CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright (C) 2010 by Clifford A. Shaffer

Algebraic and Numeric Algorithms

- Measuring cost of arithmetic and numerical operations:
- Measure size of input in terms of bits.
- Algebraic operations:
- Measure size of input in terms of numbers.
- In both cases, measure complexity in terms of basic arithmetic operations: $+,-, *, /$.
- Sometimes, measure complexity in terms of bit operations to account for large numbers.
- Size of numbers may be related to problem size:
- Pointers, counters to objects.
- Resolution in geometry/graphics (to distinguish between object positions).

Exponentiation

Given positive integers n and k, compute n^{k}.

Algorithm:
$\mathrm{P}=1$;
for (i=1 to k)
$P=P \star n ;$
Analysis:

- Input size: $\Theta(\log n+\log k)$.
- Time complexity: $\Theta(k)$ multiplications.
- This is exponential in input size.

Faster Exponentiation

Write k as:

$$
k=b_{t} 2^{t}+b_{t-1} 2^{t-1}+\cdots+b_{1} 2+b_{0}, b \in\{0,1\}
$$

Rewrite as:

$$
k=\left(\left(\cdots\left(b_{t} 2+b_{t-1}\right) 2+\cdots+b_{2}\right) 2+b_{1}\right) 2+b_{0}
$$

New algorithm:
$\mathrm{p}=\mathrm{n}$;
for (i $=t-1$ downto 0)
$p=p$ * p * $\exp (n, b[i])$

Analysis:

- Time complexity: $\Theta(t)=\Theta$ (log $k)$ multiplications.
- This is exponentially better than before.

Greatest Common Divisor

- The Greatest Common Divisor (GCD) of two integers is the greatest integer that divides both evenly.
- Observation: If k divides n and m, then k divides $n-m$.
- So,

$$
f(n, m)=f(n-m, n)=f(m, n-m)=f(m, n) .
$$

- Observation: There exists k and / such that

$$
\begin{aligned}
& n=k m+I \text { where } m>I \geq 0 . \\
& n=\lfloor n / m\rfloor m+n \bmod m .
\end{aligned}
$$

- So,

$$
f(n, m)=f(m, l)=f(m, n \quad \bmod m) .
$$

GCD Algorithm

$$
f(n, m)= \begin{cases}n & m=0 \\ f(m, n \bmod m) & m>0\end{cases}
$$

```
int LCF(int n, int m) {
    if (m == O) return n;
    return LCF (m, n % m);
}
```


Analysis of GCD

- How big is $n \bmod m$ relative to n ?

$$
\begin{aligned}
n \geq m & \Rightarrow n / m \geq 1 \\
& \Rightarrow 2\lfloor n / m\rfloor>n / m \\
& \Rightarrow m\lfloor n / m\rfloor>n / 2 \\
& \Rightarrow n-n / 2>n-m\lfloor n / m\rfloor=n \bmod m \\
& \Rightarrow n / 2>n \bmod m
\end{aligned}
$$

- The first argument must be halved in no more than 2 iterations.
- Total cost:

Multiplying Polynomials (1)

$$
P=\sum_{i=0}^{n-1} p_{i} x^{i} \quad Q=\sum_{i=0}^{n-1} q_{i} x^{i}
$$

- Our normal algorithm for computing $P Q$ requires $\Theta\left(n^{2}\right)$ multiplications and additions.

Multiplying Polynomials (2)

- Divide and Conquer:

$$
\begin{aligned}
P_{1} & =\sum_{i=0}^{n / 2-1} p_{i} x^{i} \quad P_{2}=\sum_{i=n / 2}^{n-1} p_{i} x^{i-n / 2} \\
Q_{1} & =\sum_{i=0}^{n / 2-1} q_{i} x^{i} \quad Q_{2}=\sum_{i=n / 2}^{n-1} q_{i} x^{i-n / 2} \\
P Q & =\left(P_{1}+x^{n / 2} P_{2}\right)\left(Q_{1}+x^{n / 2} Q_{2}\right) \\
& =P_{1} Q_{1}+x^{n / 2}\left(Q_{1} P_{2}+P_{1} Q_{2}\right)+x^{n} P_{2} Q_{2}
\end{aligned}
$$

- Recurrence:

$$
\begin{aligned}
& T(n)=4 T(n / 2)+O(n) . \\
& T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Multiplying Polynomials (3)

Observation:

$$
\begin{aligned}
& \left(P_{1}+P_{2}\right)\left(Q_{1}+Q_{2}\right)=P_{1} Q_{1}+\left(Q_{1} P_{2}+P_{1} Q_{2}\right)+P_{2} Q_{2} \\
& \left(Q_{1} P_{2}+P_{1} Q_{2}\right)=\left(P_{1}+P_{2}\right)\left(Q_{1}+Q_{2}\right)-P_{1} Q_{1}-P_{2} Q_{2}
\end{aligned}
$$

Therefore, PQ can be calculated with only 3 recursive calls to a polynomial multiplication procedure.

Recurrence:

$$
\begin{aligned}
T(n) & =3 T(n / 2)+O(n) \\
& =a T(n / b)+c n^{1} .
\end{aligned}
$$

$\log _{b} a=\log _{2} 3 \approx 1.59$.
$T(n)=\Theta\left(n^{1.59}\right)$.

Matrix Multiplication

Given: $n \times n$ matrices A and B.

Compute: $C=A \times B$.

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Straightforward algorithm:

- $\Theta\left(n^{3}\right)$ multiplications and additions.

Lower bound for any matrix multiplication algorithm: $\Omega\left(n^{2}\right)$)

Strassen's Algorithm

(1) Trade more additions/subtractions for fewer multiplications in 2×2 case.
(2) Divide and conquer.

In the straightforward implementation, 2×2 case is:

$$
\begin{aligned}
& c_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

Requires 8 multiplications and 4 additions.

Another Approach (1)

Compute:

$$
\begin{aligned}
& m_{1}=\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right) \\
& m_{2}=\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
& m_{3}=\left(a_{11}-a_{21}\right)\left(b_{11}+b_{12}\right) \\
& m_{4}=\left(a_{11}+a_{12}\right) b_{22} \\
& m_{5}=a_{11}\left(b_{12}-b_{22}\right) \\
& m_{6}=a_{22}\left(b_{21}-b_{11}\right) \\
& m_{7}=\left(a_{21}+a_{22}\right) b_{11}
\end{aligned}
$$

Another Approach (2)

Then:

$$
\begin{aligned}
& c_{11}=m_{1}+m_{2}-m_{4}+m_{6} \\
& c_{12}=m_{4}+m_{5} \\
& c_{21}=m_{6}+m_{7} \\
& c_{22}=m_{2}-m_{3}+m_{5}-m_{7}
\end{aligned}
$$

7 multiplications and 18 additions/subtractions.

Strassen's Algorithm (cont)

Divide and conquer step:

Assume n is a power of 2 .
Express $C=A \times B$ in terms of $\frac{n}{2} \times \frac{n}{2}$ matrices.

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Strassen's Algorithm (cont)

By Strassen's algorithm, this can be computed with 7 multiplications and 18 additions/subtractions of $n / 2 \times n / 2$ matrices.

Recurrence:

$$
\begin{aligned}
& T(n)=7 T(n / 2)+18(n / 2)^{2} \\
& T(n)=\Theta\left(n^{\log _{2} 7}\right)=\Theta\left(n^{2.81}\right) .
\end{aligned}
$$

Current "fastest" algorithm is $\Theta\left(n^{2.376}\right)$
Open question: Can matrix multiplication be done in $O\left(n^{2}\right)$ time?

Introduction to the Sliderule

Compared to addition, multiplication is hard.

In the physical world, addition is merely concatenating two lengths.

Observation:

$$
\log n m=\log n+\log m .
$$

Therefore,

$$
n m=\operatorname{antilog}(\log n+\log m) .
$$

What if taking logs and antilogs were easy?

Introduction to the Sliderule (2)

The sliderule does exactly this!

- It is essentially two rulers in log scale.
- Slide the scales to add the lengths of the two numbers (in log form).
- The third scale shows the value for the total length.

Representing Polynomials

A vector a of n values can uniquely represent a polynomial of degree $n-1$

$$
P_{\mathbf{a}}(x)=\sum_{i=0}^{n-1} \mathbf{a}_{i} x^{i}
$$

Alternatively, a degree $n-1$ polynomial can be uniquely represented by a list of its values at n distinct points.

- Finding the value for a polynomial at a given point is called evaluation.
- Finding the coefficients for the polynomial given the values at n points is called interpolation.

Multiplication of Polynomials

To multiply two n - 1 -degree polynomials A and B normally takes $\Theta\left(n^{2}\right)$ coefficient multiplications.

However, if we evaluate both polynomials, we can simply multiply the corresponding pairs of values to get the values of polynomial $A B$.

Process:

- Evaluate polynomials A and B at enough points.
- Pairwise multiplications of resulting values.
- Interpolation of resulting values.

Multiplication of Polynomials (2)

This can be faster than $\Theta\left(n^{2}\right)$ IF a fast way can be found to do evaluation/interpolation of $2 n-1$ points (normally this takes $\Theta\left(n^{2}\right)$ time).

Note that evaluating a polynomial at 0 is easy, and that if we evaluate at 1 and -1 , we can share a lot of the work between the two evaluations.

Can we find enough such points to make the process cheap?

An Example

Polynomial A: $x^{2}+1$.
Polynomial B: $2 x^{2}-x+1$.
Polynomial AB: $2 x^{4}-x^{3}+3 x^{2}-x+1$.
Notice:

$$
\begin{aligned}
A B(-1) & =(2)(4)=8 \\
A B(0) & =(1)(1)=1 \\
A B(1) & =(2)(2)=4
\end{aligned}
$$

But: We need 5 points to nail down Polynomial AB. And, we also need to interpolate the 5 values to get the coefficients back.

Nth Root of Unity

The key to fast polynomial multiplication is finding the right points to use for evaluation/interpolation to make the process efficient.

Complex number ω is a primitive nth root of unity if
(1) $\omega^{n}=1$ and
(2) $\omega^{k} \neq 1$ for $0<k<n$.
$\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}$ are the $\boldsymbol{n t h}$ roots of unity.
Example:

- For $n=4, \omega=i$ or $\omega=-i$.

Nth Root of Unity (cont)

$$
\begin{aligned}
& n=4, \omega=i . \\
& n=8, \omega=\sqrt{i} .
\end{aligned}
$$

Discrete Fourier Transform

Define an $n \times n$ matrix $V(\omega)$ with row i and column j as

$$
V(\omega)=\left(\omega^{i j}\right) .
$$

Example: $n=4, \omega=i$:

$$
V(\omega)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Let $\bar{a}=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{T}$ be a vector.
The Discrete Fourier Transform (DFT) of \bar{a} is:

$$
F_{\omega}=V(\omega) \bar{a}=\bar{V} .
$$

This is equivalent to evaluating the polynomial at the nth roots of unity.

Array example

For $n=8, \omega=\sqrt{i}, V(\omega)=$

1	1	1	1	1	1	1	1
1	\sqrt{i}	i	$i \sqrt{i}$	-1	$-\sqrt{i}$	$-i$	$-i \sqrt{i}$
1	i	-1	$-i$	1	i	-1	$-i$
1	$i \sqrt{i}$	$-i$	\sqrt{i}	-1	$-i \sqrt{i}$	i	$-\sqrt{i}$
1	-1	1	-1	1	-1	1	-1
1	$-\sqrt{i}$	i	$-i \sqrt{i}$	-1	\sqrt{i}	$-i$	$i \sqrt{i}$
1	$-i$	-1	i	1	$-i$	-1	i
1	$-i \sqrt{i}$	$-i$	$-\sqrt{i}$	-1	$i \sqrt{i}$	i	\sqrt{i}

Inverse Fourier Transform

The inverse Fourier Transform to recover \bar{a} from \bar{v} is:

$$
\begin{gathered}
F_{\omega}^{-1}=\bar{a}=[V(\omega)]^{-1} \cdot \bar{V} . \\
{[V(\omega)]^{-1}=\frac{1}{n} V\left(\frac{1}{\omega}\right) .}
\end{gathered}
$$

This is equivalent to interpolating the polynomial at the nth roots of unity.

An efficient divide and conquer algorithm can perform both the DFT and its inverse in $\Theta(n \lg n)$ time.

Fast Polynomial Multiplication

Polynomial multiplication of A and B :

- Represent an n - 1 -degree polynomial as $2 n$ - 1 coefficients:

$$
\left[a_{0}, a_{1}, \ldots, a_{n-1}, 0, \ldots, 0\right]
$$

- Perform DFT on representations for A and B.
- Pairwise multiply results to get $2 n-1$ values.
- Perform inverse DFT on result to get $2 n-1$ degree polynomial $A B$.

FFT Algorithm

FFT(n, a0, a1, ..., an-1, omega, var V); Output: $V[0 . . n-1]$ of output elements. begin

$$
\begin{aligned}
& \text { if } n=1 \text { then } V[0]=a 0 \text {; } \\
& \text { else }
\end{aligned}
$$

FFT(n/2, a0, a2, ... an-2, omega^2, U);
FFT (n/2, a1, a3, ... an-1, omega^2, W);
for $j=0$ to $n / 2-1$ do
$V[j]=U[j]+o m e g a^{\wedge} j W[j] ;$
$V[j+n / 2]=U[j]$ - omega^j W[j];
end

