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Proving Other Problems NP-Complete

 

  

I Claim: If Y is NP-Complete and X 2 NP such that Y 
P

X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving it NP-Complete is
1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete .
3. Prove that Y 

P

X .
I To prove X is NP-Complete, reduce a known NP-Complete problem Y to

X . Do not prove reduction in the opposite direction, i.e., X 
P

Y .
I If we use Karp reductions, we can refine the strategy:

1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance s

Y

of problem Y . Show how to construct, in
polynomial time, an instance s

X

of problem X such that
(a) If s

Y

2 Y , then s

X

2 X and
(b) If s

X

2 X , then s

Y

2 Y .

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Proving Other Problems NP-Complete

 

  

I Claim: If Y is NP-Complete and X 2 NP such that Y 
P

X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving it NP-Complete is

1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete .
3. Prove that Y 

P

X .
I To prove X is NP-Complete, reduce a known NP-Complete problem Y to

X . Do not prove reduction in the opposite direction, i.e., X 
P

Y .
I If we use Karp reductions, we can refine the strategy:

1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance s

Y

of problem Y . Show how to construct, in
polynomial time, an instance s

X

of problem X such that
(a) If s

Y

2 Y , then s

X

2 X and
(b) If s

X

2 X , then s

Y

2 Y .

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Proving Other Problems NP-Complete

 

  

I Claim: If Y is NP-Complete and X 2 NP such that Y 
P

X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving it NP-Complete is
1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete .
3. Prove that Y 

P

X .

I To prove X is NP-Complete, reduce a known NP-Complete problem Y to
X . Do not prove reduction in the opposite direction, i.e., X 

P

Y .
I If we use Karp reductions, we can refine the strategy:

1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance s

Y

of problem Y . Show how to construct, in
polynomial time, an instance s

X

of problem X such that
(a) If s

Y

2 Y , then s

X

2 X and
(b) If s

X

2 X , then s

Y

2 Y .

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Proving Other Problems NP-Complete

 

  

I Claim: If Y is NP-Complete and X 2 NP such that Y 
P

X , then X is
NP-Complete.

I Given a new problem X , a general strategy for proving it NP-Complete is
1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete .
3. Prove that Y 

P

X .
I To prove X is NP-Complete, reduce a known NP-Complete problem Y to

X . Do not prove reduction in the opposite direction, i.e., X 
P

Y .
I If we use Karp reductions, we can refine the strategy:

1. Prove that X 2 NP.
2. Select a problem Y known to be NP-Complete.
3. Consider an arbitrary instance s

Y

of problem Y . Show how to construct, in
polynomial time, an instance s

X

of problem X such that
(a) If s

Y

2 Y , then s

X

2 X and
(b) If s

X

2 X , then s

Y

2 Y .

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT is NP-Complete

I Why is 3-SAT in NP?

I Circuit Satisfiability 
P

3-SAT.
1. Given an instance of Circuit Satisfiability, create an instance of SAT, in

which each clause has at most three variables.
2. Convert this instance of SAT into one of 3-SAT.
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Circuit Satisfiability P 3-SAT: Transformation

I Given an arbitrary circuit K , associate each node v with a Boolean variable
x
v

.

I Encode the requirements of each gate as a clause.

I node v has ¬ and edge entering from node u: guarantee that x
v

= x
u

using
clauses (x

v

_ x
u

) and (x
v

_ x
u

).

I node v has _ and edges entering from nodes u and w : ensure x
v

= x
u

_ x
w

using clauses (x
v

_ x
u

), (x
v

_ x
w

), and (x
v

_ x
u

_ x
w

).

I node v has ^ and edges entering from nodes u and w : ensure x
v

= x
u

^ x
w

using clauses (x
v

_ x
u

), (x
v

_ x
w

), and (x
v

_ x
u

_ x
w

).

I Constants at sources: single-variable clauses.

I Output: if o is the output node, use the clause (x
o

).
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Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.

I clauses are satisfiable ! K is satisfiable. Observe that we have constructed
clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable.

Observe that we have constructed
clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.

I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will
have z1 = z2 = 0 by adding clauses (z

i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses

(z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.

I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).

I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Circuit Satisfiability P 3-SAT: Proof

I Prove that K is equivalent to the instance of SAT.
I K is satisfiable ! clauses are satisfiable.
I clauses are satisfiable ! K is satisfiable. Observe that we have constructed

clauses so that the value assigned to a node’s variable is precisely what the
circuit will compute.

I Converting instance of SAT to an instance of 3-SAT.
I Create four new variables z1, z2, z3, z4 such that any satisfying assignment will

have z1 = z2 = 0 by adding clauses (z
i

_ z3 _ z4), (zi _ z3 _ z4), (zi _ z3 _ z4),
and (z

i

_ z3 _ z4), for i = 1 and i = 2.
I If a clause has a single term t, replace the clause with (t _ z1 _ z2).
I If a clause has a two terms t and t0, replace the clause with t _ t0 _ z1.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

More NP-Complete problems

I Circuit Satisfiability is NP-Complete.

I We just showed that Circuit Satisfiability 
P

3-SAT.

I We know that

3-SAT 
P

Independent Set 
P

Vertex Cover 
P

Set Cover

I All these problems are in NP .

I Therefore, Independent Set, Vertex Cover, and Set Cover are
NP-Complete.
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Hamiltonian Cycle

I Problems we have seen so far involve searching over subsets of a collection of
objects.

I Another type of computationally hard problem involves searching over the set
of all permutations of a collection of objects.

I In a directed graph G (V ,E ), a cycle C is a Hamiltonian cycle if C visits each
vertex exactly once.

Hamiltonian Cycle

INSTANCE: A directed graph G .

QUESTION: Does G contain a Hamiltonian cycle?
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Hamiltonian Cycle is NP-Complete

I Why is the problem in NP?

I Claim: 3-SAT 
P

Hamiltonian Cycle. Jump to TSP

I Consider an arbitrary instance of 3-SAT with variables x1, x2, . . . , xn and
clauses C1,C2, . . .Ck

.
I Strategy:

1. Construct a graph G with O(nk) nodes and edges and 2n Hamiltonian cycles
with a one-to-one correspondence with 2n truth assignments.

2. Add nodes to impose constraints arising from clauses.
3. Construction takes O(nk) time.

I G contains n paths P1,P2, . . .Pn

, one for each variable.

I Each P
i

contains b = 3k + 3 nodes v
i,1, vi,2, . . . vi,b, three for each clause and

some extra nodes.
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3-SAT P Hamiltonian Cycle: Constructing G
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3-SAT P Hamiltonian Cycle: Modelling clauses

I Consider the clause C1 = x1 _ x2 _ x3.
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3-SAT P Hamiltonian Cycle: Proof Part 1

I 3-SAT instance is satisfiable ! G has a Hamiltonian cycle.

I Construct a Hamiltonian cycle C as follows:
I If x

i

= 1, traverse P
i

from left to right in C.
I Otherwise, traverse P

i

from right to left in C.
I For each clause C

j

, there is at least one term set to 1. If the term is x
i

, splice
c
j

into C using edge from v
i,3j and edge to v

i,3j+1. Analogous construction if
term is x

i

.
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3-SAT P Hamiltonian Cycle: Proof Part 2

I G has a Hamiltonian cycle C ! 3-SAT instance is satisfiable.
I If C enters c

j

on an edge from v
i,3j , it must leave c

j

along the edge to v
i,3j+1.

I Analogous statement if C enters c
j

on an edge from v
i,3j+1.

I Nodes immediately before and after c
j

in C are themselves connected by an
edge e in G .

I If we remove all such edges e from C, we get a Hamiltonian cycle C0 in
G � {c1, c2, . . . , ck}.

I Use C0 to construct truth assignment to variables; prove assignment is
satisfying.
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The Traveling Salesman Problem

I A salesman must visit n cities v1, v2, . . . vn starting at home city v1.

I Salesman must find a tour, an order in which to visit each city exactly once,
and return home.

I Goal is to find as short a tour as possible.

I For every pair of cities v
i

and v
j

, d(v
i

, v
j

) > 0 is the distance from v
i

to v
j

.

I A tour is a permutation v
i1 = v1, vi2 , . . . vin .

I The length of the tour is
P

n�1
j=1 d(v

i

j

v
i

j+1) + d(v
i

n

, v
i1).

Travelling Salesman

INSTANCE: A set V of n cities, a function d : V ⇥ V ! R+, and a
number D > 0.

QUESTION: Is there a tour of length at most D?
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Examples of Travelling Salesman

(1977) 120 cities, Groetschel
Images taken from http://tsp.gatech.edu
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Examples of Travelling Salesman

(1987) 532 AT&T switch locations, Padberg and Rinaldi
Images taken from http://tsp.gatech.edu
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Examples of Travelling Salesman

(1987) 13,509 cities with population � 500, Applegate, Bixby, Chváthal, and Cook
Images taken from http://tsp.gatech.edu
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Examples of Travelling Salesman

(2001) 15,112 cities, Applegate, Bixby, Chváthal, and Cook
Images taken from http://tsp.gatech.edu
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Examples of Travelling Salesman

(2004) 24978, cities, Applegate, Bixby, Chváthal, Cook, and Helsgaum
Images taken from http://tsp.gatech.edu
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Travelling Salesman is NP-Complete

I Why is the problem in NP?

I Why is the problem NP-Complete?

I Claim: Hamiltonian Cycle 
P

Travelling Salesman.

Hamiltonian Cycle Travelling Salesman
Directed graph G (V ,E ) Cities

Edges have identical weights Distances between cities can vary
Not all pairs of nodes are connected in G Every pair of cities has a distance

(u, v) and (v , u) may both be edges d(v
i

, v
j

) 6= d(v
j

, v
i

), in general
Does a cycle exist? Does a tour of length  D exist?

I Given a directed graph G (V ,E ) (instance of Hamiltonian Cycle),
I Create a city v

i

for each node i 2 V .
I Define d(v

i

, v
j

) = 1 if (i , j) 2 E .
I Define d(v

i

, v
j

) = 2 if (i , j) 62 E .

I Claim: G has a Hamiltonian cycle i↵ the instance of Travelling Salesman has
a tour of length at most n.
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Special Cases and Extensions that are NP-Complete

I Hamiltonian Cycle for undirected graphs.

I Hamiltonian Path for directed and undirected graphs.

I Travelling Salesman with symmetric distances (by reducing
Hamiltonian Cycle for undirected graphs to it).

I Travelling Salesman with distances defined by points on the plane.
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3-Dimensional Matching

I 3-Dimensional Matching is a harder version of Bipartite Matching.

Bipartite Matching

INSTANCE: Disjoint sets X , Y , each of size n, and a set T ✓ X ⇥ Y of
pairs
QUESTION: Is there a set of n pairs in T such that each element of
X [ Y is contained in exactly one of these pairs?

I Easy to show 3-Dimensional Matching 
P

Set Cover and
3-Dimensional Matching 

P

Set Packing.
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I 3-Dimensional Matching is a harder version of Bipartite Matching.

3-Dimensional Matching

INSTANCE: Disjoint sets X , Y , and Z , each of size n, and a set
T ✓ X ⇥ Y ⇥ Z of triples
QUESTION: Is there a set of n triples in T such that each element of
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3-Dimensional Matching is NP-Complete

I Why is the problem in NP?

I Show that 3-SAT 
P

3-Dimensional Matching. Jump to Colouring

I Strategy:
I Start with an instance of 3-SAT with n variables and k clauses.
I Create a gadget for each variable x

i

that encodes the choice of truth
assignment to x

i

.
I Add gadgets that encode constraints imposed by clauses.
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3-SAT P 3-Dimensional Matching: Variables

I Each x
i

corresponds to a variable gadget
i with 2k core elements
A
i

= {a
i,1, ai,2, . . . ai,2k} and 2k tips

B
i

= {b
i,1, bi,2, . . . bi,2k}.

I For each 1  j  2k , variable gadget i
includes a triple t

ij

= (a
i,j , ai,j+1, bi,j).

I A triple (tip) is even if j is even.
Otherwise, the triple (tip) is odd.

I Only these triples contain elements in
A
i

.

I In any perfect matching, we can cover the elements in A
i

either using all the
even triples in gadget i or all the odd triples in the gadget.

I Even triples used, odd tips free ⌘ x
i

= 0; odd triples used, even tips free
⌘ x

i

= 1.
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3-SAT P 3-Dimensional Matching: Clauses

I Consider the clause C1 = x1 _ x2 _ x3.

I C1 says “The matching on the cores of
the gadgets should leave the even tips
of gadget 1 free; or it should leave the
odd tips of gadget 2 free; or it should
leave the even tips of gadget 3 free.”

I Clause gadget j for clause C
j

contains
two core elements P

j

= {p
j

, p0
j

} and
three triples:

I C
j

contains x
i

: add triple (p
j

, p0
j

, b
i,2j).

I C
j

contains x
i

: add triple
(p

j

, p0
j

, b
i,2j�1).
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3-SAT P 3-Dimensional Matching: Proof

I Satisfying assignment ! matching.

I Make appropriate choices for the core of each variable gadget.
I At least one free tip available for each clause gadget, allowing core elements of

clause gadgets to be covered.
I We have not covered all the tips!
I Add (n � 1)k cleanup gadgets to allow the remaining (n � 1)k tips to be

covered: cleanup gadget i contains two core elements Q = {q
i

, q0
i

} and triple
(q

i

, q0
i

, b) for every tip b in variable gadget i .

I Matching ! satisfying assignment.
I Matching chooses all even a

ij

(x
i

= 0) or all odd a
ij

(x
i

= 1).
I Is clause C

j

satisfied? Core in clause gadget j is covered by some triple )
other element in the triple must be a tip element from the correct odd/even
set in the three variable gadgets corresponding to a term in C

j

.
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3-SAT P 3-Dimensional Matching: Finale

I Did we create an instance of 3-Dimensional Matching?

I We need three sets X ,Y , and Z of equal size.
I How many elements do we have?

I 2nk a
ij

elements.
I 2nk b

ij

elements.
I k p

j

elements.
I k p0

j

elements.
I (n � 1)k q

i

elements.
I (n � 1)k q0

i

elements.

I X is the union of a
ij

with even j , the set of all p
j

and the set of all q
i

.

I Y is the union of a
ij

with odd j , the set if all p0
j

and the set of all q0
i

.

I Z is the set of all b
ij

.

I Each triple contains exactly one element from X , Y , and Z .
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Colouring maps

I Any map can be coloured with four colours (Appel and Hakken, 1976).
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Graph Colouring

I Given an undirected graph G (V ,E ), a k-colouring of G is a function
f : V ! {1, 2, . . . k} such that for every edge (u, v) 2 E , f (u) 6= f (v).

Graph Colouring (k-Colouring)

INSTANCE: An undirected graph G (V ,E ) and an integer k > 0.

QUESTION: Does G have a k-colouring?
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Applications of Graph Colouring

1. Job scheduling: assign jobs to n processors under constraints that certain
pairs of jobs cannot be scheduled at the same time.

2. Compiler design: assign variables to k registers but two variables being used
at the same time cannot be assigned to the same register.

3. Wavelength assignment: assign one of k transmitting wavelengths to each of
n wireless devices. If two devices are close to each other, they must get
di↵erent wavelengths.
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2-Colouring

I How hard is 2-Colouring?

I Claim: A graph is 2-colourable if and only if it is bipartite.

I Testing 2-colourability is possible in O(|V |+ |E |) time.

I What about 3-colouring? Is it easy to exhibit a certificate that a graph
cannot be coloured with three colours?
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3-Colouring is NP-Complete

I Why is 3-Colouring in NP?

I 3-SAT 
P

3-Colouring.
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3-SAT P 3-Colouring: Encoding Variables

I x
i

corresponds to node v
i

and x
i

corresponds to node v
i

.

I In any 3-Colouring, nodes v
i

and v
i

get a colour di↵erent from Base.

I True colour: colour assigned to the
True node; False colour: colour
assigned to the False node.

I Set x
i

to 1 i↵ v
i

gets the True
colour.
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3-SAT P 3-Colouring: Encoding Clauses

I Consider the clause
C1 = x1 _ x2 _ x3.

I Attach a six-node subgraph
for this clause to the rest of
the graph.

I Claim: Top node in the
subgraph can be coloured in
a 3-colouring i↵ one of v1,
v2, or v3 does not get the
False colour.

I Claim: Graph is
3-colourable i↵ instance of
3-SAT is satisfiable.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT P 3-Colouring: Encoding Clauses

I Consider the clause
C1 = x1 _ x2 _ x3.

I Attach a six-node subgraph
for this clause to the rest of
the graph.

I Claim: Top node in the
subgraph can be coloured in
a 3-colouring i↵ one of v1,
v2, or v3 does not get the
False colour.

I Claim: Graph is
3-colourable i↵ instance of
3-SAT is satisfiable.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT P 3-Colouring: Encoding Clauses

I Consider the clause
C1 = x1 _ x2 _ x3.

I Attach a six-node subgraph
for this clause to the rest of
the graph.

I Claim: Top node in the
subgraph can be coloured in
a 3-colouring i↵ one of v1,
v2, or v3 does not get the
False colour.

I Claim: Graph is
3-colourable i↵ instance of
3-SAT is satisfiable.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

3-SAT P 3-Colouring: Encoding Clauses

I Consider the clause
C1 = x1 _ x2 _ x3.

I Attach a six-node subgraph
for this clause to the rest of
the graph.

I Claim: Top node in the
subgraph can be coloured in
a 3-colouring i↵ one of v1,
v2, or v3 does not get the
False colour.

I Claim: Graph is
3-colourable i↵ instance of
3-SAT is satisfiable.

T. M. Murali April 25, 30, 2013 NP-Complete Problems



Strategy 3-SAT Sequencing Problems Partitioning Problems Other Problems

Subset Sum

Subset Sum

INSTANCE: A set of n natural numbers w1,w2, . . . ,wn

and a target W .

QUESTION: Is there a subset of {w1,w2, . . . ,wn

} whose sum is W ?

I Subset Sum is a special case of the Knapsack Problem (see Chapter
6.4 of the textbook).

I There is a dynamic programming algorithm for Subset Sum that runs in
O(nW ) time. This algorithm’s running time is exponential in the size of the
input.

I Claim: Subset Sum is NP-Complete,
3-Dimensional Matching 

P

Subset Sum.

I Caveat: Special case of Subset Sum in which W is bounded by a
polynomial function of n is not NP-Complete (read pages 494–495 of your
textbook).
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Examples of Hard Computational Problems
(taken from Adam D. Smith’s slides at Penn State University)

I Aerospace engineering: optimal mesh partitioning for finite elements.
I Biology: protein folding.
I Chemical engineering: heat exchanger network synthesis.
I Civil engineering: equilibrium of urban tra�c flow.
I Economics: computation of arbitrage in financial markets with friction.
I Electrical engineering: VLSI layout.
I Environmental engineering: optimal placement of contaminant sensors.
I Financial engineering: find minimum risk portfolio of given return.
I Game theory: find Nash equilibrium that maximizes social welfare.
I Genomics: phylogeny reconstruction.
I Mechanical engineering: structure of turbulence in sheared flows.
I Medicine: reconstructing 3-D shape from biplane angiocardiogram.
I Operations research: optimal resource allocation.
I Physics: partition function of 3-D Ising model in statistical mechanics.
I Politics: Shapley-Shubik voting power.
I Pop culture: Minesweeper consistency.
I Statistics: optimal experimental design.
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