CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright (© 2010 by Clifford A. Shaffer

[m] = =
CS 5114: Theory of Algorithms

Spring 2010

1/28

Algebraic and Numeric Algorithms

@ Measuring cost of arithmetic and numerical operations:
» Measure size of input in terms of bits.

@ Algebraic operations:
» Measure size of input in terms of numbers.

@ In both cases, measure complexity in terms of basic
arithmetic operations: +, —, %, /.
» Sometimes, measure complexity in terms of bit
operations to account for large numbers.
@ Size of numbers may be related to problem size:

» Pointers, counters to objects.
» Resolution in geometry/graphics (to distinguish between
object positions).

CS 5114: Theory of Algorithms Spring 2010 2/28

Exponentiation

Given positive integers n and k, compute nk.

Algorithm:

p =1

for (i=1to k)
p=p*n

Analysis:

@ Input size: ©(logn + logk).
@ Time complexity: ©(k) multiplications.
@ This is exponential in input size.

CS 5114: Theory of Algorithms Spring 2010 3/28

Faster Exponentiation

Write k as:
k=b2"'+b_12""* + -+ b2+ bg,b € {0, 1}.
Rewrite as:
K=((-(b2+b_1)2+ -+ bz)2+ b;y)2 + by.
New algorithm:
p=n
for (i =t-1 downto 0)
p=p=*p*exp(n b[i])
Analysis:
@ Time complexity: ©(t) = ©(log k) multiplications.
@ This is exponentially better than before.
Spring 2010 4/28

Greatest Common Divisor

@ The Greatest Common Divisor (GCD) of two integers is
the greatest integer that divides both evenly.
@ Observation: If k divides n and m, then k divides n — m.
@ So,
f(n,m)=f(n—m,n) =f(m,n—m) =1f(m,n).

@ Observation: There exists k and | such that

= km + | wherem > 1> 0.
= |[n/mjm+n mod m.

@ So,
f(n,m)=f(m,l) =f(m,n mod m).

CS 5114: Theory of Algorithms Spring 2010 5/28

GCD Algorithm

int LCF(int n, int m {
if (m==20) return n;
return LCF(m n % m;
}

[m] = =
CS 5114: Theory of Algorithms

Spring 2010

6/28

Analysis of GCD

@ How big is n mod m relative to n?

n/m>1

2|n/m| >n/m

m{n/m| >n/2
n—n/2>n-m{n/m| =nmodm
n/2 >nmod m

e

4

@ The first argument must be halved in no more than 2
iterations.

@ Total cost:
Spring 2010

7128

Multiplying Polynomials (1)

n—-1 n-1
P=>Y px' Q=) gx.
i=0 i=0

@ Our normal algorithm for computing PQ requires ©(n?)
multiplications and additions.

CS 5114: Theory of Algorithms Spring 2010 8/28

Multiplying Polynomials (2)

@ Divide and Conquer:

n/2—1 n—1

Pi=) px P=) pix'"/?
i=0 i=n/2
n/2—1 n—1

Q= Y ax Q=) qx"?
i=0 i=n/2
PQ = (P1+x"?P;)(Q1+x"2Qy)

= P1Q; 4+ x"2(Q1P, + P1Qy) + x"P,Q;.
@ Recurrence:

T(n) = 4T(n/2)+ O(n).

T(n) = ©(n?).

CS 5114: Theory of Algorithms Spring 2010

9/28

Multiplying Polynomials (3)

Observation:
(P1+P2)(Q1 + Q2) = P1Q1 + (Q1P2 + P1Q2) + P2Q>
(Q1P2 +P1Q2) = (P1 +P2)(Q1 + Q2) — P1Q1 — P2Q>

Therefore, PQ can be calculated with only 3 recursive calls
to a polynomial multiplication procedure.

Recurrence:
T(n) = 3T(n/2)+ O(n)
aT (n/b) + cn'.
log, a = l0g,3 ~ 1.59.
T(n) = ©(n%9),
Spring 2010 10/28

Matrix Multiplication
Given: n x n matrices A and B.

Compute: C = A x B.

Cij = Z aikbkj.
k=1
Straightforward algorithm:

@ O(n3) multiplications and additions.

Lower bound for any matrix multiplication algorithm: Q(n?).
Spring 2010 11/28

Strassen’s Algorithm

(1) Trade more additions/subtractions for fewer
multiplications in 2 x 2 case.

(2) Divide and conquer.

In the straightforward implementation, 2 x 2 case is:

C11 = 11011 + a10b2s
Ci2 = a11b1p + apby
Co1 = A21b11 + @b
Co2 = 21012 + a22b2

Requires 8 multiplications and 4 additions,
Spring 2010 12/28

Another Approach (1)

Compute:
my = (a2 — ax)(ba + b2y)
m; = (a1 + az)(bi + b22)
Mz = (@11 — ax)(b1 + b12)
my, = (a1 + aiz)b2
ms = api(bix — b22)
Mg = az(bo —bi1)
m; = (ax + ax)by

[m] [=

CS 5114: Theory of Algorithms Spring 2010 13/28

Another Approach (2)

Then:

C11
C12
Co1

C22

M1 + My — My + Mg
My + Ms
Me + M7
m; — M3 + Ms — My

7 multiplications and 18 additions/subtractions.

[m] [= =

CS 5114: Theory of Algorithms Spring 2010 14/28

Strassen’s Algorithm (cont)

Divide and conquer step:
Assume n is a power of 2.

Express C = A x B in terms of § x § matrices.

Ci1 Ci2 _ djp a2 b1 b1
C21 C22 dp1 A2 bo1 b2

CS 5114: Theory of Algorithms Spring 2010

15/28

Strassen’s Algorithm (cont)

By Strassen’s algorithm, this can be computed with 7
multiplications and 18 additions/subtractions of n/2 x n/2
matrices.

Recurrence:

T(n) = 7T(n/2)+ 18(n/2)?
T(n) _ @(n'°927):6(n2'81).

Current “fastest” algorithm is ©(n2376)
Open question: Can matrix multiplication be done in O(n?)
time?

CS 5114: Theory of Algorithms Spring 2010 16/28

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two
lengths.

Observation:
lognm = logn + logm.

Therefore,
nm = antilog(logn + logm).

What if taking logs and antilogs were easy?
Spring 2010 17/28

Introduction to the Sliderule (2)

The sliderule does exactly this!
@ It is essentially two rulers in log scale.
@ Slide the scales to add the lengths of the two numbers
(in log form).
@ The third scale shows the value for the total length.

CS 5114: Theory of Algorithms Spring 2010 18/28

Representing Polynomials

A vector a of n values can uniquely represent a polynomial

of degreen — 1
n—-1
Pa(x) =) ax"
i=0

Alternatively, a degree n — 1 polynomial can be uniquely
represented by a list of its values at n distinct points.

@ Finding the value for a polynomial at a given point is
called evaluation.

@ Finding the coefficients for the polynomial given the
values at n points is called interpolation.

CS 5114: Theory of Algorithms Spring 2010 19/28

Multiplication of Polynomials

To multiply two n — 1-degree polynomials A and B normally
takes ©(n?) coefficient multiplications.

However, if we evaluate both polynomials, we can simply
multiply the corresponding pairs of values to get the values
of polynomial AB.

Process:
@ Evaluate polynomials A and B at enough points.
@ Pairwise multiplications of resulting values.
@ Interpolation of resulting values.

CS 5114: Theory of Algorithms Spring 2010 20/28

Multiplication of Polynomials (2)

This can be faster than ©(n?) IF a fast way can be found to
do evaluation/interpolation of 2n — 1 points (normally this
takes ©(n?) time).

Note that evaluating a polynomial at 0 is easy, and that if we
evaluate at 1 and -1, we can share a lot of the work between
the two evaluations.

Can we find enough such points to make the process
cheap?

CS 5114: Theory of Algorithms Spring 2010 21/28

An Example

Polynomial A: x2 + 1.
Polynomial B: 2x? — x + 1.
Polynomial AB: 2x* — x2 4 3x2 — x + 1.

Notice:

AB(-1) = (8
AB(0) = (1)(1)=1
AB(1) = (4

But: We need 5 points to nail down Polynomial AB. And, we
also need to interpolate the 5 values to get the coefficients
back.

Spring 2010 22/28

Nth Root of Unity

The key to fast polynomial multiplication is finding the right
points to use for evaluation/interpolation to make the process
efficient.

Complex number w is a primitive nth root of unity if
O ."=1and
Q@ N A£1for0<k <n.

W2, wt, ..., w1 are the nth roots of unity.

Example:
@ Forn=4,w=iorw=—i.
Spring 2010 23/28

Nth Root of Unity (cont)

NAR.NY.
NI

Vi,

(SEIES
I

S5 S
Il
o b~

CS 5114: Theory of Algorithms

o

=

Spring 2010 24128

Discrete Fourier Transform

Define an n x n matrix V (w) with row i and column j as

V(w) = ().
Example: n =4, w =1i:
1 1 1 1
1 i -1 —i
VW=11 -1 1 21
1 —-i -1 [

Leta = [ap, a1, ...,an_1]" be a vector.
The Discrete Fourier Transform (DFT) of a is:
F,=V(w)a=V.

This is equivalent to evaluating the polynomial at the nth
roots of unity.

CS 5114: Theory of Algorithms Spring 2010 25/28

Array example

Vi, V(w) =

Forn =8, w

1 1
—i —iﬁ

1
Vi

1
ivi —1

1
I

-1
—ivi -1
i

1
—I
1

[

1

-i =i -1

1 —ivi

26/28

Spring 2010

CS 5114: Theory of Algorithms

Inverse Fourier Transform

The inverse Fourier Transform to recover a from v is:

Fol=a=[V()]* V.

w

V@)= V()

This is equivalent to interpolating the polynomial at the nth
roots of unity.

An efficient divide and conquer algorithm can perform both
the DFT and its inverse in ©(nlgn) time.

CS 5114: Theory of Algorithms Spring 2010 27128

Fast Polynomial Multiplication

Polynomial multiplication of A and B:
@ Represent an n — 1-degree polynomial as 2n — 1
coefficients:
[@0,a1, ...,an-1,0, ..., 0]
@ Perform DFT on representations for A and B.
@ Pairwise multiply results to get 2n — 1 values.

@ Perform inverse DFT on result to get 2n — 1 degree
polynomial AB.

CS 5114: Theory of Algorithms Spring 2010

28/28

FFT Algorithm

FFT(n, a0, al, ..., an-1, onega, var V);
Qutput: V[O0..n-1] of output el enents.
begi n
If n=1 then V[0] = a0;
el se
FFT(n/2, a0, a2, ... an-2, onega™2, U);
FFT(n/2, al, a3, ... an-1, onega™2, W;

for j=0 to n/2-1 do
Vi1 = Ujl + omegarj Wjl;
VIj+n/2] = Uj] - onmega®j Wj]J;
end

CS 5114: Theory of Algorithms Spring 2010 29/28

