
Introduction Reductions NP NP-Complete NP vs. co-NP

NP and Computational Intractability

T. M. Murali

April 18, 23, 2013

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.

I Reductions.
I Local search.
I Randomization.

I “Anti-patterns”
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.
I Reductions.
I Local search.
I Randomization.

I “Anti-patterns”
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Algorithm Design

I Patterns
I Greed. O(n log n) interval scheduling.
I Divide-and-conquer. O(n log n) closest pair of points.
I Dynamic programming. O(n2) edit distance.
I Duality. O(n3) maximum flow and minimum cuts.
I Reductions.
I Local search.
I Randomization.

I “Anti-patterns”
I NP-completeness. O(nk) algorithm unlikely.
I PSPACE-completeness. O(nk) certification algorithm unlikely.
I Undecidability. No algorithm possible.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Computational Tractability

I When is an algorithm an efficient solution to a problem?

When its running
time is polynomial in the size of the input.

I A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Computational Tractability

I When is an algorithm an efficient solution to a problem? When its running
time is polynomial in the size of the input.

I A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Computational Tractability

I When is an algorithm an efficient solution to a problem? When its running
time is polynomial in the size of the input.

I A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Computational Tractability

I When is an algorithm an efficient solution to a problem? When its running
time is polynomial in the size of the input.

I A problem is computationally tractable if it has a polynomial-time algorithm.

Polynomial time Probably not
Shortest path Longest path
Matching 3-D matching
Minimum cut Maximum cut
2-SAT 3-SAT
Planar four-colour Planar three-colour
Bipartite vertex cover Vertex cover
Primality testing Factoring

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problem Classification

I Classify problems based on whether they admit efficient solutions or not.

I Some extremely hard problems cannot be solved efficiently (e.g., chess on an
n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problem Classification

I Classify problems based on whether they admit efficient solutions or not.

I Some extremely hard problems cannot be solved efficiently (e.g., chess on an
n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problem Classification

I Classify problems based on whether they admit efficient solutions or not.

I Some extremely hard problems cannot be solved efficiently (e.g., chess on an
n-by-n board).

I However, classification is unclear for a very large number of discrete
computational problems.

I We can prove that these problems are fundamentally equivalent and are
manifestations of the same problem!

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Polynomial-Time Reduction

I Goal is to express statements of the type “Problem X is at least as hard as
problem Y .”

I Computing the maximum flow in a network is at least as hard as finding the
largest matching in a bipartite graph.

I Computing the minimum s-t cut in a network is at least as hard as finding the
best segmentation of an image into foreground and background.

I Use the notion of reductions.

I Y is polynomial-time reducible to X (Y ≤P X)

if any arbitrary instance of Y
can be solved using a polynomial number of standard operations, plus a
polynomial number of calls to a black box that solves problem X .

I Y ≤P X implies that “X is at least as hard as Y .”

I Such reductions are Cook reductions. Karp reductions allow only one call to
the black box that solves X .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Polynomial-Time Reduction

I Goal is to express statements of the type “Problem X is at least as hard as
problem Y .”

I Computing the maximum flow in a network is at least as hard as finding the
largest matching in a bipartite graph.

I Computing the minimum s-t cut in a network is at least as hard as finding the
best segmentation of an image into foreground and background.

I Use the notion of reductions.

I Y is polynomial-time reducible to X (Y ≤P X) if any arbitrary instance of Y
can be solved using a polynomial number of standard operations, plus a
polynomial number of calls to a black box that solves problem X .

I Y ≤P X implies that “X is at least as hard as Y .”

I Such reductions are Cook reductions. Karp reductions allow only one call to
the black box that solves X .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Usefulness of Reductions

I Claim: If Y ≤P X and X can be solved in polynomial time, then Y can be
solved in polynomial time.

I Contrapositive: If Y ≤P X and Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

I Informally: If Y is hard, and we can show that Y reduces to X , then the
hardness “spreads” to X .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Usefulness of Reductions

I Claim: If Y ≤P X and X can be solved in polynomial time, then Y can be
solved in polynomial time.

I Contrapositive: If Y ≤P X and Y cannot be solved in polynomial time, then
X cannot be solved in polynomial time.

I Informally: If Y is hard, and we can show that Y reduces to X , then the
hardness “spreads” to X .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Reduction Strategies

I Simple equivalence.

I Special case to general case.

I Encoding with gadgets.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Optimisation versus Decision Problems

I So far, we have developed algorithms that solve optimisation problems.
I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

I Now, we will focus on decision versions of problems, e.g., is there a flow with
value at least k, for a given value of k?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Optimisation versus Decision Problems

I So far, we have developed algorithms that solve optimisation problems.
I Compute the largest flow.
I Find the closest pair of points.
I Find the schedule with the least completion time.

I Now, we will focus on decision versions of problems, e.g., is there a flow with
value at least k, for a given value of k?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Independent Set and Vertex Cover

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size

≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION:

Does G contain a
vertex cover of size

≤ l?

I Demonstrate simple equivalence between these two problems.
I Claim: Independent Set ≤P Vertex Cover and

Vertex Cover ≤P Independent Set.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Independent Set and Vertex Cover

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size

≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION: Does G contain a
vertex cover of size

≤ l?

I Demonstrate simple equivalence between these two problems.
I Claim: Independent Set ≤P Vertex Cover and

Vertex Cover ≤P Independent Set.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Independent Set and Vertex Cover

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size ≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION: Does G contain a
vertex cover of size ≤ l?

I Demonstrate simple equivalence between these two problems.
I Claim: Independent Set ≤P Vertex Cover and

Vertex Cover ≤P Independent Set.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Independent Set and Vertex Cover

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size ≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION: Does G contain a
vertex cover of size ≤ l?

I Demonstrate simple equivalence between these two problems.

I Claim: Independent Set ≤P Vertex Cover and
Vertex Cover ≤P Independent Set.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Independent Set and Vertex Cover

I Given an undirected graph G (V ,E), a subset S ⊆ V is an independent set if
no two vertices in S are connected by an edge.

I Given an undirected graph G (V ,E), a subset S ⊆ V is a vertex cover if every
edge in E is incident on at least one vertex in S .

Independent Set

INSTANCE: Undirected graph
G and an integer k

QUESTION: Does G contain
an independent set of size ≥ k?

Vertex cover

INSTANCE: Undirected graph
G and an integer l

QUESTION: Does G contain a
vertex cover of size ≤ l?

I Demonstrate simple equivalence between these two problems.
I Claim: Independent Set ≤P Vertex Cover and

Vertex Cover ≤P Independent Set.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Strategy for Proving Indep. Set ≤P Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph
G (V ,E) and an integer k .

2. From G (V ,E) and k, create an instance of Vertex Cover: an undirected
graph G ′(V ′,E ′) and an integer l .

I G ′ related to G in some way.
I l can depend upon k and size of G .

3. Prove that G (V ,E) has an independent set of size ≥ k iff G ′(V ′,E ′) has a
vertex cover of size ≤ l .

I Transformation and proof must be correct for all possible graphs G (V ,E)
and all possible values of k.

I Why is the proof an iff statement? In the reduction, we are using black box
for Vertex Cover to solve Independent Set.

(i) If there is an independent set size ≥ k, we must be sure that there is a vertex
cover of size ≤ l , so that we know that the black box will find this vertex cover.

(ii) If the black box finds a vertex cover of size ≤ l , we must be sure we can
construct an independent set of size ≥ k from this vertex cover.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Strategy for Proving Indep. Set ≤P Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph
G (V ,E) and an integer k .

2. From G (V ,E) and k, create an instance of Vertex Cover: an undirected
graph G ′(V ′,E ′) and an integer l .

I G ′ related to G in some way.
I l can depend upon k and size of G .

3. Prove that G (V ,E) has an independent set of size ≥ k iff G ′(V ′,E ′) has a
vertex cover of size ≤ l .

I Transformation and proof must be correct for all possible graphs G (V ,E)
and all possible values of k .

I Why is the proof an iff statement?

In the reduction, we are using black box
for Vertex Cover to solve Independent Set.

(i) If there is an independent set size ≥ k, we must be sure that there is a vertex
cover of size ≤ l , so that we know that the black box will find this vertex cover.

(ii) If the black box finds a vertex cover of size ≤ l , we must be sure we can
construct an independent set of size ≥ k from this vertex cover.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Strategy for Proving Indep. Set ≤P Vertex Cover

1. Start with an arbitrary instance of Independent Set: an undirected graph
G (V ,E) and an integer k .

2. From G (V ,E) and k, create an instance of Vertex Cover: an undirected
graph G ′(V ′,E ′) and an integer l .

I G ′ related to G in some way.
I l can depend upon k and size of G .

3. Prove that G (V ,E) has an independent set of size ≥ k iff G ′(V ′,E ′) has a
vertex cover of size ≤ l .

I Transformation and proof must be correct for all possible graphs G (V ,E)
and all possible values of k .

I Why is the proof an iff statement? In the reduction, we are using black box
for Vertex Cover to solve Independent Set.

(i) If there is an independent set size ≥ k, we must be sure that there is a vertex
cover of size ≤ l , so that we know that the black box will find this vertex cover.

(ii) If the black box finds a vertex cover of size ≤ l , we must be sure we can
construct an independent set of size ≥ k from this vertex cover.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proof that Independent Set ≤P Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph G (V ,E) and
an integer k.

2. Let |V | = n.

3. Create an instance of Vertex Cover: same undirected graph G (V ,E) and
integer n − k.

4. Claim: G (V ,E) has an independent set of size ≥ k iff G (V ,E) has a vertex
cover of size ≤ n − k.

Proof: S is an independent set in G iff V − S is a vertex cover in G .

I Same idea proves that Vertex Cover ≤P Independent Set

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proof that Independent Set ≤P Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph G (V ,E) and
an integer k.

2. Let |V | = n.

3. Create an instance of Vertex Cover: same undirected graph G (V ,E) and
integer n − k.

4. Claim: G (V ,E) has an independent set of size ≥ k iff G (V ,E) has a vertex
cover of size ≤ n − k.

Proof: S is an independent set in G iff V − S is a vertex cover in G .

I Same idea proves that Vertex Cover ≤P Independent Set

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proof that Independent Set ≤P Vertex Cover

1. Arbitrary instance of Independent Set: an undirected graph G (V ,E) and
an integer k.

2. Let |V | = n.

3. Create an instance of Vertex Cover: same undirected graph G (V ,E) and
integer n − k.

4. Claim: G (V ,E) has an independent set of size ≥ k iff G (V ,E) has a vertex
cover of size ≤ n − k.

Proof: S is an independent set in G iff V − S is a vertex cover in G .

I Same idea proves that Vertex Cover ≤P Independent Set

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover and Set Cover

I Independent Set is a “packing” problem: pack as many vertices as
possible, subject to constraints (the edges).

I Vertex Cover is a “covering” problem: cover all edges in the graph with
as few vertices as possible.

I There are more general covering problems.

Set Cover

INSTANCE: A set U of n
elements, a collection
S1,S2, . . . ,Sm of subsets of U,
and an integer k.

QUESTION: Is there a
collection of ≤ k sets in the
collection whose union is U?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover ≤P Set Cover

U = {(x1, x2), (x1, x4), (x2, x3), (x2, x4), (x2, x7), (x3, x7),

(x4, x5), (x5, x6), (x5, x7), (x6, x7)}
S1 = {(x1, x2), (x1, x4)}
S2 = {(x1, x2), (x2, x3), (x2, x4), (x2, x7)}

S3,S4,S5,S6, and S7 defined similarly.

I Input to Vertex Cover: an undirected graph G (V ,E) and an integer k.
I Let |V | = n.
I Create an instance

{
U, {S1,S2, . . .Sn}

}
of Set Cover where

I U = E ,
I for each vertex i ∈ V , create a set Si ⊆ U of the edges incident on i .

I Claim: U can be covered with fewer than k subsets iff G has a vertex cover
with at most k nodes.

I Proof strategy:
1. If G(V ,E) has a vertex cover of size at most k, then U can be covered with

at most k subsets.
2. If U can be covered with at most k subsets, then G(V ,E) has a vertex cover

of size at most k.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover ≤P Set Cover

U = {(x1, x2), (x1, x4), (x2, x3), (x2, x4), (x2, x7), (x3, x7),

(x4, x5), (x5, x6), (x5, x7), (x6, x7)}
S1 = {(x1, x2), (x1, x4)}
S2 = {(x1, x2), (x2, x3), (x2, x4), (x2, x7)}

S3,S4,S5,S6, and S7 defined similarly.

I Input to Vertex Cover: an undirected graph G (V ,E) and an integer k.
I Let |V | = n.
I Create an instance

{
U, {S1,S2, . . .Sn}

}
of Set Cover where

I U = E ,
I for each vertex i ∈ V , create a set Si ⊆ U of the edges incident on i .

I Claim: U can be covered with fewer than k subsets iff G has a vertex cover
with at most k nodes.

I Proof strategy:
1. If G(V ,E) has a vertex cover of size at most k, then U can be covered with

at most k subsets.
2. If U can be covered with at most k subsets, then G(V ,E) has a vertex cover

of size at most k.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Vertex Cover ≤P Set Cover

U = {(x1, x2), (x1, x4), (x2, x3), (x2, x4), (x2, x7), (x3, x7),

(x4, x5), (x5, x6), (x5, x7), (x6, x7)}
S1 = {(x1, x2), (x1, x4)}
S2 = {(x1, x2), (x2, x3), (x2, x4), (x2, x7)}

S3,S4,S5,S6, and S7 defined similarly.

I Input to Vertex Cover: an undirected graph G (V ,E) and an integer k.
I Let |V | = n.
I Create an instance

{
U, {S1,S2, . . .Sn}

}
of Set Cover where

I U = E ,
I for each vertex i ∈ V , create a set Si ⊆ U of the edges incident on i .

I Claim: U can be covered with fewer than k subsets iff G has a vertex cover
with at most k nodes.

I Proof strategy:
1. If G(V ,E) has a vertex cover of size at most k, then U can be covered with

at most k subsets.
2. If U can be covered with at most k subsets, then G(V ,E) has a vertex cover

of size at most k.
T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Boolean Satisfiability

I Abstract problems formulated in Boolean notation.

I Often used to specify problems, e.g., in AI.

I We are given a set X = {x1, x2, . . . , xn} of n Boolean variables.

I Each variable can take the value 0 or 1.

I A term is a variable xi or its negation xi .

I A clause of length l is a disjunction of l distinct terms t1 ∨ t2 ∨ · · · tl .
I A truth assignment for X is a function ν : X → {0, 1}.
I An assignment satisfies a clause C if it causes C to evaluate to 1 under the

rules of Boolean logic.

I An assignment satisfies a collection of clauses C1,C2, . . .Ck if it causes
C1 ∧ C2 ∧ · · ·Ck to evaluate to 1.

I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Boolean Satisfiability

I Abstract problems formulated in Boolean notation.

I Often used to specify problems, e.g., in AI.

I We are given a set X = {x1, x2, . . . , xn} of n Boolean variables.

I Each variable can take the value 0 or 1.

I A term is a variable xi or its negation xi .

I A clause of length l is a disjunction of l distinct terms t1 ∨ t2 ∨ · · · tl .
I A truth assignment for X is a function ν : X → {0, 1}.
I An assignment satisfies a clause C if it causes C to evaluate to 1 under the

rules of Boolean logic.

I An assignment satisfies a collection of clauses C1,C2, . . .Ck if it causes
C1 ∧ C2 ∧ · · ·Ck to evaluate to 1.

I ν is a satisfying assignment with respect to C1,C2, . . .Ck .
I set of clauses C1,C2, . . .Ck is satisfiable.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

SAT and 3-SAT

3-

Satisfiability Problem (SAT)

INSTANCE: A set of clauses C1,C2, . . .Ck

, each of length three,

over a
set X = {x1, x2, . . . xn} of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to
C ?

I SAT and 3-SAT are fundamental combinatorial search problems.

I We have to make n independent decisions (the assignments for each variable)
while satisfying a set of constraints.

I Satisfying each constraint in isolation is easy, but we have to make our
decisions so that all constraints are satisfied simultaneously.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses C1,C2, . . .Ck , each of length three, over a
set X = {x1, x2, . . . xn} of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to
C ?

I SAT and 3-SAT are fundamental combinatorial search problems.

I We have to make n independent decisions (the assignments for each variable)
while satisfying a set of constraints.

I Satisfying each constraint in isolation is easy, but we have to make our
decisions so that all constraints are satisfied simultaneously.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

SAT and 3-SAT

3-Satisfiability Problem (SAT)

INSTANCE: A set of clauses C1,C2, . . .Ck , each of length three, over a
set X = {x1, x2, . . . xn} of n variables.

QUESTION: Is there a satisfying truth assignment for X with respect to
C ?

I SAT and 3-SAT are fundamental combinatorial search problems.

I We have to make n independent decisions (the assignments for each variable)
while satisfying a set of constraints.

I Satisfying each constraint in isolation is easy, but we have to make our
decisions so that all constraints are satisfied simultaneously.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable?

Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable?

Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable?

Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable?

No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Examples of 3-SAT

Example:
I C1 = x1 ∨ 0 ∨ 0
I C2 = x2 ∨ 0 ∨ 0
I C3 = x1 ∨ x2 ∨ 0

1. Is C1 ∧ C2 satisfiable? Yes, by x1 = 1, x2 = 1.

2. Is C1 ∧ C3 satisfiable? Yes, by x1 = 1, x2 = 0.

3. Is C2 ∧ C3 satisfiable? Yes, by x1 = 0, x2 = 1.

4. Is C1 ∧ C2 ∧ C3 satisfiable? No.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1. Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.

2. Choose one literal from each clause to evaluate to true.

I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

I We want to prove 3-SAT ≤P Independent Set.

I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve
one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause. Find a truth assignment that
causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1. Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.

2. Choose one literal from each clause to evaluate to true.

I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

I We want to prove 3-SAT ≤P Independent Set.

I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve
one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause. Find a truth assignment that
causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1. Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.

2. Choose one literal from each clause to evaluate to true.

I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

I We want to prove 3-SAT ≤P Independent Set.

I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve
one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause. Find a truth assignment that
causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

3-SAT and Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

1. Select x1 = 1, x2 = 1, x3 = 1, x4 = 1.

2. Choose one literal from each clause to evaluate to true.
I Choices of selected literals imply x1 = 0, x2 = 0, x4 = 1.

I We want to prove 3-SAT ≤P Independent Set.

I Two ways to think about 3-SAT:

1. Make an independent 0/1 decision on each variable and succeed if we achieve
one of three ways in which to satisfy each clause.

2. Choose (at least) one term from each clause. Find a truth assignment that
causes each chosen term to evaluate to 1. Ensure that no two terms selected
conflict, e.g., select x2 in C1 and x2 in C2.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I We are given an instance of 3-SAT with k clauses of length three over n
variables.

I Construct an instance of independent set: graph G (V ,E) with 3k nodes.

I For each clause Ci , 1 ≤ i ≤ k, add a triangle of three nodes vi1, vi2, vi3 and
three edges to G .

I Label each node vij , 1 ≤ j ≤ 3 with the jth term in Ci .
I Add an edge between each pair of nodes whose labels correspond to terms

that conflict.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I We are given an instance of 3-SAT with k clauses of length three over n
variables.

I Construct an instance of independent set: graph G (V ,E) with 3k nodes.
I For each clause Ci , 1 ≤ i ≤ k, add a triangle of three nodes vi1, vi2, vi3 and

three edges to G .
I Label each node vij , 1 ≤ j ≤ 3 with the jth term in Ci .

I Add an edge between each pair of nodes whose labels correspond to terms
that conflict.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I We are given an instance of 3-SAT with k clauses of length three over n
variables.

I Construct an instance of independent set: graph G (V ,E) with 3k nodes.
I For each clause Ci , 1 ≤ i ≤ k, add a triangle of three nodes vi1, vi2, vi3 and

three edges to G .
I Label each node vij , 1 ≤ j ≤ 3 with the jth term in Ci .
I Add an edge between each pair of nodes whose labels correspond to terms

that conflict.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k: Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k :

Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k : Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k : Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment:

the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k : Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k : Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?

I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving 3-SAT ≤P Independent Set

C1 = x1∨x2∨x3

C2 = x1∨x2∨x4

C3 = x1∨x3∨x4

I Claim: 3-SAT instance is satisfiable iff G has an independent set of size at
least k.

I Satisfiable assignment → independent set of size ≥ k : Each triangle in G has
at least one node whose label evaluates to 1. Set S of nodes consisting of one
such node from each triangle forms an independent set of size ≥ k. Why?

I Independent set S of size ≥ k → satisfiable assignment: the size of this set is
k. How do we construct a satisfying truth assignment from the nodes in the
independent set?

I For each variable xi , only xi or xi is the label of a node in S . Why?
I If xi is the label of a node in S , set xi = 1; else set xi = 0.
I Why is each clause satisfied?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Transitivity of Reductions

I Claim: If Z ≤P Y and Y ≤P X, then Z ≤P X.

I We have shown

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Transitivity of Reductions

I Claim: If Z ≤P Y and Y ≤P X, then Z ≤P X.

I We have shown

3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Finding vs. Certifying

I Is it easy to check if a given set of vertices in an undirected graph forms an
independent set of size at least k?

I Is it easy to check if a particular truth assignment satisfies a set of clauses?

I We draw a contrast between finding a solution and checking a solution (in
polynomial time).

I Since we have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if a
proposed solution is correct.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Finding vs. Certifying

I Is it easy to check if a given set of vertices in an undirected graph forms an
independent set of size at least k?

I Is it easy to check if a particular truth assignment satisfies a set of clauses?

I We draw a contrast between finding a solution and checking a solution (in
polynomial time).

I Since we have not been able to develop efficient algorithms to solve many
decision problems, let us turn our attention to whether we can check if a
proposed solution is correct.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”,

e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.
I An algorithm A for a decision problem receives an input string s and returns

A(s) ∈ {yes, no}.
I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”, e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.

I An algorithm A for a decision problem receives an input string s and returns
A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”, e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.

I An algorithm A for a decision problem receives an input string s and returns
A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”, e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.

I An algorithm A for a decision problem receives an input string s and returns
A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,

e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”, e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.

I An algorithm A for a decision problem receives an input string s and returns
A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Problems, Algorithms, and Strings

I Encode input to a computational problem as a finite binary string s of length
|s|.

I Equate a decision problem X to the set of input strings for which the answer
is “yes”, e.g., PRIMES = {10, 11, 101, 111, 1011, . . .}.

I An algorithm A for a decision problem receives an input string s and returns
A(s) ∈ {yes, no}.

I A solves the problem X if for every string s, A(s) = yes iff s ∈ X .

I A has a polynomial running time if there is a polynomial function p(·) such
that for every input string s, A terminates on s in at most O(p(|s|)) steps,
e.g., there is an algorithm such that p(|s|) = |s|8 for PRIMES (Agarwal,
Kayal, Saxena, 2002).

I P: set of problems X for which there is a polynomial time algorithm.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Efficient Certification

I A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate “certificate”
string t that contains evidence that s ∈ X .

I Checker for Independent Set:

t is a set of at least k vertices; checker
verifies that no pair of these vertices are connected by an edge.

I An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have s ∈ X iff

there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and check in
polynomial time whether t is a correct proof.

I Certifier does not care about how to find these proofs.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Efficient Certification

I A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate “certificate”
string t that contains evidence that s ∈ X .

I Checker for Independent Set: t is a set of at least k vertices; checker
verifies that no pair of these vertices are connected by an edge.

I An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have s ∈ X iff

there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and check in
polynomial time whether t is a correct proof.

I Certifier does not care about how to find these proofs.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Efficient Certification

I A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate “certificate”
string t that contains evidence that s ∈ X .

I Checker for Independent Set: t is a set of at least k vertices; checker
verifies that no pair of these vertices are connected by an edge.

I An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have s ∈ X iff

there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and check in
polynomial time whether t is a correct proof.

I Certifier does not care about how to find these proofs.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Efficient Certification

I A “checking” algorithm for a decision problem X has a different structure
from an algorithm that solves X .

I Checking algorithm needs input string s as well as a separate “certificate”
string t that contains evidence that s ∈ X .

I Checker for Independent Set: t is a set of at least k vertices; checker
verifies that no pair of these vertices are connected by an edge.

I An algorithm B is an efficient certifier for a problem X if

1. B is a polynomial time algorithm that takes two inputs s and t and
2. there is a polynomial function p so that for every string s, we have s ∈ X iff

there exists a string t such that |t| ≤ p(|s|) and B(s, t) = yes.

I Certifier’s job is to take a candidate short proof (t) that s ∈ X and check in
polynomial time whether t is a correct proof.

I Certifier does not care about how to find these proofs.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP:

t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP:

t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP:

t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP
I NP is the set of all problems for which there exists an efficient certifier.

I 3-SAT ∈ NP: t is a truth assignment; B evaluates the clauses with respect
to the assignment.

I Independent Set ∈ NP: t is a set of at least k vertices; B checks that no
pair of these vertices are connected by an edge.

I Set Cover ∈ NP: t is a list of k sets from the collection; B checks if their
union is U.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅?

One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

P

NP

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

P vs. NP
I Claim: P ⊆ NP.

I If X ∈ P, then there is a polynomial time algorithm A that solves X . B
ignores t and returns A(s). Why is B an efficient certifier?

I Is P = NP or is NP − P 6= ∅? One of the major unsolved problems in
computer science. $1M prize offered by Clay Mathematics Institute.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.
I Corollary: If there is any problem in NP that cannot be solved in polynomial

time, then no NP-Complete problem can be solved in polynomial time.
I Are there any NP-Complete problems?

1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP
where X1 ≤P X and X2 ≤P X .

2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly
harder than the previous one.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.
I Corollary: If there is any problem in NP that cannot be solved in polynomial

time, then no NP-Complete problem can be solved in polynomial time.
I Are there any NP-Complete problems?

1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP
where X1 ≤P X and X2 ≤P X .

2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly
harder than the previous one.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.

I Corollary: If there is any problem in NP that cannot be solved in polynomial
time, then no NP-Complete problem can be solved in polynomial time.

I Are there any NP-Complete problems?
1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP

where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly

harder than the previous one.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.
I Corollary: If there is any problem in NP that cannot be solved in polynomial

time, then no NP-Complete problem can be solved in polynomial time.

I Are there any NP-Complete problems?
1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP

where X1 ≤P X and X2 ≤P X .
2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly

harder than the previous one.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

NP-Complete and NP-Hard Problems
I What are the hardest problems in NP?

A problem X is NP-Complete if

(i) X ∈ NP and

(ii) for every problem Y ∈ NP,
Y ≤P X .

A problem X is NP-Hard if

(i) for every problem Y ∈ NP,
Y ≤P X .

P NPc

NP NP-hard

I Claim: Suppose X is NP-Complete. Then X ∈ P iff P = NP.
I Corollary: If there is any problem in NP that cannot be solved in polynomial

time, then no NP-Complete problem can be solved in polynomial time.
I Are there any NP-Complete problems?

1. What if two problems X1 and X2 in NP but there is no problem X ∈ NP
where X1 ≤P X and X2 ≤P X .

2. Perhaps there is a sequence of problems X1,X2,X3, . . . in NP, each strictly
harder than the previous one.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Circuit Satisfiability

I Cook-Levin Theorem: Circuit Satisfiability is NP-Complete.

I A circuit K is a labelled, directed acyclic graph such that
1. the sources in K are labelled with constants (0 or 1) or the name of a distinct

variable (the inputs to the circuit).
2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE: A circuit K .

QUESTION: Is there a truth
assignment to the inputs that causes
the output to have value 1?

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Circuit Satisfiability

I Cook-Levin Theorem: Circuit Satisfiability is NP-Complete.
I A circuit K is a labelled, directed acyclic graph such that

1. the sources in K are labelled with constants (0 or 1) or the name of a distinct
variable (the inputs to the circuit).

2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE: A circuit K .

QUESTION: Is there a truth
assignment to the inputs that causes
the output to have value 1?

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Circuit Satisfiability

I Cook-Levin Theorem: Circuit Satisfiability is NP-Complete.
I A circuit K is a labelled, directed acyclic graph such that

1. the sources in K are labelled with constants (0 or 1) or the name of a distinct
variable (the inputs to the circuit).

2. every other node is labelled with one Boolean operator ∧, ∨, or ¬.
3. a single node with no outgoing edges represents the output of K .

Circuit Satisfiability

INSTANCE: A circuit K .

QUESTION: Is there a truth
assignment to the inputs that causes
the output to have value 1?

Skip proof; read textbook or Chapter 2.6 of Garey and Johnson.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ?

It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I Take an arbitrary problem X ∈ NP and show that
X ≤P Circuit Satisfiability.

I Claim we will not prove: any algorithm that takes a fixed number n of bits as
input and produces a yes/no answer

1. can be represented by an equivalent circuit and
2. if the running time of the algorithm is polynomial in n, the size of the circuit is

a polynomial in n.

I To show X ≤P Circuit Satisfiability, given an input s of length n, we
want to determine whether s ∈ X using a black box that solves Circuit
Satisfiability.

I What do we know about X ? It has an efficient certifier B(·, ·).

I To determine whether s ∈ X , we ask “Is there a string t of length p(n) such
that B(s, t) = yes?”

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask “Is there a string t of length p(|s|) such
that B(s, t) = yes?”

I View B(·, ·) as an algorithm on n + p(n) bits.

I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes K
satisfiable.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask “Is there a string t of length p(|s|) such
that B(s, t) = yes?”

I View B(·, ·) as an algorithm on n + p(n) bits.

I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes K
satisfiable.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Proving Circuit Satisfiability is NP-Complete

I To determine whether s ∈ X , we ask “Is there a string t of length p(|s|) such
that B(s, t) = yes?”

I View B(·, ·) as an algorithm on n + p(n) bits.

I Convert B to a polynomial-sized circuit K with n + p(n) sources.

1. First n sources are hard-coded with the bits of s.
2. The remaining p(n) sources labelled with variables representing the bits of t.

I s ∈ X iff there is an assignment of the input bits of K that makes K
satisfiable.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Example of Transformation to Circuit Satisfiability

I Does a graph G on n nodes have a two-node independent set?

I s encodes the graph G with
(
n
2

)
bits.

I t encodes the independent set with n bits.

I Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Example of Transformation to Circuit Satisfiability

I Does a graph G on n nodes have a two-node independent set?

I s encodes the graph G with
(
n
2

)
bits.

I t encodes the independent set with n bits.

I Certifier needs to check if

1. at least two bits in t are set to 1 and
2. no two bits in t are set to 1 if they form the ends of an edge (the

corresponding bit in s is set to 1).

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Example of Transformation to Circuit Satisfiability

I Suppose G contains three nodes u, v , and w with v connected to u and w .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Example of Transformation to Circuit Satisfiability

I Suppose G contains three nodes u, v , and w with v connected to u and w .

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Asymmetry of Certification

I Definition of efficient certification and NP is fundamentally asymmetric:
I An input string s is a “yes” instance iff there exists a short string t such that

B(s, t) = yes.
I An input string s is a “no” instance iff for all short strings t, B(s, t) = no.

The definition of NP does not guarantee a short proof for “no” instances.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Asymmetry of Certification

I Definition of efficient certification and NP is fundamentally asymmetric:
I An input string s is a “yes” instance iff there exists a short string t such that

B(s, t) = yes.
I An input string s is a “no” instance iff for all short strings t, B(s, t) = no.

The definition of NP does not guarantee a short proof for “no” instances.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P,

then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP?

Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

co-NP
I For a decision problem X , its complementary problem X is the set of strings

s such that s ∈ X iff s 6∈ X .

I If X ∈ P, then X ∈ P.

I If X ∈ NP, then is X ∈ NP? Unclear in general.

I A problem X belongs to the class co-NP iff X belongs to NP.

NPc

co-NP NP NP-hard

I Open problem: Is NP = co-NP?

I Claim: If NP 6= co-NP then P 6= NP.

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Good Characterisations: the Class NP ∩ co-NP
I If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.

I Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Good Characterisations: the Class NP ∩ co-NP
I If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.

I Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Good Characterisations: the Class NP ∩ co-NP
I If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.

I Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Good Characterisations: the Class NP ∩ co-NP
I If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.

I Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

Introduction Reductions NP NP-Complete NP vs. co-NP

Good Characterisations: the Class NP ∩ co-NP
I If a problem belongs to both NP and co-NP, then

I When the answer is yes, there is a short proof.
I When the answer is no, there is a short proof.

I Problems in NP ∩ co-NP have a good characterisation.

I Example is the problem of determining if a flow network contains a flow of
value at least ν, for some given value of ν.

I Yes: construct a flow of value at least ν.
I No: demonstrate a cut with capacity less than ν.

P NPc

co-NP NP NP-hard

I Claim: P ⊆ NP ∩ co-NP.

I Open problem: Is P = NP ∩ co-NP?

T. M. Murali April 18, 23, 2013 NP and Computational Intractability

	Introduction
	Reductions
	NP
	NP-Complete
	NP vs. co-NP

