
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 37



Parallel Algorithms

Running time : T (n, p) where n is the problem size, p is
number of processors.
Speedup : S(p) = T (n, 1)/T (n, p).

◮ A comparison of the time for a (good) sequential
algorithm vs. the parallel algorithm in question.

Problem: Best sequential algorithm may not be the
same as the best algorithm for p processors, which may
not be the best for ∞ processors.
Efficiency: E(n, p) = S(p)/p = T (n, 1)/(pT (n, p)).
Ratio of the time taken for 1 processor vs. the total time
required for p processors.

◮ Measure of how much the p processors are used (not
wasted).

◮ Optimal efficiency = 1 = speedup by factor of p.
CS 5114: Theory of Algorithms Spring 2010 2 / 37



Parallel Algorithm Design

Approach (1): Pick p and write best algorithm.

Would need a new algorithm for every p!

Approach (2): Pick best algorithm for p = ∞, then convert to
run on p processors.

Hopefully, if T (n, p) = X , then T (n, p/k) ≈ kX for k > 1.

Using one processor to emulate k processors is called the
parallelism folding principle .

CS 5114: Theory of Algorithms Spring 2010 3 / 37



Parallel Algorithm Design (2)

Some algorithms are only good for a large number of
processors.

T (n, 1) = n

T (n, n) = log n

S(n) = n/ log n

E(n, n) = 1/ log n

For p = 256, n = 1024.
T (1024, 256) = 4 log 1024 = 40.
For p = 16, running time = 1024/16 ∗ log 1024 = 640.
Speedup < 2, efficiency = 1024/(16 ∗ 640) = 1/10.

CS 5114: Theory of Algorithms Spring 2010 4 / 37



Amdahl’s Law
Think of an algorithm as having a parallelizable section and
a serial section.

Example: 100 operations.
80 can be done in parallel, 20 must be done in
sequence.

Then, the best speedup possible leaves the 20 in sequence,
or a speedup of 100/20 = 5.

Amdahl’s law:

Speedup = (S + P)/(S + P/N)

= 1/(S + P/N) ≤ 1/S,

for S = serial fraction, P = parallel fraction, S + P = 1.
CS 5114: Theory of Algorithms Spring 2010 5 / 37



Amdahl’s Law Revisited
However, this version of Amdahl’s law applies to a fixed
problem size.

What happens as the problem size grows?
Hopefully, S = f (n) with S shrinking as n grows.

Instead of fixing problem size, fix execution time for
increasing number N processors (and thus, increasing
problem size).

Scaled Speedup = (S + P × N)/(S + P)

= S + P × N

= S + (1 − S) × N

= N + (1 − N) × S.

CS 5114: Theory of Algorithms Spring 2010 6 / 37



Models of Parallel Computation

Single Instruction Multiple Data (SIMD)

All processors operate the same instruction in step.

Example: Vector processor.

Pipelined Processing:

Stream of data items, each pushed through the same
sequence of several steps.

Multiple Instruction Multiple Data (MIMD)

Processors are independent.

CS 5114: Theory of Algorithms Spring 2010 7 / 37



MIMD Communications (1)

Interconnection network:

Each processor is connected to a limited number of
neighbors.
Can be modeled as (undirected) graph.
Examples: Array, mesh, N-cube.
It is possible for the cost of communications to dominate
the algorithm (and in fact to limit parallelism).
Diameter : Maximum over all pairwise distances
between processors.
Tradeoff between diameter and number of connections.

CS 5114: Theory of Algorithms Spring 2010 8 / 37



MIMD Communications (2)

Shared memory:

Random access to global memory such that any
processor can access any variable with unit cost.
In practice, this limits number of processors.
Exclusive Read/Exclusive Write (EREW).
Concurrent Read/Exclusive Write (CREW).
Concurrent Read/Concurrent Write (CRCW).

CS 5114: Theory of Algorithms Spring 2010 9 / 37



Addition

Problem: Find the sum of two n-bit binary numbers.

Sequential Algorithm:

Start at the low end, add two bits.

If necessary, carry bit is brought forward.

Can’t do i th step until i − 1 is complete due to
uncertainty of carry bit (?).

Induction: (Going from n − 1 to n implies a sequential
algorithm)

CS 5114: Theory of Algorithms Spring 2010 10 / 37



Parallel Addition

Divide and conquer to the rescue:

Do the sum for top and bottom halves.

What about the carry bit?

Strengthen induction hypothesis:

Find the sum of the two numbers with or without the
carry bit.

After solving for n/2, we have L, Lc, R, and Rc.

Can combine pieces in constant time.

CS 5114: Theory of Algorithms Spring 2010 11 / 37



Parallel Addition (2)

The n/2-size problems are independent.
Given enough processors,

T (n, n) = T (n/2, n/2) + O(1) = O(log n).

We need only the EREW memory model.

CS 5114: Theory of Algorithms Spring 2010 12 / 37



Maximum-finding Algorithm: EREW

“Tournament” algorithm:
Compare pairs of numbers, the “winner” advances to
the next level.
Initially, have n/2 pairs, so need n/2 processors.
Running time is O(log n).

That is faster than the sequential algorithm, but what about
efficiency?

E(n, n/2) ≈ 1/ log n.

Why is the efficiency so low?
CS 5114: Theory of Algorithms Spring 2010 13 / 37



More Efficient EREW Algorithm

Divide the input into n/ log n groups each with log n items.

Assign a group to each of n/ log n processors.

Each processor finds the maximum (sequentially) in log n
steps.

Now we have n/ log n “winners”.

Finish tournament algorithm.
T (n, n/ log n) = O(log n).
E(n, n/ log n) = O(1).

CS 5114: Theory of Algorithms Spring 2010 14 / 37



More Efficient EREW Algorithm (2)

But what could we do with more processors?
A parallel algorithm is static if the assignment of processors
to actions is predefined.

We know in advance, for each step i of the algorithm
and for each processor pj , the operation and operands
pj uses at step i .

This maximum-finding algorithm is static.

All comparisons are pre-arranged.

CS 5114: Theory of Algorithms Spring 2010 15 / 37



Brent’s Lemma
Lemma 12.1 : If there exists an EREW static algorithm with
T (n, p) ∈ O(t), such that the total number of steps (over all
processors) is s, then there exists an EREW static algorithm
with T (n, s/t) ∈ O(t).

Proof:
Let ai , 1 ≤ i ≤ t , be the total number of steps performed
by all processors in step i of the algorithm.∑t

i=1 ai = s.
If ai ≤ s/t , then there are enough processors to perform
this step without change.
Otherwise, replace step i with ⌈ai/(s/t)⌉ steps, where
the s/t processors emulate the steps taken by the
original p processors.

CS 5114: Theory of Algorithms Spring 2010 16 / 37



Brent’s Lemma (2)

The total number of steps is now
t∑

i=1

⌈ai/(s/t)⌉ ≤

t∑

i=1

(ai t/s + 1)

= t + (t/s)
t∑

i=1

ai = 2t .

Thus, the running time is still O(t).

Intuition: You have to split the s work steps across the t time
steps somehow; things can’t always be bad!

CS 5114: Theory of Algorithms Spring 2010 17 / 37



Maximum-finding: CRCW

Allow concurrent writes to a variable only when each
processor writes the same thing.
Associate each element xi with a variable vi , initially “1”.
For each of n(n − 1)/2 processors, processor pij

compares elements i and j .
First step: Each processor writes “0” to the v variable of
the smaller element.

◮ Now, only one v is “1”.
Second step: Look at all vi , 1 ≤ i ≤ n.

◮ The processor assigned to the max element writes that
value to MAX.

Efficiency of this algorithm is very poor!
“Divide and crush.”

CS 5114: Theory of Algorithms Spring 2010 18 / 37



Maximum-finding: CRCW (2)

More efficient (but slower) algorithm:

Given: n processors.
Find maximum for each of n/2 pairs in constant time.
Find max for n/8 groups of 4 elements (using 8
proc/group) each in constant time.
Square the group size each time.
Total time: O(log log n).

CS 5114: Theory of Algorithms Spring 2010 19 / 37



Parallel Prefix

Let · be any associative binary operation.
◮ Ex: Addition, multiplication, minimum.

Problem: Compute x1 · x2 · . . . · xk for all k , 1 ≤ k ≤ n.
Define PR(i, j) = xi · xi+1 · . . . · xj.
We want to compute PR(1, k) for 1 ≤ k ≤ n.
Sequential alg: Compute each prefix in order

◮ O(n) time required (using previous prefix)

Approach: Divide and Conquer
◮ IH: We know how to solve for n/2 elements.

1 PR(1, k) and PR(n/2 + 1, n/2 + k) for 1 ≤ k ≤ n/2.
2 PR(1, m) for n/2 < m ≤ n comes from

PR(1, n/2) · PR(n/2 + 1, m) – from IH.

CS 5114: Theory of Algorithms Spring 2010 20 / 37



Parallel Prefix (2)

Complexity : (2) requires n/2 processors and CREW for
parallelism (all read middle position).

T (n, n) = O(log n); E(n, n) = O(1/ log n).
Brent’s lemma no help: O(n log n) total steps.

CS 5114: Theory of Algorithms Spring 2010 21 / 37



Better Parallel Prefix

E is the set of all xis with i even.
If we know PR(1, 2i) for 1 ≤ i ≤ n/2 then
PR(1, 2i + 1) = PR(1, 2i) · x2i+1.
Algorithm:

◮ Compute in parallel x2i = x2i−1 · x2i for 1 ≤ i ≤ n/2.
◮ Solve for E (by induction).
◮ Compute in parallel x2i+1 = x2i · x2i+1.

Complexity:
T (n, n) = O(log n). S(n) = S(n/2) + n − 1, so

S(n) = O(n).
for S(n) the total number of steps required to process n
elements.
So, by Brent’s Lemma, we can use O(n/ log n)
processors for O(1) efficiency.

CS 5114: Theory of Algorithms Spring 2010 22 / 37



Routing on a Hypercube

Goal: Each processor Pi simultaneously sends a message
to processor P

σ(i) such that no processor is the destination
for more than one message.

Problem:

In an n-cube, each processor is connected to n other
processors.

At the same time, each processor can send (or receive)
only one message per time step on a given connection.

So, two messages cannot use the same edge at the
same time – one must wait.

CS 5114: Theory of Algorithms Spring 2010 23 / 37



Randomizing Switching Algorithm

It can be shown that any deterministic algorithm is Ω(2na
) for

some a > 0, where 2n is the number of messages.

A node i (and its corresponding message) has binary
representation i1i2 · · · in.

Randomization approach:

(a) Route each message from i to j to a random processor
r (by a randomly selected route).

(b) Continue the message from r to j by the shortest route.

CS 5114: Theory of Algorithms Spring 2010 24 / 37



Randomized Switching (2)

Phase (a):
for (each message at i)
cobegin
for (k = 1 to n)

T[i, k] = RANDOM(0, 1);
for (k = 1 to n)

if (T[i, k] = 1)
Transmit i along dimension k;

coend;

CS 5114: Theory of Algorithms Spring 2010 25 / 37



Randomized Switching (3)

Phase (b):
for (each message i)
cobegin
for (k = 1 to n)

T[i, k] =
Current[i, k] EXCLUSIVE_OR Dest[i, k];

for (k = 1 to n)
if (T[i, k] = 1)
Transmit i along dimension k;

coend;

CS 5114: Theory of Algorithms Spring 2010 26 / 37



Randomized Switching (4)

With high probability, each phase completes in O(log n)
time.

It is possible to get a really bad random routing, but this
is unlikely.

In contrast, it is very possible for any correlated group of
messages to generate a bottleneck.

CS 5114: Theory of Algorithms Spring 2010 27 / 37



Sorting on an array

Given: n processors labeled P1, P2, · · · , Pn with processor Pi

initially holding input xi .

Pi is connected to Pi−1 and Pi+1 (except for P1 and Pn).
Comparisons/exchanges possible only for adjacent
elements.

Algorithm ArraySort(X, n) {
do in parallel ceil(n/2) times {

Exchange-compare(P[2i-1], P[2i]); // Odd
Exchange-compare(P[2i], P[2i+1]); // Even

}
}

A simple algorithm, but will it work?
CS 5114: Theory of Algorithms Spring 2010 28 / 37



Parallel Array Sort

7 3 6 5 8 1 4 2

4

3 5

423 7 5 6 1 8

3 5 7 1 6 2 8 4

3 5 1 7 2 6 8

3 1 5 2 7 4 6 8

1 2 4 7 6 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

CS 5114: Theory of Algorithms Spring 2010 29 / 37



Correctness of Odd-Even Transpose

Theorem 12.2: When Algorithm ArraySort terminates, the
numbers are sorted.

Proof: By induction on n.

Base Case: 1 or 2 elements are sorted with one
comparison/exchange.

Induction Step:
Consider the maximum element, say xm.
Assume m odd (if even, it just won’t exchange on first
step).
This element will move one step to the right each step
until it reaches the rightmost position.

CS 5114: Theory of Algorithms Spring 2010 30 / 37



Correctness (2)

The position of xm follows a diagonal in the array of
element positions at each step.

Remove this diagonal, moving comparisons in the upper
triangle one step closer.

The first row is the nth step; the right column holds the
greatest value; the rest is an n − 1 element sort (by
induction).

CS 5114: Theory of Algorithms Spring 2010 31 / 37



Sorting Networks

When designing parallel algorithms, need to make the steps
independent.

Ex: Mergesort split step can be done in parallel, but the join
step is nearly serial.

To parallelize mergesort, we must parallelize the merge.

CS 5114: Theory of Algorithms Spring 2010 32 / 37



Batcher’s Algorithm

For n a power of 2, assume a1, a2, · · · , an and b1, b2, · · · , bn

are sorted sequences.

Let x1, x2, · · · , xn be the final merged order.

Need to merge disjoint parts of these sequences in parallel.

Split a, b into odd- and even- index elements.

Merge aodd with bodd , aeven with beven, yielding
o1, o2, · · · , on and e1, e2, · · · , en respectively.

CS 5114: Theory of Algorithms Spring 2010 33 / 37



Batcher’s Sort Image
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

n/2
sort

sort
n/2

network
merge
n/2

network
merge
n/2

CS 5114: Theory of Algorithms Spring 2010 34 / 37



Batcher’s Algorithm Correctness

Theorem 12.3 : For all i such that 1 ≤ i ≤ n − 1, we have
x2i = min(oi+1, ei) and x2i+1 = max(oi+1, ei).

Proof :
Since ei is the i th element in the sorted even sequence,
it is ≥ at least i even elements.
For each even element, ei is also ≥ an odd element.
So, ei ≥ 2i elements, or ei ≥ x2i .
In the same way, oi+1 ≥ i + 1 odd elements, ≥ at least
2i elements all together.
So, oi+1 ≥ x2i .
By the pigeonhole principle, ei and oi+1 must be x2i and
x2i+1 (in either order).

CS 5114: Theory of Algorithms Spring 2010 35 / 37



Batcher Sort Complexity

Total number of comparisons for merge:

TM(2n) = 2TM(n) + n − 1; TM(1) = 1.

Total number of comparisons is O(n log n), but the depth
of recursion (parallel steps) is O(log n).
Total number of comparisons for the sort is:

TS(2n) = 2TS(n) + O(n log n), TS(2) = 1.

So, TS(n) = O(n log2 n).
The circuit requires n processors in each column, with
depth O(log2 n), for a total of O(n log2 n) processors and
O(log2 n) time.
The processors only need to do comparisons with two
inputs and two outputs.

CS 5114: Theory of Algorithms Spring 2010 36 / 37



Matrix-Vector Multiplication

Problem : Find the product x = Ab of an m by n matrix A
with a column vector b of size n.

Systolic solution:

Use n processor elements arranged in an array, with
processor Pi initially containing element bi .

Each processor takes a partial computation from its left
neighbor and a new element of A from above,
generating a partial computation for its right neighbor.

CS 5114: Theory of Algorithms Spring 2010 37 / 37


