v = 1i;
return v;

Approach 1: Scan the table on each pass for closest vertex.
Total cost: ©(|V|2 + [E|) = ©(|V[?).

gl CS 5114 Dijkstra's Algorithm: Priority Queue (1)
. . S 3
Dllkstra,s Algorlthm: Prlorlty Queue (1) 5'5 LDijkstra’s Algorithm: Priority Queue (1)
&
class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; } no notes
void Dijkstra(Graph G, int s) { // priority queue
int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances
do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark (v) == VISITED);
G.setMark (v, VISITED) ;
if (D[v] == INFINITY) return; // Unreachable
g, CS 5114 Dijkstra’s Algorithm: Priority Queue (2)
8 &
Dijkstra’s Algorithm: Priority Queue (2) e Agorim: Prory Qe 2
[sY ek, ot ooy cuoi
for (Edge w = each neighbor of v) no notes

if (D[G.v2(w)] > (D[v] + G.weight(w))) {
D[G.v2(w)] = D[v] + G.weight (w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert (temp); // Insert new distance
}1}

@ Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.

@ Total cost: ©((|V] + |E|) log |V]).
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LAII Pairs Shortest Paths

All Pairs Shortest Paths

2014-05-02

@ For every vertex u, v € V, calculate d(u, v).

@ Could run Dijkstra’s Algorithm |V| times. Multiple runs of Dijkstra’s algorithm Cost:

@ Better is Floyd’s Algorithm. [VI|E[log |V| = |V[*log | V| for dense graph.
@ Define a k-path from v to v to be any path whose

intermediate vertices all have indices less than k. The issue driving the concept of “k paths” is how to efficiently
check all the paths without computing any path more than once.

0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a 2
or 1 path. Everything is a 4 path.
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CS 5114 Floyd's Algorithm

LFond’s Algorithm

2014-05-02

Floyd’s Algorithm

. . no notes
void Floyd (Graph G) { // All-pairs shortest paths

int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D
for (int 3j=0; j<G.n(); Jj++)
D[i][]J] = G.weight (i, 3J);
for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)
for (int 3j=0; 3j<G.n(); J++)
if (D[i]1[J] > (D[i]1[k] + D[k]1[3]))
D[i][Jj] = D[il[k] + D[k1[J];
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Minimum Cost Spanning Trees

LMinimum Cost Spanning Trees

Minimum Cost Spanning Trees

2014-05-02

Minimum Cost Spanning Tree (MST) Problem: no notes
@ Input: An undirected, connected graph G.
@ Output: The subgraph of G that

@ has minimum total cost as measured by summing the
values for all of the edges in the subset, and
@ keeps the vertices connected.
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Key Theorem for MST

Let V4, V> be an arbitrary, non-trivial partition of V. Let T abarersneo .
(v, w), vi € Vi, o € V5, be the cheapest edge between V;
and V,. Then (v4, v2) is in some MST of G.
Proof:

@ Let T be an arbitrary MST of G.

@ If (vi, ) isin T, then we are done.

@ Otherwise, adding (v4, v2) to T creates a cycle C.

@ At least one edge (uy, up) of C other than (v;, vo) must

be between V4 and Va.

@ c(u1, Up) > c(vi, v2).

o Let T'=TU{(v1,v2)} — {(u1, )}

@ Then, T’ is a spanning tree of G and ¢(T") < ¢(T).

@ But ¢(T) is minimum cost.
Therefore, ¢(T') = ¢(T) and T" is @ MST containing (v, V).
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LKey Theorem for MST

2014-05-02

There can only be multiple MSTs when there are edges with
equal cost.
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LKey Theorem Figure

Key Theorem Figure
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Marked Unmarked no notes
Vertices v;, i <j Vertices Vv, i>=]
“correct” edge

e
Vu Vu

g
Prim’s edge
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CS 5114 Prim's MST Algorithm (1)
Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; dint V[G.n()]; // Distances
for (int 1=0; i<G.n(); i++) // Initialize
D[i] = INFINITY;
D[s] = 0;
for (i=0; 1i<G.n(); i++) { // Process vertices
int v = minVertex (G, D);
G.setMark (v, VISITED) ;
if (v != s) AddEdgetoMST (V[v], V);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight (w)) {
D[G.v2(w)] = G.weight (w); // Update dist
VIG.v2(w)] = v; // who came from

L Prim's MST Algorithm (1)

2014-05-02

no notes

P}

CcS 5114 Prim's MST Algorithm (2)

L Prim's MST Algorithm (2)

Prim’s MST Algorithm (2)

2014-05-02

Tis s anoxampl o a greedy aorihm.

int minVertex (Graph G, int* D) { no notes
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)
if (G.getMark (i) == UNVISITED)
{ v = 1; break; }
for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark (i)==UNVISITED) && (D[1]<D[V]))
v = i;
return v;

This is an example of a greedy algorithm.

CS 5114 Alternative Prim's Implementation (1)
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LAIternative Prim’s Implementation (1)

Alternative Prim’s Implementation (1)

2014-05-02

Like Dijkstra’s algorithm, can implement with priority queue. no notes

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who's closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
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Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);
G.setMark (v, VISITED);
if (v != s) AddEdgetoMST (VI[v], V);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) { // Update D
D[G.v2(w)] = G.weight (w);
VIG.v2(w)] = v; // Who came from
temp.distance = D[G.Vv2(w)];

temp.vertex = G.v2(w);
H.insert (temp) ; // Insert dist in heap
}
+}

Kruskal’s MST Algorithm (1)

Kruskel (Graph G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges into E

for (Edge w = G.first(i);
G.isEdge(w); w = G.next (w)) {
E[edgecnt] .weight = G.weight (w);
E[edgecnt++] .edge
}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numMST = G.n(); // Init w/ n equiv classes

Wi
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Kruskal’s MST Algorithm (2)

for (i=0; numMST>1; i++) { // Combine

Elem temp = H.removemin(); // Next cheap edge

Edge w = temp.edge;

int v = G.vl(w); int u = G.v2(w);

if (A.differ(v, u)) { // If different
A.UNION (v, u); // Combine
AddEdgetoMST (G.vl (w), G.v2(w)); // Add
numMST——; // Now one less MST

How do we compute function MSTof (v) ?
Solution: UNION-FIND algorithm (Section 4.3).
Spring 2014 221/418

Kruskal’s Algorithm Example
Total cost: ©(|V| + |E|log |E]).

w@|lo|leo|o|e]|e
7

1

sent ‘ ‘
Process edge (C, D)

©

=0|o |7 e

Process edge (E, F)

sws @ |

Process edge (C, F)
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CS 5114 Alternative Prim’s Implementation (2)

LAIternative Prim’s Implementation (2)

2014-05-02

no notes

CS 5114

Kruskal's MST Algorithm (1)

LKruskaI’s MST Algorithm (1)

2014-05-02

no notes

CS 5114 Kruskal's MST Algorithm (2)

LKruskaI’s MST Algorithm (2)

2014-05-02

How dowe compute fnction 7o 117
Solson: UNION FIND agarit (Socion 43)

no notes

CS 5114

Kruskal's Algorithm Example
ol cot (V] + o).
~olojojojolo
o

LKruskaI’s Algorithm Example

2014-05-02

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.



Matching

@ Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.

@ Problem: Form as many compatible non-overlapping
teams as possible.

@ Model using G, an undirected graph.

» Join vertices if the workers will work together.

@ A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

» A maximal matching has no free pairs of vertices that
can extend the matching.

» A maximum matching has the greatest possible
number of edges.

» A perfect matching includes every vertex.
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Very Dense Graphs (1)

Theorem: Let G = (V, E) be an undirected graph with
|V| = 2n and every vertex having degree > n. Then G
contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.

@ Let M C E be a max matching. |M| < n.

@ There must be two unmatched vertices vy, v» that are
not adjacent.

@ Every vertex adjacent to v; or to v, is matched.

@ Let M' C M be the set of edges involved in matching the
neighbors of vy and vs.

@ There are > 2n edges from v4 and v, to vertices
covered by M’, but [M'| < n.
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Very Dense Graphs (2)

Proof: (continued)
@ Thus, some edge of M’ is adjacent to 3 edges from v;
and v,.
@ Let (uy, wp) be such an edge.
@ Replacing (u1, up) with (v4, up) and (v, uy) results in a
larger matching.
@ Theorem proven by contradiction.
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Generalizing the Insight
® »2

(uf (w

@ Vi, Up, Uy, Vo is @ path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.

@ In one step, switch unmatched and matched edges.

@ Let G= (V, E) be an undirected graphand M C E a
matching.

@ An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.
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CS 5114 Matching

LMatching

2014-05-02

An example:

(1-3) is a matching.

(1-3) (5, 4) is both maximal and maximum.

Take away the edge (5-4). Then (3, 2) would be maximal but
not a maximum matching.

CS 5114 Very Dense Graphs (1)

LVery Dense Graphs (1)

2014-05-02

There must be two unmatched vertices not adjacent:
Otherwise it would either be perfect (if there are no 2 free
vertices) or we could just match vy and v» (because they are
adjacent).

Every adjacent vertex is matched, otherwise the matching
would not be maximal.

See Manber Figure 3.76.

CS 5114 Very Dense Graphs (2)

LVery Dense Graphs (2)

2014-05-02

Pigeonhole Principle

CS 5114 Generalizing the Insight

LGeneraIizing the Insight

2014-05-02

no notes



Matching Example
(@)

)

O—0—G

(O—

0 ®
-

CS 5114: Theory of Algorithms Spring 2014 227/418

The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating
paths.

Proof:
@ Clearly, if a matching has alternating paths, then it is not
maximum.
@ Suppose M is a non-maximum matching.
@ Let M’ be any maximum matching. Then, |M'| > |M|.
@ Let MeM' be the symmetric difference of M and M'.

MeM = MUM — (Mo M).

@ G' = (V,MaM')is a subgraph of G having maximum
degree < 2.
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The Alternating Path Theorem (2)

Proof: (continued)

@ Therefore, the connected components of G’ are either
even-length cycles or a path with alternating edges.

@ Since |M'| > |M|, there must be a component of G’ that
is an alternating path having more M’ edges than M
edges.
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Bipartite Matching

@ A bipartite graph G = (U, V, E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V.

@ Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.

@ Alternating paths will work to find a maximum bipartite
matching. An alternating path always has one end in U
and the other in V.

@ If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an alternating path.
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CS 5114 Matching Example
LMatching Example ; ?

1, 2, 3, 5is NOT an alternating path (it does not start with an

unmatch vertex).

7,6,11,10, 9, 8 is an alternating path with respect to the given

matching.

Observation: If a matching has an alternating path, then the

size of the matching can be increased by one by switching

matched and unmatched edges along the alternating path.

CS5114 The Atlrnating Path Thearem (1
LThe Alternating Path Theorem (1)

The first point is the obvious part of the iff. If there is an
alternating path, simply switch the match and umatched edges
to augment the match.

Symmetric difference: Those in either, but not both.

The max degree is < 2 because a vertex matches one different
vertex in M and M'.

CS 5114

‘The Alternating Path Theorem (2)

Proot. (conties)

LThe Alternating Path Theorem (2)

no notes

CS 5114 Biparite Matct

LBipartite Matching

no notes



Bipartite Matching Example
O—=©
@ (7
©, (®)
(4] ©
©, 10

2, 8, 5, 10 is an alternating path.

1,6,3,7,4,9and 2, 8, 5, 10 are disjoint alternating paths
that we can augment independently.
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Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.
Augment along each path independently.
Repeat until no alternating paths remain.

Time complexity O((|V| + |E|)\/| V]).
Spring 2014 202/418

Network Flows

Models distribution of utilities in networks such as oil
pipelines, water systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph G = (V, E) having a
distinguished source vertex s and a distinguished sink vertex
t. Every edge (u, v) of G has a capacity c(u, v) > 0. If
(u,v) ¢ E, then c(u, v) = 0.
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Network Flow Graph

3
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CS 5114

LBipartite Matching Example

2014-05-02

Bipartite Matching Example

Naive algorithm: Find a maximal matching (greedy algorithm).

For each vertex:

Do a DFS or other search until an alternating path is found.

Use the alternating path to improve the match.

VI(VI+(E])

CS 5114

LAIgorithm for Maximum Bipartite Matching

2014-05-02

Algorithm for Maximum Bipartite
Mat

[ ——

“Tme compesty O{(V+ (E) V)

Order doesn’t matter. Find a path, remove its vertices, then
repeat.Augment along the paths independently since they are

disjoint.

CS 5114

LNetwork Flows

2014-05-02

no notes
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LNetwork Flow Graph
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no notes

Network Flow Graph
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Network Flow Definitions

A flow in a network is a function f : V x V — R with the
following properties.
(i) Skew Symmetry:

Vv,weV, f(v,w)=—f(w,v).
(i) Capacity Constraint:
vv,w,e V, f(v,w) < c(v,w).

If f(v,w) = c(v, w) then (v, w) is saturated.
(iii) Flow Conservation:

Vv € V—{st}, Zf(v,w):o. Equivalently,
woe V—{st}, > fuv)=> f(v,w).

u w
In other words, flow into v equals flow out of v.
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Flow Example

3,=3

1 (y&;@\u}\s
g@(o.—wy Tz,z ©
D) o
20, 10
+infinity, 13
Edges are labeled “capacity, flow”.

Can omit edges w/o capacity and non-negative flow.
The value of a flow is

= f(s,w) = f(w,1).

weV weV
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Max Flow Problem

Problem: Find a flow of maximum value.
Cut (X, X’) is a partition of V suchthats € X,t e X'.
The capacity of a cut is

cX.X)= Y c(v.w)

veX,weX’

A min cut is a cut of minimum capacity.
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Cut Flows

For any flow f, the flow across a cut is:

X X)= > f(v.w).

veX,weX’

Lemma: For all flows f and all cuts (X, X’), (X, X") = |f|.
@ Clearly, the flow out of s = |f| = the flow into t.

@ It can be proved that the flow across every other cut is

also |f|.

235/418
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Corollary: The value of any flow is less than or equal to the

capacity of a min cut.
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Network Flow Definitions
Aflow na novorkis aurcon (V¥ - Awih o
followig propetes

0 Skew Symmery:

Flow Example

an omit adges w capaoty and o egatiefo.
Thosaug ofafow's

=S em - 5 o

3, -3 is an illustration of “negative flow” returning. Every node
can be thought of as having negative flow. We will make use of

this later — augmenting paths.

CS 5114

LMax Flow Problem

2014-05-02

no notes
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no notes

Max Flow Problem
Problem: Fin s flow of i v,
Gt (XX 3 paron f ¥ sueh a5 .1  X.

e capaciy o acut s
X Y v

Amincut .t of i capacty.

Lomme: Fo a8 fows and a s (X, X, /X, X) = 1.

« Clary, th lowoutof 5 1 - th fow o 1.

« tcano poved ha e flow acrss every ot it
ao.
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CS 5114 Residual Graph

L Residual Graph

Residual Graph

2014-05-02

Given any flow f, the residual capacity of the edge is
- R is the network after f has been subtracted.

res(v,w) = c(v,w) — f(v,w) > 0. Saturated edges do not appear.

Some edges have larger capacity than in G.
Residual graph is a network R = (V, Eg) where Eg 9 g pacty

contains edges of non-zero residual capacity.
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o CS5114 D
o
¢ L
1 < Observations
Observations -
@ Any flow in R can be added to F to obtain a larger flow no notes
in G.
@ In fact, a max flow ' in R plus the flow f (written f + ') is
a max flow in G.
@ Any path from sto t in R can carry a flow equal to the
smallest capacity of any edge on it.
» Such a path is called an augmenting path.
» For example, the path
s, 1,2,t
can carry a flow of 2 units = ¢(1, 2).
o CS5114 Max-flow Min-cut Theorem
o
] e
. : L ) et
< Max-flow Min-cut Theorem o
Max-flow Min-cut Theorem = -
The following are equivalent: no notes
(i) fis a max flow.
(i) f has no augmenting path in R.
(iii) |f| = (X, X") for some min cut (X, X").
Proof:
(i) = (ii):
@ If f has an augmenting path, then f is not a max flow.
g CS 5114 Max-flow Min-cut Theorem (2)
8 s
. - L _ F
o - < Max-flow Min-cut Theorem (2)
Max-flow Min-cut Theorem (2) =
(i) = (ii): Line 4: Because no augmenting path.

) i Line 5: Because we know the residuals are all 0.
@ Suppose f has no augmenting path in R.

@ Let X be the subset of V' reachable from s and In other words, look at the capacity of G at the cut separating s

X =V-X from t in the residual graph. This must be a min cut (for G) with
@ Thense X, te X', so (X, X')is a cut. capacity |f].

o Vve X we X, res(v,w)=c(v,w) — f(v,w) =0.
° f(X7 X/) = Zvextwex’ f(V7 W) =

ZveX,weX’ c(v, w) = ¢(X, X').
@ By Lemma, |f| = ¢(X, X") and (X, X") is a min cut.
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Max-flow Min-cut Theorem (3)

(iii) = (i)
@ Let f be a flow such that |f| = ¢(X, X") for some (min)
cut (X, X).
@ By Lemma, all flows f satisfy || < ¢(X, X") = |f].

Thus, f is a max flow.
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Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a
min cut.
This suggests a strategy for finding a max flow.

R=G; £f=0;

repeat
find a path from s to t in R;
augment along path to get a larger flow £;
update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.
If capacities are all rational, then it always terminates with f

equal to max flow.

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of
edges.

Performance: O(| V|3).

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.
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Geometric Algorithms

Potentially large set of objects to manipulate.
@ Possibly millions of points, lines, squares, circles.
@ Efficiency is crucial.

Computational Geometry
@ Will concentrate on discrete algorithms — 2D

Practical considerations
@ Special cases
@ Numeric stability
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CS 5114 Max-flow Min-cut Theorem (3)

=

LMax»row Min-cut Theorem (3)

no notes

CS 5114 Max-flow Min-cut Corollary

LMax»row Min-cut Corollary

cspaces s lraonl, then 1 ways frminas wih 1
o

oquatiomax

Problem with Ford-Fulkerson:
Draw graph with nodes nodes s, t, a, and b. Flow from Sto a
and b is M, flow from a and b to tis M, flow fromatobis 1.

Now, pick s-a-b-t.

Then s-b-a-t. (reverse 1 unit of flow).

Repeat M times.

M is unrelated to the size of V, E, so this is potentially
exponential.

CS 5114 Edmonds-Karp Algorithm
[EL——

Selctanaugrening pathn with i e f

LEdmonds-Karp Algorithm

Poromance: O V)

There ar umercus b sgproachos o ding
augmoning pins, vinga varey of vt garitms.

Network o e an ctve rsaarch srea

no notes

CS 5114

Geometric Algorithms

LGeomelric Algorithms

Same principles often apply to 3D, but it may be more
complicated.

We will avoid continuous problems such as polygon
intersection.

Special cases: Geometric programming is much like other
programming in this sense. But there are a LOT of special
cases! Co-point, co-linear, co-planar, horizontal, vertical, etc.

Numeric stability: Each intersection point in a cascade of
intersections might require increasing precision to represent the
computed intersection, even when the point coordinates start
as integers. Floating point causes problems!



Definitions

@ A point is represented by a pair of coordinates (x, y).
@ Aline is represented by distinct points p and q.
» Manber’s notation: —p — g—.
@ A line segment is also represented by a pair of distinct
points: the endpoints.
» Notation: p — q.
@ A path P is a sequence of points py, ps, - - - , pp and the

line segments p; — P2, P2 — P3, - - - , Pn_i — Pn CONNECting
them.

@ A closed path has p; = p,. This is also called a
polygon.

» Points = vertices.
» A polygon is a sequence of points, not a set.
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Definitions (cont)

@ Simple Polygon: The corresponding path does not
intersect itself.

» A simple polygon encloses a region of the plane INSIDE
the polygon.

@ Basic operations, assumed to be computed in constant
time:
» Determine intersection point of two line segments.
» Determine which side of a line that a point lies on.
» Determine the distance between two points.
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Point in Polygon

Problem: Given a simple polygon P and a point g,
determine whether q is inside or outside P.

Basic approach:
@ Cast a ray from q to outside P. Call this L.
@ Count the number of intersections between L and the
edges of P.
@ If count is even, then q is outside. Else, q is inside.

Problems:
@ How to find intersections?
@ Accuracy of calculations.
@ Special cases.

Point in Polygon Analysis (1)

Time complexity:
@ Compare the ray to each edge.
@ Each intersection takes constant time.
@ Running time is O(n).

Improving efficiency:

@ O(n) is best possible for problem as stated.
@ Many lines are “obviously” not intersected.

CS 5114: Theory of Algorithms Spring 2014 250/ 418

2014-05-02

2014-05-02

2014-05-02

2014-05-02

CS 5114 Definitions

LDefinitions

Line alternate representation: slope and intercept.
For polygons, order matters. A left-handed and right-handed
triangle are not the same even if they occupy the same space.

CS 5114

Definitions (cont)
 Simplo Poygon; Th corrsponcin pan ss ol
e st

LDefinitions (cont)

no notes

CS 5114 Pointin Polygon

Problem: Gvena sime polygon Pand apon .
delormns whaber g1enids o o P

Basi approac:
o Gastaray from g0 outside P Cal s L

LPoint in Polygon

Special cases:

e Line intersects polygon at a vertex, goes in to out.
e Line intersects poly. at inflection point (stays in or stays out).
e Line intersects polygon through a line.

Simplify calculations by making line horizontal.

Accuracy of calculations is not a problem with integer
coordinates for points and a horizontal line. But think about
representing the intersection point for two arbitrary line
segements (from a polygon intersection operation). Cascading
intersections can lead to ever-increasing demand for precision
in coordinate representation.

CS 5114 Point in Polygon Analysis (1)

i comsenty
= Con

each odg.

LPoint in Polygon Analysis (1)

no notes




Point in Polygon Analysis (2)

Two general principles for geometrical and graphical
algorithms:
@ Operational (constant time) improvements:
» Only do full calculation for ‘good’ candidates
» Perform ‘fast checks’ to eliminate edges.
» Ex: If p1.y > q.y and po.y > q.y then don’t bother to do
full intersection calculation.
@ When doing many point-in-polygon operations,
preprocessing may be worthwhile.
» Ex: Sort edges by min and max y values.
Only check for edges covering y value of point g.
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Constructing Simple Polygons

Problem: Given a set of points, connect them with a simple
closed path.

Approaches:

@ Randomly select points.
@ Use a scan line:
» Sort points by y value.
» Connect in sorted order.
© Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.
» Simplifying assumption: The scan line hits one point at a
time.
» Do a rotating scan through points, connecting as you go.
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Validation

Theorem: Connecting points in the order in which they are
encountered by the rotating scan line creates a simple
polygon.

Proof:

@ Denote the points py, - - - , p, by the order in which they
are encountered by the scan line.

@ Foralli, 1 <i< n, edge p; — pi;1 is in a distinct slice of
the circle formed by a rotation of the scan line.

@ Thus, edge p; — pi.1 does not intersect any other edge.

@ Exception: If the angle between points p; and p; 1 is
greater than 180o0.
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Implementation
How do we find the point for the scanline center?

Actually, we don’t care about angle — slope will do.

Select z;
for (i =2 to n)
compute the slope of line z — p;.
Sort points p; by slope;
label points in sorted order;

Time complexity: Dominated by sort.
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CS 5114 Point in Polygon Analysis (2)

LPoint in Polygon Analysis (2)

Spatial data structures can help.

“Fast checks” take time. When they “win” (they rule something
out), they save time. When they “lose” (they fail to rule
something out) they add extra time. So they have to “win” often
enough so that the time savings outweighs the cost of the
check.

CS 5114 Constructing Simple Polygons

Problem: Gven set of poii,conct e i a s
closed et

LConstructing Simple Polygons

(1) Could easily yield an intersection.

(2) The problem is connecting point p, back to ps. This could
yield an intersection.

Simplifying assumption is that the points are not colinear w.r.t.
the scan line.

See Manber Figure 8.6.

CS 5114 Validation

“Theorem: Gomectng pits i o rdr i whic ey aro
encounersd by e rtaing sca i reses a snpl
pobgon

L Validation

So, the key is to pick a point for the center of the rotating scan
that guarentees that the angle never reachese 180o.

CS 5114

Implementation
How dorwe i he pl o e scain cerer?

sy, wa con't ars s gl - s il o

L Implementation sonatz
o sopot s 2.
e

Time complessy: Dominated by st

Pick as z the point with greatest x value (and least y value if
there is a tie). See Manber Figure 8.7.

The next point is the next largest angle between z — p; and the
vertical line through z. It is important to use the slope, because
then our computation is a constant-time operation with no
transendental functions.

z is the point with greatest x value (minimum y in case of tie)

So, time is ©(nlog n)



Convex Hull

@ A convex hull is a polygon such that any line segment
connecting two points inside the polygon is itself entirely
inside the polygon.

@ A convex path is a path of points py, p, - - - , pp SUCh
that connecting p; and p, results in a convex polygon.

@ The convex hull for a set of points is the smallest convex
polygon enclosing all the points.
» imagine placing a tight rubberband around the points.
@ The point belongs to the hull if it is a vertex of the hull.
@ Problem: Compute the convex hull of n points.
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Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

@ nth point is inside the hull.
» No change.
@ nth point is outside the convex hull
» “Stretch” hull to include the point (dropping other points).
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Subproblems (1)

Potential problems as we process points:
@ Determine if point is inside convex hull.
@ Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point — some sort of min or max point.

If we always pick the point with max x, what problem is
eliminated?
Stretch:

@ Find vertices to eliminate

@ Add new vertex between existing vertices.
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Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point g.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.
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no notes

CS 5114 Simple Convex Hull Algorithm
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See Manber Figure 8.9.

CS 5114 Subproblems (1)
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@ Deterrine 4 pont s e o it
 sveenana

LSubprobIems (1)
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Why? Lots of points don’t affect the hull, and stretching is
expensive.

Subproblem 1 can be eliminated: the max is always outside the
polygon.

CS 51 1 4 Subproblems (2)
g e s g 1o oy
LSubprobIems 2) Ot s e e s i 0 s

Tross supportg s nrsetat i’ and “max”peins
ot o) corver .

2014-05-02

“Min” and “max” with respect to the angle formed by the
supporting lines.



Sorted-Order Algorithm

set convex hull to be py, p2, ps;

forg=4ton{
order points on hull with respect to pg;
Select the min and max values from ordering;
Delete all points between min and max;
Insert p, between min and max;
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Time complexity

Sort by x value: O(nlog n).

For gth point:
@ Compute angles: O(q)
@ Find max and min: O(q)
@ Delete and insert points: O(q).

T(n)= T(n—1)+ O(n) = O(n?)
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Gift Wrapping Concept

@ Straightforward algorithm has inefficiencies.

@ Alternative: Consider the whole set and build hull
directly.
@ Approach:
» Find an extreme point as start point.
» Find a supporting line.
» Use the vertex on the supporting line as the next start
point and continue around the polygon.
@ Corresponding Induction Hypothesis:
» Given a set of n points, we can find a convex path of
length k < nthat is part of the convex hull.

@ The induction step extends the PATH, not the hull.
Sping2014  261/418

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P;

P =0;
Point p = the point in S with largest x coordinate;
P=PuUp;
Line L = the vertical line containing p;
while (P is not complete) do {
Point g = the point in S such that angle between line
—p — g— and L is minimal along all points;

P=PuUg;
L=-p-q=;
pP=g;

}
1
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Dell a piis botwen min and max;
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o CS5114 Sorted-Order Algorithm
<
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< Sorted-Order Algorithm e e
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Sort by x value.

CS 5114

N ‘Time complexity

S

[Te} PON—,

S L orgnpore

< Time complexity * s s O

— < Dot and et Ot
no notes

o CS5114 Gift Wrapping Concept

3

[To}

g L

< Gift Wrapping Concept

o

(3

Straightforward algorithm spends time to build convex hull with
points interior to final convex hull.

CS 5114 Gift Wrapping Algorithm

LGift Wrapping Algorithm

no notes



o CS5114 Gift Wrapping Analysis
<
= g
H 1 H < LGift Wrapping Analysis e
Gift Wrapping Analysis =
O(r?). Actually, O(hn) where h is the number of edges to hull.
Complexity:
@ To add kth point, find the min angle among n — k lines.
@ Do this htimes (for h the number of points on hull).
@ Often good in average case.
@ Could be bad in worst case.
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o CS5114 e
S
3 L
I < Graham’s Scan
Graham’s Scan -
o Approach: See Manber Figure 8.11.
» Start with the points ordered with respect to some
maximal point.
» Process these points in order, adding them to the set of
processed points and its convex hull.
» Like straightforward algorithm, but pick better order.
@ Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.
@ Process points in this order, maintaining the convex hull
of points seen so far.
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o CS5114 Graham's Scan (cont)
3
3 L
’ < Graham’s Scan (cont)
Graham’s Scan (cont) = Fo
Induction Hypothesis: no notes
@ Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n — 1 points corresponding to the convex hull of the
n— 1 points.
Induction Step:
@ Add the kth point to the set.
@ Check the angle formed by px, px_1, Pk_2-
@ If angle < 1800 with respect to inside of the polygon,
then delete px_1 and repeat.
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o CS5114 Graham's Scan Algorithm
3
. 8
Graham’s Scan Algorithm < L Graham's Scan Algorithm
o
()

ALGORITHM GrahamsScan(Pointset P) { no notes

Point p; = the point in P with largest x coordinate;
P = SimplePolygon(P, p1); / Order points in P

Point g1 = p1;
Point go = po;
Point g3 = ps;
intm=3;

for (k =41ton){
while (angle(—gm—1 — gm—, —qm — pxk—) < 180°) do

m=m-—1;
m=m+1;
Qm = Pk;

}
}
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CS 5114 Graham's Scan Analysis
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Graham’s Scan Analysis
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no notes

Time complexity:
@ Other than Simple Polygon, all steps take O(n) time.
@ Thus, total cost is O(nlog n).
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o WARNING: These are the most important two slides of the
Theorem: Sorting is transformable to the convex hull semester!

problem in linear time.

Proof:
@ Given a number x;, convert it to point (x;, x?) in 2D.
@ All such points lie on the parabla y = x2.
@ The convex hull of this set of points will consist of a list
of the points sorted by x.

Corollary: A convex hull algorithm faster than O(nlog n)
would provide a sorting algorithm faster than O(nlog n).

CS 51 14 “Black Box" Model

A Soring Aorihm:
Ty pons: O

L—+Black Box” Model

“Black Box” Model
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This is the fundamental concept of a reduction. We will use this

. . constantly for the rest of the semester.
A Sorting Algorithm: y

keys — points: O(n)
Convex Hull
CH Polygon — Sorted Keys: O(n)
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CS 5114 Closest Pair

LCIosest Pair

Closest Pair
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° Problerp: inen a set of n points, find the pair whose Next try: Ordering the points by x value still doesn't help.
separation is the least.

Example of a proximity problem
» Make sure no two components in a computer chip are
too close.

@ Related problem:
» Find the nearest neighbor (or k nearest neighbors) for
every point.
@ Straightforward solution: Check distances for all pairs.
@ Induction Hypothesis: Can solve for n — 1 points.
@ Adding the nth point still requires comparing to all other
points, requiring O(n?) time.
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LDivide and Conquer Algorithm
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Divide and Conquer Algorithm

Assume n = 2k points.
@ Approach: Split into two equal size sets, solve for each,

and rejoin.

@ How to split?

» Want as much valid information as possible to result.

@ Try splitting into two disjoint parts separated by a
dividing plane.

@ Then, need only worry about points close to the dividing
plane when rejoining.

@ To divide: Sort by x value and split in the middle.

Note: We will actually compute smallest distance, not pair of
points with smallest distance.
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LCIosest Pair Algorithm

Closest Pair Algorithm
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Induction Hypothesis: See Manber Figure 8.13
@ We can solve closest pair for two sets of size n/2
named P; and Ps.

Let minimal distance in P; be d;, and for P, be d>.
@ Assume d; < 0b.

Only points in the strip of width d; to either side of the
dividing line need to be considered.
Worst case: All points are in the strip.
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LCIosest Pair Algorithm (cont)
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Closest Pair Algorithm (cont)

See Manber Figure 8.14
Observation:

@ A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d; distance apart.

Sorting by y value limits the search required.
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LCIosest Pair Algorithm Cost

Closest Pair Algorithm Cost
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O(nlog n) to sort by x coordinates. no notes
Eliminate points outside strip: O(n).

Sort according to y coordinate: O(nlog n).

Scan points in strip, comparing against the other strip: O(n).

T(n) =2T(n/2) + O(nlog n).

T(n) = O(nlog? n).



A Faster Algorithm
The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
@ Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets —an O(n) step.

T(n)=2T(n/2) + O(n).
T(n) = O(nlog n).
Spring 20141 2757418

Horizontal and Vertical Segments

@ Intersection Problems:
» Detect if any intersections ...
» Report any intersections ...
... of a set of <line segments>.
@ We can simplify the problem by restricting to vertical
and horizontal line segments.
@ Example applications:
» Determine if wires or components of a VLSI design
Cross.
» Determine if they are too close.

* Solution: Expand by 1/2 the tolerance distance and
check for intersection.

» Hidden line/hidden surface elimination for Computer
Graphics.
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Sweep Line Algorithms (1)

Problem: Given a set of n horizontal and m vertical line
segments, find all intersections between them.
@ Assume no intersections between 2 vertical or 2
horizontal lines.

Straightforward algorithm: Make all n x m comparisons.
If there are n x mintersections, this cannot be avoided.

However, we would like to do better when there are fewer
intersections.

Solution: Special order of induction will be imposed by a
sweep line.
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Sweep Line Algorithms (2)

Plane sweep or sweep line algorithms pass an imaginary
line through the set of objects.

As objects are encountered, they are stored in a data
structure.

When the sweep passes, they are removed.

Preprocessing Step:
@ Sort all line segments by x coordinate.

CS 5114: Theory of Algorithms Spring 2014 278/418

o CS5114 A Faster Algorithm
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3
< LA Faster Algorithm
1)
(3
no notes
o CS5114 Horizontal and Vertical Segments
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< Horizontal and Vertical Segments
1)
(3
no notes
o CS5114 Sweep Line Algorithms (1)
3
[To}
g L
< Sweep Line Algorithms (1)
1)
ol ‘Solution: Special order of induction wil be imposed by a
This is a “classic” computational geometry problem/algorithm
g, CS 5114 Sweep Line Algorithms (2)
< L_Sweep Line Algorithms (2) BRIt
6 ‘When the sweep passes, they are removed.
N ST

The induction here is to add a special nth element.



Sweep Line Algorithms (3)

Inductive approach:

@ We have already processed the first k — 1 end points
when we encounter endpoint k.

@ Furthermore, we store necessary information about the
previous line segments to efficiently calculate
intersections with the line for point k.

Possible approaches:

@ Store vertical lines, calculate intersection for horizontal
lines.

@ Store horizontal lines, calculate intersection for vertical
lines.
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Organizing Sweep Info

What do we need when encountering line L?

@ NOT horizontal lines whose right endpoint is to the left
of L.

@ Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:

@ Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k.x, and to eliminate horizontal
lines to the left of k.
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Sweep Line Tasks

Things to do:
@ (k + 1)th endpoint is right endpoint of horizontal line.
» Delete horizontal line.
@ (k + 1)th endpoint is left endpoint of horizontal line.
» Insert horizontal line.
© (k + 1)th endpoint is vertical line.
» Find intersections with stored horizontal lines.
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Data Structure Requirements (1)

To have an efficient algorithm, we need efficient
@ Intersection
@ Deletion
@ 1 dimensional range query

Example solution: Balanced search tree
@ Insert, delete, locate in log n time.

@ Each additional intersection calculation is of constant
cost beyond first (traversal of tree).
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oy 085114 Sweep Line Algoriinms ()
O
<
< LSweep Line Algorithms (3)
o
(3]
Since we processed by x coordinate (i.e., sweeping
horizontally) do (2). When we process a vertical line, it is clear
which horizontal lines would be relevent (the ones that cross
that include the x coordinate of the vertical line), and so could
hope to find them in a data structure. If we stored vertical lines,
when we process the next horizontal line, it is not so obvious
how to find all vertical lines in the horizontal range.
oy 085114 R e e
8
< LOrganizing Sweep Info
o
(9]
See Figure 8.17 in Manber.
y coordinates of the active horizontal lines.
g CS 5114 Sweep Line Tasks
8
< LSweep Line Tasks
o
()
Deleting horizontal line is O(log n).
Inserting horizontal line is O(log n).
Finding intersections is O(log n + r) for r intersections.
g CS 5114 Data Structure Requirements (1)
O e ——
C|>  Deietion
< LData Structure Requirements (1) oo —
o
= .

no notes



o CS5114
<
3
Data Structure Requirements (2) ‘<r'_ LData Structure Requirements (2)
o
(3]
Time complexity:
no notes
@ Sort by x: O((m + n)log(m + n)).
@ Each insert/delete: O(log n).
@ Total cost is O(nlog n) for horizontal lines.
Processing vertical lines includes one-dimensional range
query:
@ O(log n+ r) where r is the number of intersections for
this line.
Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.
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S
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H < Reductions
Reductions -

A reduction is a transformation of one problem to another .
This example we have already seen.

Purpose: To compare the relative difficulty of two problems

Data Structure Requirements (2)

Thus, ol tme s O(m- o )+ ), wher s e
ot e of mreacions|

Reductions
A edustion s & ot of o ot atner

Purpose: Tocompars e raaive ifuty of wo probiams

NOT reduce CH to sorting — that just means that we can make

CH as hard as sorting! Using sorting isn’t necessarily the only

Example: way to solve the CH problem, perhaps there is a better way. So
Sorting reals reduces to (in linear time) the problem of just knowing that sorting is ONE WAY to solve CH doesn't tell
finding a convex hull in two dimensions us anything about the cost of CH. On the other hand, by

@ Use CH as a way to solve sorting showing that we can use CH as a tool to solve sorting, we know

that CH cannot be faster than sorting.

We argued that there is a lower bound of Q(nlog n) on
finding the convex hull since there is a lower bound of
Q(nlog n) on sorting
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L Reduction Notation

Reduction Notation

2014-05-02

@ We denote names of problems with all capital letters. no notes
» Ex: SORTING, CONVEX HULL
@ What is a problem?
» A relation consisting of ordered pairs (I, SLN).
» | comes from the set of instances (allowed inputs).
» SLN is the solution to the problem for instance I.

@ Example: SORTING = (I, SLN).
l is a finite subset of R.

» Prototypical instance: {x1, Xo, ..., Xn}.
@ SLN is the sequence of reals from I in sorted order.
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LBIack Box Reduction (1)

Black Box Reduction (1)

2014-05-02

The job of an algorithm is to take an instance | and return a no notes
solution SLN, or to report that there is no solution.

A reduction from problem A(l, SLN) to problem B(I', SLN’)
requires two transformations (functions) T, T'.
TI=T
@ Maps instances of the first problem to instances of the
second.
T:SLN = SLN
@ Maps solutions of the second problem to solutions of the
first.
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Reduction Notation

Black Box Reduction (1)

A reduston fom presem Al SLW) 1 e BT SLN)
E matons lacions .
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CS 5114

Black Box Reduction (2)

LBIack Box Reduction (2)

2014-05-02

Black Box Reduction (2)

no notes
Black box idea:

@ Start with an instance | of problem A.

@ Transform to an instance I' = T(l), an instance of
problem B.

© Use a “black box” algorithm for B as a subroutine to find
a solution SLN’ for B.

© Transform to a solution SLN = T°(SLN’), a solution to
the original instance | for problem A.
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CS 5114

Black Box Diagram

LBIack Box Diagram

Black Box Diagram

2014-05-02

Problem A: ‘ ‘ |

no notes

Problem B

Transform 2

SLN

CS 5114
More Notation

If (I, SLN) reduces to (I', SLN’), write:
(I, SLN) < (I, SLN').

LMore Notation

2014-05-02

Sorting is no harder than Convex Hull. Conversely, Convex Hull

is at least as hard as Sorting.
This notation suggests that (I, SLN) is no harder than (I,

/
SLN). If T or T' is expensive, then we have proved nothing about the

Examples: relative bounds.

@ SORTING < CONVEX HULL

The time complexity of T and T" is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) <og(ny (I', SLN').
Spring 2014 289/418

CS 5114 Reduction Example

Reduction Example

LReduction Example

2014-05-02

SORTING = (I, SLN)
CONVEX HULL = (I', SLN’).
Q 1={x,%, .., X}
e T(I) =I'= {(X1 ) X12)7 (X27 X22)7 000g (th X,%)}
© Solve CONVEX HULL for I' to give solution SLN’
= { (s Xq1))s (Xigzys Xy --os (Xige, X }-
© T finds a solution to I from SLN’ as follows:
@ Find (X, x,?[k]) such that xjpq is minimum.
Q Y = X[k, Xik1]s -+ Xifn]s Xi[1]» - Xi[k—1]-
@ For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
@ An algorithm for the second problem gives an algorithm
for the first problem by steps 2 — 4.
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no notes
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Notation Warning

LNotation Warning

Notation Warning

2014-05-02

Example: SORTING <o, CONVEX HULL. no notes

WARNING: < is NOT a partial order because it is NOT
antisymmetric.

SORTING <q(») CONVEX HULL.
CONVEX HULL <, SORTING.

But, SORTING # CONVEX HULL.
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Bounds Theorems

Bounds Theorems

LBounds Theorems

2014-05-02

Lower Bound Theorem: If Py <oy(n)) Pe, there is a lower
bound of Q(h(n)) on the time complexity of Py, and

Notice o, not O.So, given good transformations, both problems
g(n) = o(h(n)), then there is a lower bound of Q(h(n)) on Ps. gweng P

take at least Q(P;) and at most O(P»).

Example:
@ SORTING <p(; CONVEX HULL.
@ g(n)=n. h(n)=nlogn. g(n)=o(h(n)).
@ Theorem gives Q(nlog n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P, has time complexity O(h(n))
and Py <o(g(n)) P2, then Py has time complexity
O(g(n) + h(n)).

CS 5114 System of Distinct Representatives
(SDR)

System of Distinct Representatives
(SDR)

Instance: Sets S;, S,, - - - , Sk Since it is a set, there are no duplicates.
Solution: Set R={r,r, -+ ,r} suchthatr; € S;.
Example: Or,R={1,4,2,3}
Instance: {1},{1,2,4},{2,3},{1,3,4}.
Solution: R = {1,2,3,4}. U is the sets.
Reduction: V is the elements from all of the sets (union the sets).
@ Let n be the size of an instance of SDR. E matches elements to sets.
@ SDR < BIPARTITE MATCHING.
@ Given an instance of S;, Ss, - - - , Sk of SDR, transform it
to an instance G = (U, V, E) of BIPARTITE MATCHING.
@ LetS= U;{(:1S,'. U = {81782,"' ,Sk}.
e V=S E= {(S,,X])|X/ € S,}

LSystem of Distinct Representatives (SDR)

2014-05-02

CS 5114

SDR Example

LSDR Example e

SDR Example

2014-05-02

{1} 1 Need better figure here.
{1,2,4} 2
{2,3} 3
{1,3,4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k.

CS 5114: Theory of Algorithms Spring 2014 294/418



Simple Polygon Lower Bound (1)

@ SIMPLE POLYGON: Given a set of n points in the plane,

find a simple polygon with those points as vertices.
@ SORTING <¢(n SIMPLE POLYGON.
@ Instance of SORTING: {xy, X2, - - , Xp}.
> In linear time, find M = max|x;|.
» Let C be a circle centered at the origin, of radius M.
@ Instance of SIMPLE POLYGON:

{0, /M2 = XE), -, (Xa, VMP = XE)}.

All these points fall on C in their sorted order.

@ The only simple polygon having the points on C as
vertices is the convex one.

CS 5114: Theory of Algorithms Spring 2014

Simple Polygon Lower Bound (2)

@ As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.

@ By the Lower Bound Theorem, SIMPLE POLYGON is
Q(nlog n).
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Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
@ Instance: a symmetric n x n matrix.

MATRIX MULTIPLY <o) SYM.
0 AJ[0 B"] [AB 0O
AT 0 B 0| | 0 A’BT

Matrix Squaring

Problem: Compute A? where A is an n x n matrix.

MATRIX MULTIPLY <2y SQUARING.

CS 5114: Theory of Algorithms Spring 2014
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CS 5114

LSimpIe Polygon Lower Bound (1)

2014-05-02

Need a figure here showing the curve.

CS 5114

Simple Polygon Lower Bound (2)

LSimpIe Polygon Lower Bound (2)

2014-05-02

no notes

CS 5114

Matrix Multiplication

LMatrix Multiplication

2014-05-02

Clearly SYM is not harder than MM. Is it easier? No...

So, having a good SYM would give a good MM. The other way
of looking at it is that SYM is just as hard as MM.

CS 5114

LMatrix Squaring

2014-05-02

no notes



Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, X2, -+ , Xn)-

Obijective Function: ¢ - X =3 cix;.
Inequality Constraints: A;- X < b; 1</ <k.
Equality Constraints: E;- X =d;, 1<i<m.

Non-negative Constraints: x; > 0 for some is.

CS 5114: Theory of Algorithms Spring 2014 299/418

Use of LP

Reasons for considering LP:

@ Practical algorithms exist to solve LP.

@ Many real-world optimization problems are naturally
stated as LP.

@ Many optimization problems are reducible to LP.
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Network Flow Reduction (1)

@ Reduce NETWORK FLOW to LP.

@ Let x1, X0, - -+ , X, be the flows through edges.
@ Objective function: For S = edges out of the source,
maximize

Z X;.
i€S
@ Capacity constraints: x; < ¢ 1<i<n.
@ Flow conservation:
Foravertex ve V — {s, t},
let Y(v) = set of x; for edges leaving v.
Z(v) = set of x; for edges entering v.

Z Xj — Z Xi = 0.
Z(V) Y(V)
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Network Flow Reduction (2)

Non-negative constraints: x; >0 1</ <n.
Maximize: x; + X4 subject to:

X4

X2

X3

X4

X5

X1+ Xz — Xo

X4 — X3 — X5

X, Xs

IA A IAIA A

O O O N OoND W N

%
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CS 5114

Linear Programming (LP)

LLinear Programming (LP)

Example of a “super problem” that many problems can reduce
to.

Objective function defeinse what we want to minimize.
A; is a vector — k vectors give the k b’s.

Not all of the constraint types are used for every problem.

CS 5114

Use of LP.

Roasons o consdorng L7

L_Use of LP

no notes

CS 5114 Network Flow Reduction (1)

LNetwork Flow Reduction (1)

Obviously, maximize the objective function by maximizing the
Xi's!l But we can’t do that arbirarily because of the constraints.

CS 5114 Network Flow Reduction (2)

Nomnogaihe constans: 20 1<
Mariizs 3, + 5, sujot 5

L Network Flow Reduction (2) E F

<4
<s

2
=5
=
“o
“o

0

Need graph:

Vertices: s, a, b, t.

Edges:
e s — a with capacity ¢; = 4.
e a — t with capacity ¢, = 3.

e a — b with capacity ¢; = 2.

s — b with capacity ¢4 = 5.

e b — t with capacity ¢s = 7.




Matching

@ Start with graph G = (V, E).
@ Let x1, X0, -+ , X, represent the edges in E.
» X; = 1 means edge i is matched.
@ Obijective function: Maximize
n

Z Xj.
i=1
@ subject to: (Let N(v) denote edges incident on v)
Z xi <1
N(V)
x>0 1<i<n
@ Integer constraints: Each x; must be an integer.

@ Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).
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Summary

NETWORK FLOW < LP.

MATCHING <o ILP.
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Summary of Reduction

Importance:
@ Compare difficulty of problems.
© Prove new lower bounds.

@ Black box algorithms for “new” problems in terms of
(already solved) “old” problems.
© Provide insights.

Warning:

@ A reduction does not provide an algorithm to solve a
problem — only a transformation.

@ Therefore, when you look for a reduction, you are not
trying to solve either problem.
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Another Warning

The notation P; < P, is meant to be suggestive.
Think of P; as the easier, P as the harder problem.

Always transform from instance of P; to instance of Ps.

303/418
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Common mistake: Doing the reduction backwards (from P,

to P1)

DON'T DO THAT!
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LMatching

no notes

CS 5114

LSummary

no notes
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LSummary of Reduction

no notes

CS 5114

LAnother Warning

no notes

Matching
—.e)

‘Summary of Reduction




Common Problems used in Reductions

NETWORK FLOW
MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS

Tractable Problems

We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).
@ ltis said to be intractable if the best known algorithm
requires exponential time.

Examples:
@ Sorting: O(n?)
@ Convex Hull: O(n?)
@ Single source shortest path: O(n?)
@ All pairs shortest path: O(n®)
@ Matrix multiplication: O(n®)
Spriig 2014 308 /418

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

@ A special kind of reduction.
© Nondeterminism.
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Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
@ Usually formulated as a question.
Example:

@ Instance: A weighted graph G = (V, E), two vertices s
and ¢, and an integer K.

@ Question: Is there a path from s to t of length < K? In
this example, the answer is “yes.”
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2014-05-02
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2014-05-02

2014-05-02

CS 5114

Common Problems used in Reductions.
NETWORK FLOW

mmmmmm

LCommon Problems used in Reductions

no notes

CS 5114 Tractable Problems

LTractabIe Problems

Log-polynomial is O(nlog n)

Like any simple rule of thumb for catagorizing, in some cases
the distinction between polynomial and exponential could break
down. For example, one can argue that, for practical problems,
1.017 is preferable to n?®. But the reality is that very few
polynomial-time algorithms have high degree, and
exponential-time algorithms nearly always have a constant of 2
or greater. Nearly all algorithms are either low-degree
polynomials or “real” exponentials, with very little in between.

CS 5114

Tractable Problems (cont)

sy ooe goup of algorts

LTractabIe Problems (cont)

no notes

CS 5114

LDecision Problems

Need a graph here.



g CS 5114 Decision Problems (cont)
8
. . 7 [
Decision Problems (cont) z SR R
(3]
Following our graph example: It is possible to translate from a
. . graph to a string representation, and to define a subset of such
Can also be formulated as a language recognition problem: ) ! . ;
o ) strings as corresponding to graphs with a path from s to t. This
o Let L be tlle su}pséet of / consisting cz‘?lnstances whose subset defines a language to “recognize.”
answer is “yes.” Can we recognize L7
The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.
Spring 2014 311/418
g CS 5114
8
o =T 7 L . -
Polynomial Reducibility z e G RE
(9]
Or one decision problem to another.
Reduction of one language to another language.
Specialized case of reduction from Chapter 10.
Let Ly C l; and L, C kL be languages. L; is
polynomially reducible to L; if there exists a transformation
f: I — kL, computable in polynomial time, such that
f(x) € Ly if and only if x € L.
We write: Ly <, Lo or L1 < Ls.
Spring 2014 312/ 418
g CS 5114 Examples
8 L
Examples g Examples
()
no notes
@ CLIQUE <, INDEPENDENT SET.
@ An instance / of CLIQUE is a graph G = (V, E) and an
integer K.
@ The instance /' = f(/) of INDEPENDENT SET is the
graph G’ = (V, E’) and the integer K, were an edge
(u,v) € E'iff (u,v) ¢ E.
@ fis computable in polynomial time.
Spring 2014 313/ 418
g CS 5114 Transformation Example
8
q T L .
Transformation Example z Lo
()

Need a graph here.

If nodes in G’ are independent, then no connections. Thus, in
G they all connect.

@ G has a clique of size > K iff G’ has an independent set
of size > K.

@ Therefore, CLIQUE <, INDEPENDENT SET.

o IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.
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Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(chy, chy, ..., ch;)
returns one of the choices chy, chy, ... arbitrarily.

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

Alternatively, nondeterminsitic algorithms can be thought of
as running on super-parallel machines that make all choices
simultaneously and then reports the “right” solution.
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Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE (Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)
if (nd-choice(YES, NO) == YES) then {
S = union(S, Vv);
size = size + 1;
}
if (size < K) then
REJECT; // S is too small
for (u in 9)
for (v in S)
if ((u <> v) && ((u, v) not in E))
REJECT; // S is missing an edge
ACCEPT;
}

Nondeterministic Acceptance

@ (G, K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.

@ Definition of acceptance by a nondeterministic
algorithm:

» An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

@ An unrealistic model of computation.

» There are an exponential number of possible choices,
but only one must accept for the instance to be accepted.

@ Nondeterminism is a useful concept

» It provides insight into the nature of certain hard
problems.
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Class NP

@ The class of languages accepted by a nondeterministic
algorithm in polynomial time is called A/P.

@ There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.

@ Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.
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LNondeterminism

2014-05-02

no notes

CS 5114

LNondeterministic CLIQUE Algorithm

2014-05-02

Nondeterminism

Nondeermiis afowsan agorth to make an ariary

What makes this different than random guessing is that all

choices happen “in parallel.”

CS 5114

LNondeterministic Acceptance

2014-05-02

no notes
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L GClass AP

2014-05-02

Note that Towers of Hanoi is not in N'P.

Nondeterministic Acceptance

Class AP




Class N'P(cont)

Alternative Interpretation:

@ NP is the class of algorithms that — never mind how
we got the answer — can check if the answer is correct
in polynomial time.

@ If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!
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How to Get Famous

Clearly, P c N'P.

Extra Credit Problem:
@ Prove or disprove: P = N'P.

This is important because there are many natural decision
problems in AP for which no P (tractable) algorithm is
known.
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NP-completeness

A theory based on identifying problems that are as hard as
any problems in N'P.

The next best thing to knowing whether P= NP or not.

A decision problem A is N'P-hard if every problem in NP is
polynomially reducible to A, that is, for all

BeNP, B<,A

A decision problem A is N'P-complete if A€ NP and A is
NP-hard.
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Satisfiability

Let E be a Boolean expression over variables xq, Xz, - - - , X,
in conjunctive normal form (CNF), that is, an AND of ORs.

E = (X5 + X7+ Xg + X10) - (X2 + X3) - (X1 + X3 + X5).

A variable or its negation is called a literal.
Each sum is called a clause.

SATISFIABILITY (SAT):
@ Instance: A Boolean expression E over variables
X1, Xa, -+ , X, in CNF.
@ Question: Is E satisfiable?

Cook’s Theorem: SAT is A'P-complete.
Spring 2014 322/ 418

CS 5114 p
g. Class A"P(cont)
3
< L Glass NP(cont)
1)
(3]
This is worded a bit loosely. Specifically, we assume that we
can get the answer fast enough — that is, in polynomial time
non-deterministically.
CS 5114
g, How to Get Famous
g Claary P c P,
< LHow to Get Famous RS
= et e
S §
no notes
oy 085114 Npcompleteness
g' e
3 Lwpcomplteness P
6 mumw.uym::::m;:;u
() A dscsion proiem Ais A P-complete A ¢ AP and Als
Ais not permitted to be harder than AP. For example, Tower of
Hanoi is not in N'P. It requires exponential time to verify a set
of moves.
o CS5114 Satistiability
o Lot Ebo a Baoloan aprossion over variabios  x. 1o
Lfl') i conjuncilve normal form (CNF), tha s, an AND of ORs.
o
<+ L Satisfiability
1)
()

Cook's Theorem: AT V7 complte.

Is there a truth assignment for the variables that makes E true?

Cook won a Turing award for this work.



CS 5114 Proof Sketch

LProof Sketch

Proof Sketch

2014-05-02

SAT € N'P:
@ A non-deterministic algorithm guesses a truth The proof of this last step is usually several pages long. One
assignment for xq, X2, - - - , X, and checks whether E is approach is to develop a nondeterministic Turing Machine
true in polynomial time. program to solve an arbitrary problem B in N'P.
@ It accepts iff there is a satisfying assignment for E.

SAT is N'P-hard:
@ Start with an arbitrary problem B € AP.
@ We know there is a polynomial-time, nondeterministic
algorithm to accept B.
@ Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X.
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CS 5114 Implications

1) Sinco SATIs AP complt, s hav ot dotnod a1
empy concept

@NSAT P e P AP,
©1P= X7, o SAT < .

(911 < AP and 81 X-complet, hen B <, Allss A
s AP conpiete.

Implications

L Implications

2014-05-02

(1) Since SAT is N'P-complete, we have not defined an
empty concept. no notes

(2) If SAT € P, then P= N'P.
(8) If P= NP, then SAT € P.

(4) If A€ NP and B is N'P-complete, then B <, Aimplies A

is A"P-complete.

Proof:
@ Let Ce NP.
@ Then C <, B since B is N'P-complete.
@ Since B <, Aand <, is transitive, C <, A.
@ Therefore, Ais N'P-hard and, finally, N'P-complete.
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Implications (cont)

leplications (cont)

Implications (cont)

2014-05-02

Proving A € N'P is usually easy.

(5) This gives a simple two-part strategy for showing a Don't get the reduction backwards!
decision problem A is AN'P-complete.

(a) Show A € N'P.
(b) Pick an N"P-complete problem B and show B <, A.
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A'P-completeness Proof Template

L/\/‘ ‘P-completeness Proof Template

2014-05-02

NP-completeness Proof Template

To show that decision problem B is N'P-complete:
Q@ Be NP

> Give a polynomial time, non-deterministic algorithm that The first two steps of the A"P-hard proof are usually the
accepts B. hardest.
@ Given an instance X of B, guess evidence Y.
@ Check whether Y is evidence that X € B. If so, accept
X.
@ Bis N'P-hard.
» Choose a known NP-complete problem, A.
» Describe a polynomial-time transformation T of an
arbitrary instance of A to a [not necessarily arbitrary]
instance of B.
» Show that X € Aif and only if T(X) € B.
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B € N'P is usually the easy part.
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3-SATISFIABILITY (3SAT)
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One mght hop 1 ISAT s aases tan SAT.

What about 2SAT? This is in P.
Instance: A Boolean expression E in CNF such that each

clause contains exactly 3 literals. Effectively a 2-coloring graph problem. Join 2 vertices if they
are in same clause, also join x; and Xx;. Then, try to 2-color the

Question: Is there a satisfying assignment for E? graph with a DFS.

A special case of SAT. How to solve 1SAT? Answer is “yes” iff x; and X; are not both in
list for any i.

One might hope that 3SAT is easier than SAT.
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3SAT is A'P-complete

L_3sATis NP-complete

2014-05-02

3SAT is N'P-complete

(1) 3SAT € NP. no notes

procedure nd-3SAT (E) {
for (1 = 1 to n)
x[1i] = nd-choice (TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)
ACCEPT;
else
REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.
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CS 5114 Proving 3SAT \'P-hard

LProving 3SAT N'P-hard

Proving 3SAT NP-hard

ety vhore -y ar o,

2014-05-02

v 0n 47T

-

@ Choose SAT to be the known A'P-complete problem. ) .
> We need to show that SAT <, 3SAT. SAT is the only choice that we have so far!

@ Let E= C; - Cy--- Ck be any instance of SAT.
Replacing (y1) with (y1 + y1 + y1) seems like a reasonable
alternative. But some of the theory behind the definitions

Strategy: Replace any clause C; that does not have exactl
% P y ! Y rejects clauses with duplicated literals.

3 literals with two or more clauses having exactly 3 literals.

Let Ci=y1 +y>+ -+ y; where y;,--- . y; are literals.
(@)j=1
@ Replace (y1) with

WtvEw) - +v+w) (i +v+w) ()i +V+w)

where v and w are new variables.

CS 5114 Proving 3SAT A'P-hard (cont)

Proving 3SAT N P-hard (cont)

(b)j=2
o Replace (y1 - y2) with (y1 -+ Yo - Z) 0 (}/1 - ) Z) “F E) where no notes
z is a new variable.

(¢)j>3
@ Relace (y; + y2 +--- + y;) with
WVit+ye+2z) s+Zi+2) Yat+tZe+2s)
Ve +Za+ 2i3) (-1 + ¥+ Z3)
where zy, 25, - - - , Zj_3 are new variables.

@ After replacements made for each C;, a Boolean
expression E’ results that is an instance of 3SAT.

@ The replacement clearly can be done by a
polynomial-time deterministic algorithm.
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LProving 3SAT N'P-hard (cont)
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CS 5114

LProving 3SAT N'P-hard (cont)

Proving 3SAT N 'P-hard (cont)

2014-05-02

no notes
(3) Show E is satisfiable iff E’ is satisfiable.
@ Assume E has a satisfying truth assignment.
@ Then that extends to a satisfying truth assignment for
cases (a) and (b).
@ In case (c), assume y, is assigned “true”.
@ Then assign z;,t < m— 2, true and z, t > m— 1, false.
@ Then all the clauses in case (c) are satisfied.
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LProving 3SAT N'P-hard (cont)

2014-05-02

Proving 3SAT N P-hard (cont)

o i no notes
@ Assume E’ has a satisfying assignment.

@ By restriction, we have truth assignment for E.

(a) y1 is necessarily true.
(b) yi + y» is necessarily true.
(c) Proof by contradiction:

* Ifyi,y2,--- ,y are all false, then 21, z5, - - - . zi_g are all
true.
* But then (yj_1 + yj_2 + Zi_3) is false, a contradiction.

We conclude SAT < 3SAT and 3SAT is N'P-complete.
Sping2014 332/ 418
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LTree of Reductions

Tree of Reductions
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A

will do done

Refer to handout of A'P-complete problems
CLIQUE

i Manber GJ
IND_SET 3COLOR 3
TManber 6l
VERTEX X3C
COVER

GJ
PARITION

will do

KNAPSACK

Gl Manber
HAM_CIR DOMINATING
SET

Reductions go down the tree.

Proofs that each problem € AP are straightforward.
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LPerspeCtive

Perspective
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The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:
@ If any A"P-complete problem is tractable, then they all
are.

be N'P-complete.

More on this observation later.

This collection is a good place to start when attempting to
show a decision problem is N'P-complete.

Observation: If we find a problem is A"P-complete, then we
should do something other than try to find a P-time
algorithm.
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Proving 3SAT \P-hard (cont)

9)Show £ saisibi €' sastiabl.
. sy

i assirmen.
@ atstng vt assgnma for

Proving 3SAT \P-hard (cont)

Tree of Reductions

Reducions go down o .

Prots ha sach protlom AP ar staghtonuas

Hundreds of problems, from many fields, have been shown to



SAT <, CLIQUE

(1) Easy to show CLIQUE in N'P.
(2) An instance of SAT is a Boolean expression

B=0Ci-Ce---Cn,

where
Ci=yli 1+ yli,2] + -+ yli k.
Transform this to an instance of CLIQUE G = (V. E) and K.

V={vlijJl <i<m1<j<k}

Two vertices Vv[is, ji] and v[iz, j] are adjacent in G if iy # >
AND EITHER yl[i, ji] and y|k, jo] are the same literal
OR yli1, j1] and y[i, jo] have different underlying variables.
K=m.
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SAT <, CLIQUE (cont)

Example: B=(x+y+(2))- (X +¥ +2)- (y + 2).
K =3.

(3) B is satisfiable iff G has clique of size > K.
@ B is satisfiable implies there is a truth assignment such
that y[i, ji] is true for each i.
@ But then v[/, jj] must be in a clique of size K = m.
@ If G has a clique of size > K, then the clique must have
size exactly K and there is one vertex v|i, jj] in the clique
for each i.
@ There is a truth assignment making each y[i, jj] true.
That truth assignment satisfies B.
We conclude that CLIQUE is AP-hard, therefore
NP-complete.
Spring2014  336/418

Co-NP

@ Note the asymmetry in the definition of A7P.
» The non-determinism can identify a clique, and you can
verify it.
» But what if the correct answer is “NO”? How do you
verify that?
@ Co-N'P: The complements of problems in N'P.
» |s a boolean expression always false?
> |s there no clique of size k?

@ It seems unlikely that N"P= co-A"P.
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Is N'P-complete = N'P?

@ It has been proved that if P# NP, then N'P-complete #
NP.

@ The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in NP.

» GRAPH ISOMORPHISM: Are two graphs isomorphic?

» COMPOSITE NUMBERS: For positive integer K, are
there integers m, n > 1 such that K = mn?

» LINEAR PROGRAMMING
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CS 5114

L—sAT <, cLIQUE

2014-05-02

One vertex for each literal in B.

No join if one is the negation of the other

CS 5114 SAT <, CLIQUE (cont)

Banple: 8- (x4 )
K23

2047

L_SAT <, CLIQUE (cont)
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See Manber Figure 11.3.
It must connect to the other m — 1 literals that are also true.

No clique can have more than one member from the same
clause, since there are no links between members of a clause.

CS 5114

Lconp

2014-05-02

Co-N"Pmight be a bigger (“harder”) class that includes N'P.

CS 5114

Is \'P-complete ~ A'P?

s NP-complete = N'P?

2014-05-02

These problems seem easier than typical AN"P-complete
problems, but are still probably harder than P. They are
obviously in NP, but don’t appear to be “hard” enough to solve
any N'P-complete problem.



PARTITION <, KNAPSACK

PARTITION is a special case of KNAPSACK in which

K:%Zs(a)

acA

assuming » s(a) is even.

Assuming PARTITION is A"P-complete, KNAPSACK is
NP-complete.

CS 5114: Theory of Algorithms Spring 2014

“Practical” Exponential Problems

@ What about our O(KN) dynamic prog algorithm?
@ Input size for KNAPSACK is O(N log K)
» Thus O(KN) is exponential in Nlog K.

@ The dynamic programming algorithm counts through
numbers 1,--- , K. Takes exponential time when
measured by number of bits to represent K.

e If K'is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.

@ An algorithm that is polynomial-time if the numbers IN

339/418

the input are “small” (as opposed to number OF inputs)

is called a pseudo-polynomial time algorithm.
Spring 2014

“Practical” Problems (cont)

@ Lesson: While KNAPSACK is N'P-complete, it is often
not that hard.

@ Many AP-complete problems have no pseudo-
polynomial time algorithm unless P= N'P.

CS 5114: Theory of Algorithms Spring 2014

Coping with N'’P-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.
(3) Randomized Algorithms.
(4) Backtracking; Branch and Bound.

(5) Heuristics.
@ Greedy.
@ Simulated Annealing.
@ Genetic Algorithms.

340/ 418

341/418

CS 5114: Theory of Algorithms Spring 2014 342/418

2014-05-02

2014-05-02

2014-05-02

2014-05-02

CS 5114

PARTITION <, KNAPSACK.

PARTITION i  sscll case of KNAPSACK nwhh
1
K=gEn

assuing ) s even

L PARTITION <p KNAPSACK

Rasuning PARTITION s /7 complee, KNAPSACK s
AP compit.

The assumption about PARITION is true, though we do not
prove it.

The “transformation” is simply to pass the input of PARTITION
to KNAPSACK.

CS 5114

“Practical” Exponential Problems

L“Practical" Exponential Problems

This is an important point, about the input size. It has to do with
the “size” of a number (a value). We represent the value n with
log n bits, or more precisely, log N bits where N is the maximum
value. In the case of KNAPSACK, K (the knapsack size) is
effectively the maximum number. We will use this observation
frequently when we analyze numeric algorithms.

CS 5114

“Practical” Problems (cont)

L“Practical" Problems (cont)

The issue is what size input is practical. The problems we want
to solve for Traveling Salesman are not practical.

CS 5114

LCoping with A"P-completeness

The subproblems need to be “significant” special cases.

Approximation works for optimization problems (and there are a
LOT of those).

Randomized Algorithms typically work well for problems with a
lot of solutions.

(4) gives ways to (relatively efficiently) implement nd-choice.



Subproblems

Restrict attention to special classes of inputs.
Examples:

o VERTEX COVER, INDEPENDENT SET, and CLIQUE,
when restricted to bipartite graphs, all have
polynomial-time algorithms (for VERTEX COVER, by
reduction to NETWORK FLOW).

@ 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and
EXACT COVER BY 2-SETS all have polynomial time
algorithms.

@ PARTITION and KNAPSACK have polynomial time
algorithms if the numbers in an instance are all O(p(n)).

@ However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain N'P-complete even for a
planar graph.
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Backtracking

We may view a nondeterministic algorithm executing on a
particular instance as a tree:
@ Each edge represents a particular nondeterministic
choice.
@ The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S'is a
clique of size > K can be done in polynomial time.
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Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

@ A leaf that accepts is found.

@ A partial solution that could not possibly lead to
acceptance is reached.

Example:

There cannot possibly be a set S of cardinality > 2 under
this node, so backtrack.

Since (1, 2) ¢ E, no S under this node can be a clique, so
backtrack.
Spring 2014 345/ 418

Branch and Bound

@ For optimization problems.
More sophisticated kind of backtracking.
@ Use the best solution found so far as a bound that
controls backtracking.
@ Example Problem: Given a graph G, find a minimum
vertex cover of G.
@ Computation tree for nondeterministic algorithm is
similar to CLIQUE.
» Every leaf represents a different subset S of the vertices.
@ Whenever a leaf is reached and it contains a vertex
cover of size B, B is an upper bound on the size of the
minimum vertex cover.
» Use B to prune any future tree nodes having size > B.
@ Whenever a smaller vertex cover is found, update B.
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LSubprobIems
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Assuming the subclass covers the inputs you are interested in!

CS 5114

LBacktracking
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Example for k-CLIQUE

Need a figure here. Manber Figure 11.7 has a similar example.

CS 5114

Backtracking (cont)

LBacktracking (cont)
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Need Figure here.

Need Figure here.

CS 5114 Branch and Bound

LBranch and Bound

2014-05-02

When the corresponding decision problem is A"P-complete.



Branch and Bound (cont)

@ Improvement:

» Use a fast, greedy algorithm to get a minimal (not
minimum) vertex cover.
» Use this as the initial bound B.

@ While Branch and Bound is better than a brute-force
exhaustive search, it is usually exponential time, hence
impractical for all but the smallest instances.

» ... if we insist on an optimal solution.

@ Branch and Bound often practical as an approximation
algorithm where the search terminates when a “good
enough” solution is obtained.
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Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V, E), find a vertex
cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in
G and let V'’ be the set of matched vertices.
If OPT is the size of a minimum vertex cover, then

|V'| < 20PT

because at least one endpoint of every matched edge must
be in any vertex cover.
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Bin Packing

We have numbers xq, X2, - - - , X, between 0 and 1 as well as
an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so
that the sum of the numbers in any one bin does not exceed
1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].
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First Fit Algorithm
Place x; into the first bin.

For each i,2 < i < n, place x; in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.
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CS 5114
g. Branch and Bound (cont)
o)
g L
< Branch and Bound (cont)
o
[sY
no notes
o CS5114 Approximation Algorithms.
< PP ——
S oo iy o 2ot
CI) L %‘m 2 graph G = (V. E),find a verlax
< Approximation Algorithms
o
[sY

Vertex cover: A set of vertices such that every edge is incident
on at least one vertex in the set.

Then every edge will be have at least one matched vertex (i.e.,
vertex in the set). Thus the matching qualifies as a vertex cover.

Since a vertex of M cannot cover more than one edge of M.
In fact, we always know how far we are from a perfect cover
(though we don’t always know the size of OPT).

CS 5114 Bin Packing

Wo v rumoes s 3 botween 0 ard 1 s w35
anunimted supply of s of sze 1
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Lgin Packing R e Y

Exanpl: Numbrs 34, 13, 12,18, 25, 12, 14.
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Optmal solton: (34,18}, 12. 123, (12,14 (23

Optimal in that the sum is 3 1/8, and we packed into 4 bins.
There is another optimal solution with the first 3 bins packed,
but this is more than we need to solve the problem.

CS 5114 First Fit Algorithm

Placo .o o fst b
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L First Fit Algorithm ool i i mr i s ot
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Otherwise, the items in the second half-full bin would be put
into the first!



First Fit Does Poorly

Let € be very small, e.g., e = .00001.
Numbers (in this order):

@ 6 of (1/7 +e).

@ 60f (1/3+¢).

@ 6 of (1/2+ ).

First fit returns:
@ 1 binof [6 of 1/7 + €]
@ 3 bins of [2 of 1/3 + €]
@ 6 bins of [1/2 + €]

Optimal solution is 6 bins of [1/7 4+ ¢,1/3+¢,1/2 + €].

First fit is 5/3 larger than optimal.
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Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:
@ Sort the numbers in decreasing order.
@ Apply first fit.
@ This is called decreasing first fit.

The worst case performance of decreasing first fit is close to
11/9 times optimal.
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Summary

@ The theory of N’P-completeness gives us a technique
for separating tractable from (probably) intractable
problems.

@ When faced with a new problem requiring algorithmic
solution, our thought process might resemble this
scheme:

Is it Is it

—

NP-complete? | | in P?

@ Alternately think about each question. Lack of progress
on either question might give insights into the answer to
the other question.

@ Once an affirmative answer is obtained to one of these
questions, one of two strategies is followed.
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Strategies

(1) The problem is in P.

@ This means there are polynomial-time algorithms for the
problem, and presumably we know at least one.

@ So, apply the techniques learned in this course to
analyze the algorithms and improve them to find the
lowest time complexity we can.

(2) The problem is A"P-complete.
@ Apply the strategies for coping with A"P-completeness.

@ Especially, find subproblems that are in P, or find
approximation algorithms.
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LFirst Fit Does Poorly

2014-05-02

no notes

CS 5114

LDecreasing First Fit

2014-05-02

no notes

CS 5114

LSummary
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no notes

CS 5114

LStrategies
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That is the only way we could have proved it is in P.

Decreasing First Fit

rat o worstcassparmac o st 1.
ma

Strategies




CS 5114 Algebraic and Numeric Algorithms.

LAIgebraic and Numeric Algorithms

Algebraic and Numeric Algorithms

2014-05-02

@ Measuring cost of arithmetic and numerical operations: no notes
» Measure size of input in terms of bits.
@ Algebraic operations:
» Measure size of input in terms of numbers.
@ In both cases, measure complexity in terms of basic
arithmetic operations: +, —, «, /.
» Sometimes, measure complexity in terms of bit
operations to account for large numbers.
@ Size of numbers may be related to problem size:
» Pointers, counters to objects.
» Resolution in geometry/graphics (to distinguish between
object positions).
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CS 5114 Exponentation
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LExponentiation
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Exponentiation

o gt sz

Given positive integers n and k, compute n. no notes

Algorithm:
p=1;
for (i=1 to k)
P =p x nj
Analysis:
@ Input size: ©(log n + log k).
@ Time complexity: ©(k) multiplications.
@ This is exponential in input size.
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CS 5114 Faster Exponentlation
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o

LFaster Exponentiation

Faster Exponentiation
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Joty: 911 - 8o ) mtplcators
il St han boe

Write k as:
k=b2' + b 127"+ + b2+ by, b € {0,1}.
Rewrite as:
K=((-(b2+bi—1)2+---+ b2)2+ b1)2 + bo.

New algorithm:

no notes

P = nj
for (i = t-1 downto 0)
P =p * p *x exp(n, b[i])
Analysis:
@ Time complexity: ©(t) = ©(log k) multiplications.
@ This is exponentially better than before.

CS 5114 Greatest Common Divisor

 The Gratet Common Duisor (GCD) o two negers -
oo et i ot ivenly

LGreatest Common Divisor

Greatest Common Divisor
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' fom -~ fmn meam),

@ The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly. Assuming n > m, then n = ak, m = bk, n— m = (a— b)k for

@ Observation: If k divides n and m, then k divides n — m. integers a, b.

@ So,

f(”7 m) _ f(n _m, n) _ f(m, n_ m) _ f(m, n). This comes from definition of mod .

@ Observation: There exists k and / such that

n = km+ /where m>1[>0.
n = |[n/m/m+n mod m.

@ So,
f(n,m) = f(m,l) = f(m,n mod m).
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GCD Algorithm

A ) = { f(m,nmod m) m >0

int LCF(int n, int m) {
if (m == 0) return n;

o

return LCF(m, n % m);
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Analysis of GCD
@ How big is n mod m relative to n?

n/m>1

2\n/m| >n/m

m|n/m| > n/2
n—n/2>n—m{n/m| =nmod m
n/2 > nmod m

LUl

4

@ The first argument must be halved in no more than 2
iterations.

@ Total cost:
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Multiplying Polynomials (1)

n—1 n—1
PZZP,'Xi OIZQ,'Xi.
i=0 i=0

@ Our normal algorithm for computing PQ requires ©(n?)
multiplications and additions.
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Multiplying Polynomials (2)

@ Divide and Conquer:

n/2—1 il
Pi=>" px Py= " px'="?
=0 i=n/2

n/2—1 n—1
Q= ax Q=7 gx*
=0 i=n/2

PQ = (Pi+x"2Pp)(Q1 + x"/?Qp)
= P1Q1+Xn/2(Q1P2+P102)+XnP202.

@ Recurrence:

T(n) 4T(n/2) + O(n).
T(n) = O(rf).
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gl CS 5114 GCD Algorithm
e} " m-o
8 R -
< L_Gcb Algorithm
o
(3]
no notes
CS 5114
g. Analysis of GCD
8
<+ L Analysis of GCD
o
(9]
Can split in half log n times. So 2log n is upper bound.
Note that this is linier on problem size, since problem size is
2log n (2 numbers).
gl CS 5114 Multiplying Polynomials (1)
0 o
< L Muttplying Polynomials (1) O
6 multiphcations and addiions.
()
no notes
o CS5114 Multiplying Polynomials (2)
CID  Divide and Concur:
2
< L
< Multiplying Polynomials (2)
o
IS -

Tin = 47072} + Ot
To) = o)

Do this to make the subproblems look the same.



Multiplying Polynomials (3)

Observation:
(P1+ P2)(Q + Q2) = P1Qy + (@1 P2 + P1Q2) + P2 Q2
(Qi1P2 + P1Q) = (P1 + P2)(Q1 + Qo) — P1Qr — P2 Qs

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:

T(n) 3T(n/2) + O(n)

aT(n/b) + cn'.

log, a = log-3 ~ 1.59.
T(n) = ©(n").
Spring 2014

Matrix Multiplication
Given: n x n matrices A and B.

Compute: C = A x B.

n
Cj = Z a,-kbk,.
k=1

Straightforward algorithm:
@ O(n®) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Q(n?).
Spring 2014

Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2 x 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 x 2 case is:
Ci1 = aibi1 + arbo
Ciz2 = @11b12 + 12b2
Co1 = @1by1 + bz
Co2 = &21b12 + 22b2o

Requires 8 multiplications and 4 additions.

363/418

364/418
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Another Approach (1)

Compute:
my = (a2 — ape)(ba1 + ba2)
my = (&1 + a2)(bi1 + ba2)
ms = (a1 — ax1)(bi1 + bi2)
my = (@1 + a2)bee
ms = ai1(bi2 — bxo)
Me = ax(boy — biy)

m; = (821 + a2)bi
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CS 5114 Multiplying Polynomials (3)

aton:
(R RO -G L0+ (@R PIO +AG
o @

LMuItipIying Polynomials (3)

In the second equation, the sums in the first term are half the
original problem size, and the second two terms were needed
for the first equation.

PQ = Py Qi+ X"2((P1+ P)(Q1 + Q2) — P1 Q1 — PaQp) + X"P, Qs

A significant improvement came from algebraic manipulation to
express the product in terms of 3, rather than 4, smaller
products.

CS 51 1 4 Matrix Multiplication
e
LMatrix Multiplication a-Fux
ke st
< ) it and adors.
[PT—
no notes
CS 5114 Strassen's Algorithm
LStrassen’s Algorithm
no notes
CS 5114 Another Approach (1)
carpue
LAnother Approach (1)
no notes



g CS 5114 Another Approach (2)
O -
3 LA ther Approach (2)
< nof
Another Approach (2) - e
Then:
Ci2 = M4+ Mms
Cii = M+ Mz — M4+ Me = (a1 + a2)ba2 + ai1(b12 + bzo)
Ci2 = M4+ Ms = a11bx + ai1bi2 — a1 b2
Cy = Mg+ My = b + by1bi2
Coo = M — Mg+ M5 — My
7 multiplications and 18 additions/subtractions.
g CS 5114 Strassen’s Algorithm (cont)
8
. : L . '
’ < Strassen’s Algorithm (cont)
Strassen’s Algorithm (cont) -
no notes
Divide and conquer step:
Assume n is a power of 2.
Express C = A x Bin terms of  x § matrices.
Cir Ci2 | _ | @ ai2 by bz
C21 C22 21 dz2 boy  b2o
g CS 5114 Strassen’s Algorithm (cont)
8' et R
. T L q ! —
’ < Strassen’s Algorithm (cont) P
Strassen’s Algorithm (cont) = T mmmam
By Strassen’s algorithm, this can be computed with 7 But, this has a high constant due to the additions. This makes it
multiplications and 18 additions/subtractions of n/2 x n/2 rather impractical in real applications.
matrices.
But this “fastest” algorithm is even more impractical due to
Recurrence: overhead.

T(n) = 7T(n/2)+18(n/2)?
T(n) = @(n'°927) :@(n2'81).

Current “fastest” algorithm is ©(n?37¢)
Open question: Can matrix multiplication be done in O(n?)

time?
g CS 5114 Introduction to the Sliderule
. . T L ) ’ -
< Introduction to the Sliderule O nskan
Introduction to the Sliderule z
Compared to addition, multiplication is hard.
no notes

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
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CS 5114

Introduction to the Sliderule (2)

L . ‘ 5 e
Introduction to the Sliderule (2) om0 ol e o

= The i sl shows th vl ottt e,

Introduction to the Sliderule (2)

2014-05-02
i
H

This is an example of a transform. We do transforms to convert

The sliderule d ty this! a hard problem into a (relatively) easy problem.
e sliderule does exactly this!

@ ltis essentially two rulers in log scale.

@ Slide the scales to add the lengths of the two numbers
(in log form).

@ The third scale shows the value for the total length.

g CS 5114 Representing Polynomials
O
g L
H 1 < Representing Polynomials
Representing Polynomials -

A vector a of n values can uniquely represent a polynomial That is, a polynomial can be represented by it coefficients.
of degree n — 1

n—1
Pa(x) =) aix’.
i=0

Alternatively, a degree n — 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

@ Finding the value for a polynomial at a given point is
called evaluation.

@ Finding the coefficients for the polynomial given the
values at n points is called interpolation.
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CS 5114

Multiplication of Polynomials

LMuItipIication of Polynomials

Multiplication of Polynomials

2014-05-02

To multiply two n — 1-degree polynomials A and B normally no notes
takes ©(n?) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
@ Evaluate polynomials A and B at enough points.
@ Pairwise multiplications of resulting values.
@ Interpolation of resulting values.
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CS 5114

Multiplication of Polynomials (2)

This can b et () I ot way can s und 1o
o ovaiafoniorpoation o1 20 1 poris (ormaly s
akes O() i)

LMuItipIication of Polynomials (2) ot a1 s v

iakatoat 147 1. wocansrar ot o 1 work bewoon
e s vauaons.

Multiplication of Polynomials (2)

2014-05-02

Can s o encugh such pots o make e prcoss
croapr

This can be faster than ©(n?) IF a fast way can be found to no notes

do evaluation/interpolation of 2n — 1 points (normally this
takes ©(n?) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?
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g CS 5114
¢ L
< An Example
An Example -
Polynomial A: x2 + 1.
Polynomial B: 2x2 — x + 1. -1 0 1
Polynomial AB: 2x* — x3 4+ 3x% — x + 1. A 2 12
B 4 1 2
Notice: AB 8 1 4
AB(-1) (2)(4) =8
AB(0) = (1)(1) =1
AB(1) = (2)(2) =4
But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.
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g CS 5114 Nth Root of Unity
8
Nth Root of Unity S sl
o
(9]
The key to fast polynomial multiplication is finding the right I B .
points to use for evaluation/interpolation to make the process For the first circle, n = 4, = /.
efficient.
For the second circle, n = 8,w = V/i.
Complex number w is a primitive nth root of unity if
Q@ " =1and
Q Wf#£1for0< k< n.
W0 W, ...,w" " are the nth roots of unity.
Example:
@ Forn=4,w=1iorw=—i.
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g CS 5114 Nih Root of Unity (cont)
H < LNth Root of Unity (cont) = =
Nth Root of Unity (cont) = s
no notes
n=4,w=1.
n=28,w=+Ii.
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g CS 5114 M""D"Ixume Fuurler‘lhnsh‘:urml:
O
Dlscrete FOUI'IEI' Tl'anSfOl'm ‘3'_ LDiscrete Fourier Transform
o
Define an n x n matrix V(w) with row i/ and column j as o
V(w) = (WU)- In the array, indexing begins with 0.
Example: n=4,w=1:
1 1 1 1 Example:
1 0 -1 14 2x +3x2 +4x8
V(w) = 1 = 1 -1 Values to evaluate at: 1,/, —1, —/.
1 =i -1 i

Leta = [ap, a1, ...,an,_1]" be a vector.
The Discrete Fourier Transform (DFT) of ais:
F,=V(w)a=V.
This is equivalent to evaluating the polynomial at the nth
roots of unity.
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o CS5114
<
3 L
< Array example
Array example -
Forn=8,w =i, V(w) = no notes
1 1 1 1 1 1 1 1
T Vi Wi 1 Vi - =i
1 i —1 —i 1 i —1 —i
L Y B/ I VR
1 -1 1 -1 1 -1 1 —1
1 —Vioi =i -1 Vi =i Wi
1 —i -1 i1 —i -1 i
1 -ivi —i Vi1 Wi Vi
Spring 2014 379/ 418
o CS5114
S
g
H < Llnverse Fourier Transform
Inverse Fourier Transform -
The inverse Fourier Transform to recover a from Vv is: Just replace each w with 1/w
-1 _ 5 _ 1.y
Foi=a=Vw) v After substituting 1 /w for w.
1
—1 _ o
V()™ = n V(w)‘ Observe the sharable parts in the matrix.
This is equivalent to interpolating the polynomial at the nth
roots of unity.
An efficient divide and conquer algorithm can perform both
the DFT and its inverse in ©(nlg n) time.
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o CS5114
3
g
: il i < L Fast Polynomial Multplicati
Fast Polynomial Multiplication = ast Polynomia Nultplieation
©(nlog n)
Polynomial multiplication of A and B:
@ Represent an n — 1-degree polynomial as 2n — 1 o(n)
coefficients:
lao, a1, .., an-1,0, ..., 0] ©(nlog n)
@ Perform DFT on representations for A and B.
@ Pairwise multiply results to get 2n — 1 values. Total time: ©(nlog n).
@ Perform inverse DFT on result to get 2n — 1 degree
polynomial AB.
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o CS5114
3
3 L
H < FFT Algorithm
FFT Algorithm =
no notes
FFT(n, a0, al, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin
if n=1 then V[0] = aO0;
else
FFT (n/2, a0, a2, ... an-2, omega”2, U);
FFT (n/2, al, a3, ... an-1, omega”~2, W);

for j=0 to n/2-1 do
V[j] = U[J] + omega”j W[]l;
V[j+n/2] = U[J] - omega”j W[Jl;
end
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Array example
=V =

A R Y |
i )

Inverse Fourier Transform

T s squvaent o nrpolatng 1 plyromiala e i
ool ofunty.

n ot dhidaand conaer gt ca prorm b
e DFT and s mss (1 .

Fast Polynomial Multiplication

Polynorial muligtcaion of Aand 8-
E n - 1-dogros ponomialas2n 1

FFT Algorithm




Parallel Algorithms

@ Running time: T(n, p) where nis the problem size, p is
number of processors.

@ Speedup: S(p) = T(n,1)/T(n,p).

» A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

@ Problem: Best sequential algorithm might not be the
same as the best algorithm for p processors, which
might not be the best for co processors.

e Efficiency: E(n,p) = S(p)/p= T(n,1)/(pT(n,p)).

@ Ratio of the time taken for 1 processor vs. the total time
required for p processors.

» Measure of how much the p processors are used (not
wasted).
» Optimal efficiency = 1 = speedup by factor of p.
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Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.
@ Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p = oo, then convert to
run on p processors.

Hopefully, if T(n, p) = X, then T(n, p/k) ~ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle.
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Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T(n,1) = n
T(n,n) = logn
S(n) = n/logn

E(n,n) = 1/logn

For p = 256, n = 1024.

T(1024,256) = 41og 1024 = 40.

For p = 16, running time = (1024/16) * log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 = 640) = 1/10.
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Amdahl’s Law

Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
@ 80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,

or a speedup of 100/20 = 5.

Amdahl’s law:
Speedup (S+P)/(S+P/N)

1/(S+P/N)<1/S,

for S = serial fraction, P = parallel fraction, S + P = 1.
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CS 5114

LParaIIeI Algorithms

As opposed to T(n) for sequential algorithms.
Question: What algorithms should be compared?

pT(n,p) is total amount of “processor power” put into the
problem.

If E(n, p) > 1 then the sequential form of the parallel algorithm
would be faster than the sequential algorithm being compared
against — very suspicious!

So there are differing goals possible: Absolute fastest speedup
vs. efficiency.

CS 5114

Parallel Algorithm Design

LParaIIeI Algorithm Design

no notes

CS 5114

Parallel Algorithm Design (2)

LParaIIeI Algorithm Design (2)

Good in terms of speedup.

1024 /256, assuming one processor emulates 4 in 4 times the
time.
E(1024,256) = 1024/(256 * 40) = 1/10.

But note that efficiency goes down as the problem size grows.

CS 5114

LAmdahI’s Law

See John L. Gustafson “Reevaluating Amdahl’s Law,” CACM
5/88 and follow-up technical correspondance in CACM 8/89.

Speedup is Serial / Parallel.
Draw graph, speed up is Y axis, Sequential is X axis. You will
see a nonlinear curve going down.



Amdahl’s Law Revisited

However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f(n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S+P x N)/(S+P)

= S+PxN
= S+(1-8S)xN
N+(1—-N)xS.
Spring 2014 367/ 418

Models of Parallel Computation

Single Instruction Multiple Data (SIMD)
@ All processors operate the same instruction in step.
@ Example: Vector processor.

Pipelined Processing:

@ Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)
@ Processors are independent.
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MIMD Communications (1)

Interconnection network:

@ Each processor is connected to a limited number of
neighbors.

@ Can be modeled as (undirected) graph.

@ Examples: Array, mesh, N-cube.

@ Itis possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).

@ Diameter: Maximum over all pairwise distances
between processors.

@ Tradeoff between diameter and number of connections.
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MIMD Communications (2)

Shared memory:
@ Random access to global memory such that any
processor can access any variable with unit cost.
@ In practice, this limits number of processors.
@ Exclusive Read/Exclusive Write (EREW).
@ Concurrent Read/Exclusive Write (CREW).
@ Concurrent Read/Concurrent Write (CRCW).
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CS 5114 Amdahl's Law Revisited

Hovove, this version of A aw i o3 s
sl ize.

LAmdahI’s Law Revisited

How long sequential process would take / How long for N
processors.

Since S+P=1andP=1-S.
The point is that this equation drops off much less slowly in N:

Graphing (sequential fraction for fixed N) vs. speedup, you get
a line with slope 1 — N.

All of this seems to assume the same algorithm for sequential

and parallel. But that's OK — we want to see how much
parallelism is possible for the parallel algorithm.

CS 5114 Models of Parallel Computation

LModeIs of Parallel Computation

Vector: IBM 3090, Cray
Pipelined: Graphics coprocessor boards

MIMD: Modern clusters.

CS 51 1 4 MIMD Communications (1)
LMIMD Communications (1)

no notes

CS 51 1 4 MIMD Communications (2)
LMIMD Communications (2)

no notes



Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:
@ Start at the low end, add two bits.
@ If necessary, carry bit is brought forward.

@ Can't do ith step until i — 1 is complete due to
uncertainty of carry bit (7).

Induction: (Going from n — 1 to nimplies a sequential
algorithm)
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Parallel Addition

Divide and conquer to the rescue:
@ Do the sum for top and bottom halves.
@ What about the carry bit?

Strengthen induction hypothesis:

@ Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L, L., R, and R.

Can combine pieces in constant time.
Sping2014 392/ 418

Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T(n,n) = T(n/2,n/2) + O(1) = O(log n).

We need only the EREW memory model.
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Maximum-finding Algorithm: EREW

“Tournament” algorithm:

@ Compare pairs of numbers, the “winner” advances to
the next level.

@ Initially, have n/2 pairs, so need n/2 processors.
@ Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n,n/2) ~ 1/log n.

Why is the efficiency so low?
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CS 5114

Addition

Prtios i hesuof o it iy ombors:

L Addition

Indusion: (Ging rom n 110 nipis a sequenal
agorhm)

no notes

CS 5114

Parallel Addition

LPparallel Addition T L,
e

Al saiog o /2, wohave L L, and .

an comine plces i consant e

Two possibilities: carry or not carry.

Also, for each a boolean indicating if it returns a carry.

If right has carry then
Sum = L¢|R

Else
Sum = L|R

If Sum has carry then
Carry = TRUE

For Sum,

Do the same using R since it is computing value having
received carry.
CS 5114 Parallel Addition (2)

Tho /220 prtloms arondopondent
Gien snough procssors,

Tioim) = T(0/2.72) - Of1) = Oflog).

Lparallel Addition (2)

Wi naod nly 0 EREW momory

Not 2T(n/2, n/2) because done in parallel!

CS 5114 Maximum-finding Algorithm: EREW.

LMaximum-finding Algorithm: EREW

Etn21= 1/koan

T ———

T(n1) n

Since nT(n,n) = nlogn

Lots of idle processors after the first round.



More Efficient EREW Algorithm

Divide the input into n/log n groups each with log n items.
Assign a group to each of n/log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/log n “winners”.

Finish tournament algorithm.
T(n,n/log n) = O(log n).
E(n,n/logn) = O(1).

More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.
@ We know in advance, for each step i of the algorithm
and for each processor pj, the operation and operands
pj uses at step i.

This maximum-finding algorithm is static.
@ All comparisons are pre-arranged.
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Brent’s Lemma

Lemma 12.1: If there exists an EREW static algorithm with
T(n,p) € O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T(n,s/t) € O(t).

Proof:

@ Let a;,1 <i <, be the total number of steps performed
by all processors in step i of the algorithm.

(*] thv=1 aj = S.

@ If a; < s/t, then there are enough processors to perform
this step without change.

@ Otherwise, replace step i with [a;/(s/t)] steps, where
the s/t processors emulate the steps taken by the
original p processors.

CS 5114: Theory of Algorithms Spring 2014 397/418

Brent’s Lemma (2)

@ The total number of steps is now
t t

> [ai/(s/D] < D (ait/s+1)
i=1 i=1
t

= t+(t/s)) a=2t

i=1

Thus, the running time is still O(¢).

Intuition: You have to split the s work steps across the ¢ time
steps somehow; things can’t always be bad!

CS 5114: Theory of Algorithms Spring 2014 398/418

2014-05-02

2014-05-02

2014-05-02

2014-05-02

CS 5114

More Efficient EREW Algorithm

LMore Efficient EREW Algorithm

In log n time.

CS 5114

More Efficient EREW Algorithm (2)

LMore Efficient EREW Algorithm (2)

Cannot improve time past O(log n).
Doesn’t depend on a specific input value.

As an analogy to help understand the concept of static:
Bubblesort and Mergesort are static in this way. We always
know the positions to be compared next.

In contrast, Insertion Sort is not static.

CS 5114

LBrent’s Lemma

Note that we are using t as the actual number of steps, as well
as the variable in the big-Oh analysis, which is a bit informal.

CS 5114

Brent's Lemma (2)

LBrent’s Lemma (2)

If s is sequential complexity, then the modified algorithm has
O(1) efficiency.



Maximum-finding: CRCW

@ Allow concurrent writes to a variable only when each
processor writes the same thing.
@ Associate each element x; with a variable v;, initially “1”.
@ For each of n(n — 1)/2 processors, processor pj
compares elements / and j.
@ First step: Each processor writes “0” to the v variable of
the smaller element.
» Now, only one v is “1”.
@ Second step: Look atall v;, 1 </ < n.
» The processor assigned to the max element writes that
value to MAX.
Efficiency of this algorithm is very poor!
@ “Divide and crush.”
Spring 2014 309/ 418

Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:
@ Given: n processors.
@ Find maximum for each of n/2 pairs in constant time.
@ Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
@ Square the group size each time.
@ Total time: O(loglog n).
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Parallel Prefix

@ Let - be any associative binary operation.
» Ex: Addition, multiplication, minimum.
@ Problem: Compute x; - xo - ... - Xk forall k,1 < k < n.
@ Define PR(1,j) = X; - X1 - .. . - Xj.
We want to compute PR(1,k) for 1 < k < n.
@ Sequential alg: Compute each prefix in order
» O(n) time required (using previous prefix)
@ Approach: Divide and Conquer
» |H: We know how to solve for n/2 elements.
@ PR(1,k) and PR(n/2 + 1,n/2 +k) for 1 < k < n/2.
© PR(1,m) for n/2 < m < n comes from
PR(1,n/2) - PR(n/2 + 1, m) — from [H.
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Parallel Prefix (2)

@ Complexity: (2) requires n/2 processors and CREW for
parallelism (all read middle position).

@ T(n,n)= O(logn); E(n,n)= O(1/logn).
Brent's lemma no help: O(nlog n) total steps.
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CS 5114 Maximum-finding: CRCW.

L Maximum-finding: CRCW

Need O(n?)processors
Need only constant time.
Efficiency is 1/n.

CS 5114 Maximum-finding: CRCW (2)

L Maximum-finding: CRCW (2)

n/2 processors
n processors, using previous “divide and crush” algorithm.

This leaves n/8 elements which can be broken into n/128
groups of 16 elements with 128 processors assigned to each
group. And so on.

Efficiency is 1/loglog n.

CS 5114 Parallel Prefix

caon

LParaIIeI Prefix

We don'’t just want the sum or min of all — we want all the
partials as well.

We have the lower half done, and the upper half values are
each missing the contribution from the lower half.

CS 5114 Parallel Prefix (2)

o Compleiy: 2)
paracam (103

L Parallel Prefix (2) Tgoen

/2 processors and GREW o

That is — no processors are “excessively” idle. This is because
we needed to copy PR(1, n/2) into n/2 positions on the last
step.

n 1

- n~|ogn: logn




o CS5114 Soter Parate rofx
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@ E is the set of all x;s with i/ even.

o If we know PR(1,2i) for 1 < i < n/2 then Since the E’s already include their left neighbors, all info is

PR(1,2i + 1) — I;R(I.Zi) ' X_zi+: available to get the odds.
@ Algorithm:

There is only one recursive call, instead of two in the previous

» Compute in parallel xo; = Xp;_1 - Xo; for 1 < i < n/2. X
algorithm.

» Solve for E (by induction).
> Compute in parallel Xoj11 = Xoj * X2j41-
@ Complexity: Need EREW model for Brent's Lemma.
T(n, n) = O(log n).
S(n) = S(n/2) + n—1, so S(n) = O(n) for S(n) the
total number of steps required to process n elements.
@ So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.
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CS 5114

Routing on a Hypercube
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Routing on a Hypercube

Goal: Each processor P; simultaneously sends a message Need a figure
to processor P,y such that no processor is the destination
for more than one message.

Problem:

@ In an n-cube, each processor is connected to n other
processors.

@ At the same time, each processor can send (or receive)
only one message per time step on a given connection.

@ So, two messages cannot use the same edge at the
same time — one must wait.
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CS 5114 Randomizing Switching Algorithm

LRandomizing Switching Algorithm

Randomizing Switching Algorithm

2014-05-02

It can be shown that any deterministic algorithm is Q(2™) for n-dimensional hypercube has 2" nodes.

some a > 0, where 2" is the number of messages.

Remember that we want parallel algorithms with cost log n, not
cost n?!

The distance from any processor i to another processor j is
only log n steps.

A node i (and its corresponding message) has binary
representation fii - - - n.

Randomization approach:

(a) Route each message from i to j to a random processor
r (by a randomly selected route).

(b) Continue the message from r to j by the shortest route.
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CS 5114 Randomized Switching (2)

LRandomized Switching (2)

Randomized Switching (2)

2014-05-02

no notes

Phase (a):
for (each message at 1)
cobegin
for (k = 1 to n)
T[i, k] = RANDOM(0, 1);
for (k = 1 to n)
if (T[i, k] = 1)
Transmit i along dimension k;
coend;
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Randomized Switching (3)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)
T[i, k] =

Current[i, k] EXCLUSIVE_OR Dest[i, k];
for (k = 1 to n)
if (T[i, k] = 1)
Transmit i along dimension k;
coend;
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Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

@ It is possible to get a really bad random routing, but this
is unlikely (by chance).

@ In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.
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Sorting on an array

Given: n processors labeled Py, Ps, - - -, P, with processor P;
initially holding input x;.

P; is connected to P;_1 and P;,1 (except for Py and Pp).
@ Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort (X, n) {
do in parallel ceil(n/2) times {
Exchange-compare (P[21i-1], P[21]); // 0Odd
Exchange-compare (P[21], P[2i+1]); // Even
}
}

A simple algorithm, but will it work?

Parallel Array Sort

139381 43
3713 ¢1 & 3¢
13 11 93784
35172648
3137 74¢8
132547468
13343678
LA e 4 g g b
133431678
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o CS5114 Sorting on an array
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Any algorithm that correctly sorts 1’s and 0’s by comparisons
will also correctly sort arbitrary numbers.
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Manber Figure 12.8.



Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
@ Consider the maximum element, say X,.
@ Assume m odd (if even, it just won’t exchange on first
step).
@ This element will move one step to the right each step
until it reaches the rightmost position.
Spring 2014 411/418

Correctness (2)

@ The position of x,, follows a diagonal in the array of
element positions at each step.

@ Remove this diagonal, moving comparisons in the upper
triangle one step closer.

@ The first row is the nth step; the right column holds the
greatest value; the rest is an n — 1 element sort (by
induction).
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Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

@ To parallelize mergesort, we must parallelize the merge.

Spring 2014 413/418
0 .
Batcher’s Algorithm
For n a power of 2, assume aj, a,---,a, and by, b, --- , b,

are sorted sequences.
Let xq1, X2, - - - , X2 be the final merged order.

Need to merge disjoint parts of these sequences in parallel.
@ Split a, b into odd- and even- index elements.

@ Merge apgg With bogy, even With beyen, yielding
01,02,--+ ,0pand ey, 6, - - , e, respectively.
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CS 5114 Correctness of Odd-Even Transpose

LCorrectness of Odd-Even Transpose
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no notes

CS 5114

LCorrectness (2)

2014-05-02

Map the execution of n to an execution of n — 1 elements.

See Manber Figure 12.9.
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Sorting Networks

LSorting Networks
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no notes
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Batcher's Algorithm

For i powse o1 2,assum a3, and by b by

LBatcher’s Algorithm
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No notes
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Batcher’s Sort Image

2 No notes

x4 — sort merge
X5 —1 network

n/2
x12— sort /2

merge|
network
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CS 5114 Batcher's Algorithm Correctness.

LBatcher’s Algorithm Correctness

Batcher’s Algorithm Correctness

2014-05-02

Theorem 12.3: For all i such that 1 </ < n—1, we have
Xo;i = MiN(0;11, €/) and Xoi4 1 = Max(0j, 1, ). See Manber Figure 12.11.

Proof:

@ Since g is the ith element in the sorted even sequence,
it is > at least / even elements.

@ For each even element, g is also > an odd element.

@ So, e; > 2i elements, or ; > X»;.

@ In the same way, 0;;1 > i + 1 odd elements, > at least
2i elements all together.

@ So, Ojt1 = Xoj.

@ By the pigeonhole principle, e; and o0;,1 must be x,; and
Xoi+1 (in either order).
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CS 5114 Batcher Sort Complexity
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LBatcher Sort Complexity

Batcher Sort Complexity

2014-05-02

@ Total number of comparisons for merge:
Tw(@n) =2Tu(n)+n—1; Ty(1)=1. O(log n) sort steps, with each associated merge step counting
O(log n).
Total number of comparisons is O(nlog n), but the depth ( )
of recursion (parallel steps) is O(log n).
@ Total number of comparisons for the sort is:

Ts(2n) = 2Ts(n) + O(nlogn), Ts(2) =1.

So, Ts(n) = O(nlog? n).

@ The circuit requires n processors in each column, with
depth O(log? n), for a total of O(nlog?® n) processors and
O(log? n) time.

@ The processors only need to do comparisons with two
inputs and two outputs.
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CS 5114 Matrix-Vector Multiplication
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LMatrix»Vector Multiplication

2014-05-02

Matrix-Vector Multiplication

Problem: Find the product x = Ab of an m by n matrix A See Manber Figure 12.17.
with a column vector b of size n.

Systolic solution:

@ Use n processor elements arranged in an array, with
processor P; initially containing element b;.

@ Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

Cost: O(n+ m)
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