Some NP-Complete Problems

SATISFIABILITY(SAT)

INSTANCE: A Boolean expression E over variables $x_{1}, x_{2}, \ldots, x_{n}$ in conjunctive normal form.
QUESTION: Is there an assignment of truth values to $x_{1}, x_{2}, \ldots, x_{n}$ making E true?

3-SAT

INSTANCE: A Boolean expression E in conjunctive normal form such that each clause contains exactly 3 literals.
QUESTION: Is there a satisfying assignment for E ?

3-COLORABILITY

INSTANCE: Graph $G=(V, E)$.
QUESTION: Is G 3-colorable, that is, is there a function $f: V \rightarrow\{$ red, blue, green $\}$ such that $f(u) \neq f(v)$ whenever $(u, v) \in E$?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set $M \subset W \times X \times Y$ where W, X, and Y are disjoint sets having the same number q of elements
QUESTION: Does M contain a matching, i.e., a subset $M^{\prime} \subset M$ such that $\left|M^{\prime}\right|=q$ and no two elements of M^{\prime} agree in any coordinate?

EXACT COVER BY 3-SETS (X3C)

INSTANCE: Finite set X with $|X|=3 q, q$ an integer; collection C of 3-element subset of X
QUESTION: Does C contain an exact cover for X, i.e., a subcollection $C^{\prime} \subset C$ such that every element of X occurs in exactly one member of C^{\prime} ?

PARTITION

INSTANCE: A finite set A, and a "size" $s(a) \geq 0$ defined for each $a \in A$.
QUESTION: Is there a subset $A^{\prime} \subset A$ such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A-A^{\prime}} s(a) ?
$$

KNAPSACK

INSTANCE: Items $1, \ldots, N$ with $\operatorname{size}(i) \geq 0$ and $\operatorname{value}(i) \geq 0$ defined for each item i; integers $M, K \geq 0$.
QUESTION: Is there a subset $S \subset\{1, \ldots, N\}$ such that

$$
\sum_{i \in S} \operatorname{size}(i) \leq M
$$

and

$$
\sum_{i \in S} \operatorname{value}(i) \geq K ?
$$

CLIQUE

INSTANCE: Undirected graph $G=(V, E)$, positive integer $K \leq|V|$.
QUESTION: Does G have a clique of size K or more, i.e., a subset $V^{\prime} \subset V$ with $\left|V^{\prime}\right| \geq K$ such that every two vertices of V^{\prime} are adjacent?

INDEPENDENT SET

INSTANCE: Undirected graph $G=(V, E)$; positive integer $K \leq|V|$.
QUESTION: Does G contain an independent set of size K or more, i.e., a subset $V^{\prime} \subset V$ such that $\left|V^{\prime}\right| \geq K$ and such that no two vertices of V^{\prime} are adjacent?

VERTEX COVER (VC)

INSTANCE: Undirected graph $G=(V, E)$; positive integer $K \leq|V|$.
QUESTION: Is there a vertex cover of size K or less for G, i.e., a subset $V^{\prime} \subset V$ such that $\left|V^{\prime}\right| \leq K$ and such that for each $(u, v) \in E$, either $u \in V^{\prime}$ or $v \in V^{\prime}$?

DOMINATING SET

INSTANCE: Undirected graph $G=(V, E)$; positive integer $K \leq|V|$.
QUESTION: Does G contain a dominating set of size K or less, i.e., a subset $V^{\prime} \subset V$ with $\left|V^{\prime}\right| \leq K$ such that for all $u \in V-V^{\prime}$ there is a $v \in V^{\prime}$ for which $(u, v) \in E$?

HAMILTONIAN CIRCUIT (HC)
INSTANCE: Undirected graph $G=(V, E)$.
QUESTION: Does G contain a Hamiltonian circuit, i.e., a simple cycle of length $|V|$?

