
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 28



Algebraic and Numeric Algorithms

Measuring cost of arithmetic and numerical operations:
◮ Measure size of input in terms of bits.

Algebraic operations:
◮ Measure size of input in terms of numbers.

In both cases, measure complexity in terms of basic
arithmetic operations: +,−, ∗, /.

◮ Sometimes, measure complexity in terms of bit
operations to account for large numbers.

Size of numbers may be related to problem size:
◮ Pointers, counters to objects.
◮ Resolution in geometry/graphics (to distinguish between

object positions).

CS 5114: Theory of Algorithms Spring 2010 2 / 28



Exponentiation

Given positive integers n and k , compute nk .

Algorithm:

p = 1;
for (i=1 to k)
p = p * n;

Analysis:

Input size: Θ(log n + log k).

Time complexity: Θ(k) multiplications.

This is exponential in input size.

CS 5114: Theory of Algorithms Spring 2010 3 / 28



Faster Exponentiation

Write k as:

k = bt2t + bt−12t−1 + · · · + b12 + b0, b ∈ {0, 1}.
Rewrite as:

k = ((· · · (bt2 + bt−1)2 + · · · + b2)2 + b1)2 + b0.

New algorithm:

p = n;
for (i = t-1 downto 0)
p = p * p * exp(n, b[i])

Analysis:
Time complexity: Θ(t) = Θ(log k) multiplications.
This is exponentially better than before.

CS 5114: Theory of Algorithms Spring 2010 4 / 28



Greatest Common Divisor

The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly.
Observation: If k divides n and m, then k divides n − m.
So,

f (n, m) = f (n − m, n) = f (m, n − m) = f (m, n).

Observation: There exists k and l such that

n = km + l where m > l ≥ 0.

n = ⌊n/m⌋m + n mod m.

So,
f (n, m) = f (m, l) = f (m, n mod m).

CS 5114: Theory of Algorithms Spring 2010 5 / 28



GCD Algorithm

f (n, m) =

{

n m = 0
f (m, n mod m) m > 0

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

CS 5114: Theory of Algorithms Spring 2010 6 / 28



Analysis of GCD

How big is n mod m relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2⌊n/m⌋ > n/m

⇒ m⌊n/m⌋ > n/2

⇒ n − n/2 > n − m⌊n/m⌋ = n mod m

⇒ n/2 > n mod m

The first argument must be halved in no more than 2
iterations.
Total cost:

CS 5114: Theory of Algorithms Spring 2010 7 / 28



Multiplying Polynomials (1)

P =
n−1
∑

i=0

pix i Q =
n−1
∑

i=0

qix i .

Our normal algorithm for computing PQ requires Θ(n2)
multiplications and additions.

CS 5114: Theory of Algorithms Spring 2010 8 / 28



Multiplying Polynomials (2)

Divide and Conquer:

P1 =

n/2−1
∑

i=0

pix i P2 =

n−1
∑

i=n/2

pix i−n/2

Q1 =

n/2−1
∑

i=0

qix i Q2 =

n−1
∑

i=n/2

qix i−n/2

PQ = (P1 + xn/2P2)(Q1 + xn/2Q2)

= P1Q1 + xn/2(Q1P2 + P1Q2) + xnP2Q2.

Recurrence:

T (n) = 4T (n/2) + O(n).

T (n) = Θ(n2).

CS 5114: Theory of Algorithms Spring 2010 9 / 28



Multiplying Polynomials (3)

Observation:

(P1 + P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q2

(Q1P2 + P1Q2) = (P1 + P2)(Q1 + Q2) − P1Q1 − P2Q2

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:

T (n) = 3T (n/2) + O(n)

= aT (n/b) + cn1.

logb a = log23 ≈ 1.59.
T (n) = Θ(n1.59).

CS 5114: Theory of Algorithms Spring 2010 10 / 28



Matrix Multiplication

Given: n × n matrices A and B.

Compute: C = A × B.

cij =
n

∑

k=1

aikbkj .

Straightforward algorithm:

Θ(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Ω(n2).
CS 5114: Theory of Algorithms Spring 2010 11 / 28



Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2 × 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 × 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Requires 8 multiplications and 4 additions.
CS 5114: Theory of Algorithms Spring 2010 12 / 28



Another Approach (1)

Compute:

m1 = (a12 − a22)(b21 + b22)

m2 = (a11 + a22)(b11 + b22)

m3 = (a11 − a21)(b11 + b12)

m4 = (a11 + a12)b22

m5 = a11(b12 − b22)

m6 = a22(b21 − b11)

m7 = (a21 + a22)b11

CS 5114: Theory of Algorithms Spring 2010 13 / 28



Another Approach (2)

Then:

c11 = m1 + m2 − m4 + m6

c12 = m4 + m5

c21 = m6 + m7

c22 = m2 − m3 + m5 − m7

7 multiplications and 18 additions/subtractions.

CS 5114: Theory of Algorithms Spring 2010 14 / 28



Strassen’s Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2.

Express C = A × B in terms of n
2 × n

2 matrices.
[

c11 c12

c21 c22

]

=

[

a11 a12

a21 a22

] [

b11 b12

b21 b22

]

CS 5114: Theory of Algorithms Spring 2010 15 / 28



Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 × n/2
matrices.

Recurrence:

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).

Current “fastest” algorithm is Θ(n2.376)
Open question: Can matrix multiplication be done in O(n2)
time?

CS 5114: Theory of Algorithms Spring 2010 16 / 28



Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
log nm = log n + log m.

Therefore,
nm = antilog(log n + log m).

What if taking logs and antilogs were easy?
CS 5114: Theory of Algorithms Spring 2010 17 / 28



Introduction to the Sliderule (2)

The sliderule does exactly this!

It is essentially two rulers in log scale.

Slide the scales to add the lengths of the two numbers
(in log form).

The third scale shows the value for the total length.

CS 5114: Theory of Algorithms Spring 2010 18 / 28



Representing Polynomials

A vector a of n values can uniquely represent a polynomial
of degree n − 1

Pa(x) =
n−1
∑

i=0

aix i .

Alternatively, a degree n − 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

Finding the value for a polynomial at a given point is
called evaluation.

Finding the coefficients for the polynomial given the
values at n points is called interpolation.

CS 5114: Theory of Algorithms Spring 2010 19 / 28



Multiplication of Polynomials

To multiply two n − 1-degree polynomials A and B normally
takes Θ(n2) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:

Evaluate polynomials A and B at enough points.

Pairwise multiplications of resulting values.

Interpolation of resulting values.

CS 5114: Theory of Algorithms Spring 2010 20 / 28



Multiplication of Polynomials (2)

This can be faster than Θ(n2) IF a fast way can be found to
do evaluation/interpolation of 2n − 1 points (normally this
takes Θ(n2) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

CS 5114: Theory of Algorithms Spring 2010 21 / 28



An Example

Polynomial A: x2 + 1.
Polynomial B: 2x2 − x + 1.
Polynomial AB: 2x4 − x3 + 3x2 − x + 1.

Notice:

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

CS 5114: Theory of Algorithms Spring 2010 22 / 28



Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number ω is a primitive nth root of unity if
1 ωn = 1 and
2 ωk 6= 1 for 0 < k < n.

ω0, ω1, ..., ωn−1 are the nth roots of unity.

Example:
For n = 4, ω = i or ω = −i .

CS 5114: Theory of Algorithms Spring 2010 23 / 28



Nth Root of Unity (cont)

−i

1

i

−i

1

i

−1 −1

n = 4, ω = i .
n = 8, ω =

√
i .

CS 5114: Theory of Algorithms Spring 2010 24 / 28



Discrete Fourier Transform
Define an n × n matrix V (ω) with row i and column j as

V (ω) = (ωij).

Example: n = 4, ω = i :

V (ω) =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









Let a = [a0, a1, ..., an−1]
T be a vector.

The Discrete Fourier Transform (DFT) of a is:

Fω = V (ω)a = v .

This is equivalent to evaluating the polynomial at the nth
roots of unity.

CS 5114: Theory of Algorithms Spring 2010 25 / 28



Array example

For n = 8, ω =
√

i , V (ω) =

1 1 1 1 1 1 1 1
1

√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1
1 −

√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i
1 −i

√
i −i −

√
i −1 i

√
i i

√
i

CS 5114: Theory of Algorithms Spring 2010 26 / 28



Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

F−1
ω

= a = [V (ω)]−1 · v .

[V (ω)]−1 =
1
n

V (
1
ω

).

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in Θ(n lg n) time.

CS 5114: Theory of Algorithms Spring 2010 27 / 28



Fast Polynomial Multiplication

Polynomial multiplication of A and B:

Represent an n − 1-degree polynomial as 2n − 1
coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

Perform DFT on representations for A and B.

Pairwise multiply results to get 2n − 1 values.

Perform inverse DFT on result to get 2n − 1 degree
polynomial AB.

CS 5114: Theory of Algorithms Spring 2010 28 / 28



FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V);
Output: V[0..n-1] of output elements.
begin

if n=1 then V[0] = a0;
else

FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT(n/2, a1, a3, ... an-1, omega^2, W);
for j=0 to n/2-1 do

V[j] = U[j] + omega^j W[j];
V[j+n/2] = U[j] - omega^j W[j];

end

CS 5114: Theory of Algorithms Spring 2010 29 / 28


