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Minimum Bottleneck Spanning Trees Clustering

Minimum Spanning Trees

I We motivated MSTs through the problem of finding a low-cost network
connecting a set of nodes.

I MSTs are useful in a number of seemingly disparate applications.

I We will consider two problems: minimum bottleneck graphs (problem 9 in
Chapter 4) and clustering (Chapter 4.7).
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Minimum Bottleneck Spanning Tree (MBST)

I The MST minimises the total cost of a spanning network.

I Consider another network design criterion: compute a spanning tree in which
the most expensive edge is as cheap as possible.

I In an undirected graph G (V ,E ), let (V ,T ) be a spanning tree. The
bottleneck edge in T is the edge with largest cost in T .

Minimum Bottleneck Spanning Tree (MBST)

INSTANCE: An undirected graph G (V ,E ) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T ) is a spanning tree
and there is no spanning tree in G with a cheaper bottleneck edge.
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Two Questions on MBSTs

1. Assume edge costs are distinct.

2. Is every MBST tree an MST?

No. It is easy to create a counterexample.

3. Is every MST an MBST?

Yes. Use the cycle property.
I Let T be the MST and let T ′ be a spanning tree with a cheaper bottleneck

edge. Let e be the bottleneck edge in T .
I Every edge in T ′ is cheaper than e.
I Adding e to T ′ creates a cycle consisting only of edges in T ′ and e.
I Since e is the costliest edge in this cycle, by the cycle property, e cannot

belong to any MST, which contradicts the fact that T is an MST.
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Motivation for Clustering

I Given a set of objects and distances between them.

I Objects can be images, web pages, people, species . . . .

I Distance function: increasing distance corresponds to decreasing similarity.

I Goal: group objects into clusters, where each cluster is a set of similar
objects.
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Example of Clustering
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Formalising the Clustering Problem

I Let U be the set of n objects labelled p1, p2, . . . , pn.
I For every pair pi and pj , we have a distance d(pi , pj).
I We require d(pi , pi ) = 0, d(pi , pj) > 0, if i 6= j , and d(pi , pj) = d(pj , pi )

I Given a positive integer k, a k-clustering of U is a partition of U into k
non-empty subsets or “clusters” C1,C2, . . .Ck .

I The spacing of a clustering is the smallest distance between objects in two
different subsets:

spacing(C1,C2, . . .Ck) = min
1≤i,j≤k

i 6=j,
p∈Ci ,q∈Cj

d(p, q)

Clustering of Maximum Spacing

INSTANCE: A set U of objects, a distance function d : U × U → R+,
and a positive integer k

SOLUTION: A k-clustering of U whose spacing is the largest over all
possible k-clusterings.
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Example of Clustering
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Algorithm for Clustering of Maximum Spacing

I Intuition: greedily cluster objects in increasing order of distance.

I Let C be a set of n clusters, with each object in U in its own cluster.
I Process pairs of objects in increasing order of distance.

I Let (p, q) be the next pair with p ∈ Cp and q ∈ Cq.
I If Cp 6= Cq, add new cluster Cp ∪ Cq to C, delete Cp and Cq from C.

I Stop when there are k clusters in C.

I Same as Kruskal’s algorithm but do not add last k − 1 edges in MST.
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Minimum Bottleneck Spanning Trees Clustering

What is the spacing of the Algorithm’s Clustering?

I Let C be the clustering produced by the algorithm.
I What is spacing(C)?

It is the cost of the (k − 1)st most expensive edge in
the MST. Let this cost be d∗.
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Why does the Algorithm Work?

I Let C′ be any other clustering.

I We will prove that spacing(C′) ≤ d∗.
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spacing(C ′) ≤ d∗: Intuition
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spacing(C ′) ≤ d∗

I There must be two objects pi and pj in U in the same cluster Cr in C but in
different clusters in C′:

spacing(C′) ≤ d(pi , pj). But d(pi , pj) could be > d∗.
I Suppose pi ∈ C ′s and pj ∈ C ′t in C′.
I All edges in the path Q connecting pi and pj in the MST have length ≤ d∗.
I In particular, there is an object p ∈ C ′s and an object p′ 6∈ C ′s such that p and

p′ are adjacent in Q.
I d(p, p′) ≤ d∗ ⇒ spacing(C′) ≤ d(p, p′) ≤ d∗.
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