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Introduction Reductions NP NP-Complete NP vs. co-NP

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.

I Reductions.
I Local search.
I Randomization.

I “Anti-patterns”
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.
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Computational Tractability

I When is an algorithm an efficient solution to a problem?

When its running
time is polynomial in the size of the input.

I A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring
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Problem Classification

I Classify problems based on whether they admit efficient solutions or not.

I Some extremely hard problems cannot be solved efficiently (e.g., chess on an
n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!
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Polynomial-Time Reduction

I Goal is to express statements of the type “Problem X is at least as hard as
problem Y .”

I Computing the maximum flow in a network is at least as hard as finding the
largest matching in a bipartite graph.

I Computing the minimum s-t cut in a network is at least as hard as finding the
best segmentation of an image into foreground and background.

I Use the notion of reductions.

I Y is polynomial-time reducible to X (Y ≤P X )

if any arbitrary instance of Y
can be solved using a polynomial number of standard operations, plus a
polynomial number of calls to a black box that solves problem X .

I Y ≤P X implies that “X is at least as hard as Y .”

I Such reductions are Cook reductions. Karp reductions allow only one call to
the black box that solves X .
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Usefulness of Reductions

I Claim: If Y ≤P X and X can be solved in polynomial time, then Y can be
solved in polynomial time.

I Contrapositive: If Y ≤P X and Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

I Informally: If Y is hard, and we can show that Y reduces to X , then the
hardness “spreads” to X .
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Reduction Strategies

I Simple equivalence.

I Special case to general case.

I Encoding with gadgets.
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Optimisation versus Decision Problems

I So far, we have developed algorithms that solve optimisation problems.
I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

I Now, we will focus on decision versions of problems, e.g., is there a flow with
value at least k, for a given value of k?
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Independent Set and Vertex Cover

I Given an undirected graph G (V ,E ), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E ), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size

≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION:

Does G contain a
vertex cover of size

≤ l?

I Demonstrate simple equivalence between these two problems.
I Claim: Independent Set ≤P Vertex Cover and

Vertex Cover ≤P Independent Set.
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Strategy for Proving Indep. Set ≤P Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph
G (V ,E ) and an integer k .

2. From G (V ,E ) and k, create an instance of Vertex Cover: an undirected
graph G ′(V ′,E ′) and an integer l .

I G ′ related to G in some way.
I l can depend upon k and size of G .

3. Prove that G (V ,E ) has an independent set of size ≥ k iff G ′(V ′,E ′) has a
vertex cover of size ≤ l .

I Transformation and proof must be correct for all possible graphs G (V ,E )
and all possible values of k.

I Why is the proof an iff statement? In the reduction, we are using black box
for Vertex Cover to solve Independent Set.

(i) If there is an independent set size ≥ k, we must be sure that there is a vertex
cover of size ≤ l , so that we know that the black box will find this vertex cover.

(ii) If the black box finds a vertex cover of size ≤ l , we must be sure we can
construct an independent set of size ≥ k from this vertex cover.
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Proof that Independent Set ≤P Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph G (V ,E ) and
an integer k.

2. Let |V | = n.

3. Create an instance of Vertex Cover: same undirected graph G (V ,E ) and
integer n − k.

4. Claim: G (V ,E ) has an independent set of size ≥ k iff G (V ,E ) has a vertex
cover of size ≤ n − k.

Proof: S is an independent set in G iff V − S is a vertex cover in G .

I Same idea proves that Vertex Cover ≤P Independent Set
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Vertex Cover and Set Cover

I Independent Set is a “packing” problem: pack as many vertices as
possible, subject to constraints (the edges).

I Vertex Cover is a “covering” problem: cover all edges in the graph with
as few vertices as possible.

I There are more general covering problems.

Set Cover

INSTANCE: A set U of n
elements, a collection
S1,S2, . . . ,Sm of subsets of U,
and an integer k.

QUESTION: Is there a
collection of ≤ k sets in the
collection whose union is U?
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Vertex Cover ≤P Set Cover

U = {(x1, x2), (x1, x4), (x2, x3), (x2, x4), (x2, x7), (x3, x7),

(x4, x5), (x5, x6), (x5, x7), (x6, x7)}
S1 = {(x1, x2), (x1, x4)}
S2 = {(x1, x2), (x2, x3), (x2, x4), (x2, x7)}

S3,S4,S5,S6, and S7 defined similarly.

I Input to Vertex Cover: an undirected graph G (V ,E ) and an integer k.
I Let |V | = n.
I Create an instance

{
U, {S1,S2, . . .Sn}

}
of Set Cover where

I U = E ,
I for each vertex i ∈ V , create a set Si ⊆ U of the edges incident on i .

I Claim: U can be covered with fewer than k subsets iff G has a vertex cover
with at most k nodes.

I Proof strategy:
1. If G(V ,E) has a vertex cover of size at most k, then U can be covered with

at most k subsets.
2. If U can be covered with at most k subsets, then G(V ,E) has a vertex cover

of size at most k.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability
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Boolean Satisfiability

I Abstract problems formulated in Boolean notation.

I Often used to specify problems, e.g., in AI.

I We are given a set X = {x1, x2, . . . , xn} of n Boolean variables.

I Each variable can take the value 0 or 1.

I A term is a variable xi or its negation xi .

I A clause of length l is a disjunction of l distinct terms t1 ∨ t2 ∨ · · · tl .
I A truth assignment for X is a function ν : X → {0, 1}.
I An assignment satisfies a clause C if it causes C to evaluate to 1 under the

rules of Boolean logic.

I An assignment satisfies a collection of clauses C1,C2, . . .Ck if it causes
C1 ∧ C2 ∧ · · ·Ck to evaluate to 1.

I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.
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SAT and 3-SAT

3-

Satisfiability Problem (SAT)

INSTANCE: A set of clauses C1,C2, . . .Ck

, each of length three,

over a
set X = {x1, x2, . . . xn} of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to
C ?

I SAT and 3-SAT are fundamental combinatorial search problems.

I We have to make n independent decisions (the assignments for each variable)
while satisfying a set of constraints.

I Satisfying each constraint in isolation is easy, but we have to make our
decisions so that all constraints are satisfied simultaneously.
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Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.
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Introduction Reductions NP NP-Complete NP vs. co-NP

3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1. Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.

2. Choose one literal from each clause to evaluate to true.

I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

I We want to prove 3-SAT ≤P Independent Set.

I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve
one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause. Find a truth assignment that
causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I We are given an instance of 3-SAT with k clauses of length three over n
variables.

I Construct an instance of independent set: graph G (V ,E ) with 3k nodes.

I For each clause Ci , 1 ≤ i ≤ k, add a triangle of three nodes vi1, vi2, vi3 and
three edges to G .

I Label each node vij , 1 ≤ j ≤ 3 with the jth term in Ci .
I Add an edge between each pair of nodes whose labels correspond to terms

that conflict.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k: Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?
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Transitivity of Reductions

I Claim: If Z ≤P Y and Y ≤P X, then Z ≤P X.

I We have shown

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover
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Introduction Reductions NP NP-Complete NP vs. co-NP

Finding vs. Certifying

I Is it easy to check if a given set of vertices in an undirected graph forms an
independent set of size at least k?

I Is it easy to check if a particular truth assignment satisfies a set of clauses?

I We draw a contrast between finding a solution and checking a solution (in
polynomial time).

I Since we have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if a
proposed solution is correct.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”,

e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.
I An algorithm A for a decision problem receives an input string s and returns

A(s) ∈ {yes, no}.
I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Efficient Certification

I A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate “certificate”
string t that contains evidence that s ∈ X .

I Checker for Independent Set:

t is a set of at least k vertices; checker
verifies that no pair of these vertices are connected by an edge.

I An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have s ∈ X iff

there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and check in
polynomial time whether t is a correct proof.

I Certifier does not care about how to find these proofs.
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Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP:

t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.
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Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅? One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability



Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.
I Corollary: If there is any problem in NP that cannot be solved in polynomial

time, then no NP-Complete problem can be solved in polynomial time.
I Are there any NP-Complete problems?

1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP
where X1 ≤P X and X2 ≤P X .

2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly
harder than the previous one.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Circuit Satisfiability

I Cook-Levin Theorem: Circuit Satisfiability is NP-Complete.

I A circuit K is a labelled, directed acyclic graph such that
1. the sources in K are labelled with constants (0 or 1) or the name of a distinct

variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE: A circuit K .

QUESTION: Is there a truth
assignment to the inputs that causes
the output to have value 1?

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”
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Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask “Is there a string t of length p(|s|) such
that B(s, t) = yes?”

I View B(·, ·) as an algorithm on n + p(n) bits.

I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes K
satisfiable.
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Introduction Reductions NP NP-Complete NP vs. co-NP

Example of Transformation to Circuit Satisfiability

I Does a graph G on n nodes have a two-node independent set?

I s encodes the graph G with
(
n
2

)
bits.

I t encodes the independent set with n bits.

I Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).
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Example of Transformation to Circuit Satisfiability

I Suppose G contains three nodes u, v , and w with v connected to u and w .
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Introduction Reductions NP NP-Complete NP vs. co-NP

Asymmetry of Certification

I Definition of efficient certification and NP is fundamentally asymmetric:
I An input string s is a “yes” instance iff there exists a short string t such that

B(s, t) = yes.
I An input string s is a “no” instance iff for all short strings t, B(s, t) = no.

The definition of NP does not guarantee a short proof for “no” instances.
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Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.
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