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Tractable Problems

We would like some convention for distinguishing tractable
from intractable problems.
A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

It is said to be intractable if the best known algorithm
requires exponential time.

Examples:
Sorting: O(n2)

Convex Hull: O(n2)

Single source shortest path: O(n2)

All pairs shortest path: O(n3)

Matrix multiplication: O(n3)
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Tractable Problems

Log-polynomial is O(n log n)

Like any simple rule of thumb for catagorizing, in some cases
the distinction between polynomial and exponential could break
down. For example, one can argue that, for practical problems,
1.01n is preferable to n25. But the reality is that very few
polynomial-time algorithms have high degree, and
exponential-time algorithms nearly always have a constant of 2
or greater. Nearly all algorithms are either low-degree
polynomials or “real” exponentials, with very little in between.

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

1 A special kind of reduction.
2 Nondeterminism.
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Tractable Problems (cont)

no notes

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”

Usually formulated as a question.

Example :

Instance: A weighted graph G = (V , E), two vertices s
and t , and an integer K .

Question: Is there a path from s to t of length ≤ K ? In
this example, the answer is “yes.”
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Decision Problems

Need a graph here.



Decision Problems (cont)

Can also be formulated as a language recognition problem:

Let L be the subset of I consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.
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Decision Problems (cont)

Following our graph example: It is possible to translate from a
graph to a string representation, and to define a subset of such
strings as corresponding to graphs with a path from s to t . This
subset defines a language to “recognize.”

Polynomial Reducibility

Reduction of one language to another language.

Let L1 ⊂ I1 and L2 ⊂ I2 be languages. L1 is
polynomially reducible to L2 if there exists a transformation
f : I1 → I2, computable in polynomial time, such that
f (x) ∈ L2 if and only if x ∈ L1.
We write: L1 ≤p L2 or L1 ≤ L2.
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Polynomial Reducibility

Or one decision problem to another.

Specialized case of reduction from Chapter 10.

Examples

CLIQUE ≤p INDEPENDENT SET.

An instance I of CLIQUE is a graph G = (V , E) and an
integer K .

The instance I ′ = f (I) of INDEPENDENT SET is the
graph G′ = (V , E ′) and the integer K , were an edge
(u, v) ∈ E ′ iff (u, v) /∈ E .

f is computable in polynomial time.
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Examples

no notes

Transformation Example

G has a clique of size ≥ K iff G′ has an independent set
of size ≥ K .

Therefore, CLIQUE ≤p INDEPENDENT SET.

IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.
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Transformation Example

Need a graph here.

If nodes in G′ are independent, then no connections. Thus, in
G they all connect.



Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(ch1, ch2, ..., chj)

returns one of the choices ch1, ch2, ... arbitrarily .

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.
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Nondeterminism

no notes

Nondeterministic CLIQUE Algorithm

procedure nd-CLIQUE(Graph G, int K) {
VertexSet S = EMPTY; int size = 0;
for (v in G.V)

if (nd-choice(YES, NO) == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then

REJECT; // S is too small
for (u in S)

for (v in S)
if ((u <> v) && ((u, v) not in E))

REJECT; // S is missing an edge
ACCEPT;

}
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Nondeterministic CLIQUE Algorithm

What makes this different than random guessing is that all
choices happen “in parallel.”

Nondeterministic Acceptance

(G, K ) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.
Definition of acceptance by a nondeterministic
algorithm:

◮ An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

An unrealistic model of computation.
◮ There are an exponential number of possible choices,

but only one must accept for the instance to be accepted.
Nondeterminism is a useful concept

◮ It provides insight into the nature of certain hard
problems.
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Nondeterministic Acceptance

no notes

Class NP

The class of languages accepted by a nondeterministic
algorithm in polynomial time is called NP.

There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.

Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.
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Class NP

Note that Towers of Hanoi is not in NP.



Class NP(cont)

Alternative Interpretation :

NP is the class of algorithms that, never mind how we
got the answer, can check if the answer is correct in
polynomial time.

If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!
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Class NP(cont)

This is worded a bit loosely. Specifically, we assume that we
can get the answer fast enough – that is, in polynomial time
non-deterministically.

How to Get Famous

Clearly, P ⊂ NP.

Extra Credit Problem :

Prove or disprove: P = NP.

This is important because there are many natural decision
problems in NP for which no P (tractable) algorithm is
known.
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How to Get Famous

no notes

NP-completeness

A theory based on identifying problems that are as hard as
any problems in NP.

The next best thing to knowing whether P= NP or not.

A decision problem A is NP-hard if every problem in NP is
polynomially reducible to A, that is, for all

B ∈ NP , B ≤p A.

A decision problem A is NP-complete if A ∈ NP and A is
NP-hard.
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NP-completeness

A is not permitted to be harder than NP. For example, Tower of
Hanoi is not in NP. It requires exponential time to verify a set
of moves.

Satisfiability

Let E be a Boolean expression over variables x1, x2, · · · , xn

in conjunctive normal form (CNF), that is, an AND of ORs.

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6).

A variable or its negation is called a literal .
Each sum is called a clause .

SATISFIABILITY (SAT):

Instance: A Boolean expression E over variables
x1, x2, · · · , xn in CNF.
Question: Is E satisfiable?

Cook’s Theorem : SAT is NP-complete.
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Satisfiability

Is there a truth assignment for the variables that makes E
true?Cook won a Turing award for this work.



Proof Sketch

SAT ∈ NP:
A non-deterministic algorithm guesses a truth
assignment for x1, x2, · · · , xn and checks whether E is
true in polynomial time.
It accepts iff there is a satisfying assignment for E .

SAT is NP-hard:
Start with an arbitrary problem B ∈ NP.
We know there is a polynomial-time, nondeterministic
algorithm to accept B.
Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X .
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Proof Sketch

The proof of this last step is usually several pages long. One
approach is to develop a nondeterministic Turing Machine
program to solve an arbitrary problem B in NP.

Implications

(1) Since SAT is NP-complete, we have not defined an
empty concept.

(2) If SAT ∈ P, then P= NP.

(3) If P= NP, then SAT ∈ P.

(4) If A ∈ NP and B is NP-complete, then B ≤p A implies A
is NP-complete.
Proof:

Let C ∈ NP.
Then C ≤p B since B is NP-complete.
Since B ≤p A and ≤p is transitive, C ≤p A.
Therefore, A is NP-hard and, finally, NP-complete.
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Implications

no notes

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is NP-complete.

(a) Show A ∈ NP.

(b) Pick an NP-complete problem B and show B ≤p A.
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Implications (cont)

Proving A ∈ NP is usually easy.

Don’t get the reduction backwards!

NP-completeness Proof Paradigm

To show that decision problem B is NP-complete:
1 B ∈ NP

◮ Give a polynomial time, non-deterministic algorithm that
accepts B.

1 Given an instance X of B, guess evidence Y .
2 Check whether Y is evidence that X ∈ B. If so, accept

X .
2 B is NP-hard.

◮ Choose a known NP-complete problem, A.
◮ Describe a polynomial-time transformation T of an

arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

◮ Show that X ∈ A if and only if T (X ) ∈ B.
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NP-completeness Proof Paradigm

B ∈ NP is usually the easy part.

The first two steps of the NP-hard proof are usually the
hardest.



3-SATISFIABILITY (3SAT)

Instance : A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question : Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.
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3-SATISFIABILITY (3SAT)

What about 2SAT? This is in P.

Effectively a 2-coloring graph problem. Join 2 vertices if they
are in same clause, also join xi and xi . Then, try to 2-color the
graph with a DFS.

How to solve 1SAT? Answer is “yes” iff xi and xi are not both in
list for any i .

3SAT is NP-complete

(1) 3SAT ∈ NP.

procedure nd-3SAT(E) {
for (i = 1 to n)

x[i] = nd-choice(TRUE, FALSE);
Evaluate E for the guessed truth assignment.
if (E evaluates to TRUE)

ACCEPT;
else

REJECT;
}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.
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3SAT is NP-complete

no notes

Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
◮ We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · · + yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.
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Proving 3SAT NP-hard

1 Choose SAT to be the known NP-complete problem.
◮ We need to show that SAT ≤p 3SAT.

2 Let E = C1 · C2 · · ·Ck be any instance of SAT.

Strategy: Replace any clause Ci that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

Let Ci = y1 + y2 + · · · + yj where y1, · · · , yj are literals.
(a) j = 1

Replace (y1) with

(y1 + v + w) · (y1 + v + w) · (y1 + v + w) · (y1 + v + w)

where v and w are new variables.

20
10

-0
4-

12

CS 5114

Proving 3SAT NP-hard

SAT is the only choice that we have so far!

Replacing (y1) with (y1 + y1 + y1) seems like a reasonable
alternative. But some of the theory behind the definitions
rejects clauses with duplicated literals.

Proving 3SAT NP-hard (cont)

(b) j = 2
Replace (y1 + y2) with (y1 + y2 + z) · (y1 + y2 + z) where
z is a new variable.

(c) j > 3
Relace (y1 + y2 + · · · + yj) with

(y1 + y2 + z1) · (y3 + z1 + z2) · (y4 + z2 + z3) · · ·

(yj−2 + zj−4 + zj−3) · (yj−1 + yj + zj−3)

where z1, z2, · · · , zj−3 are new variables.

After replacements made for each Ci , a Boolean
expression E ′ results that is an instance of 3SAT.
The replacement clearly can be done by a
polynomial-time deterministic algorithm.
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Proving 3SAT NP-hard (cont)

no notes



Proving 3SAT NP-hard (cont)

(3) Show E is satisfiable iff E ′ is satisfiable.

Assume E has a satisfying truth assignment.

Then that extends to a satisfying truth assignment for
cases (a) and (b).

In case (c), assume ym is assigned “true”.

Then assign zt , t ≤ m − 2, true and zk , t ≥ m − 1, false.

Then all the clauses in case (c) are satisfied.
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Proving 3SAT NP-hard (cont)

no notes

Proving 3SAT NP-hard (cont)

Assume E ′ has a satisfying assignment.
By restriction, we have truth assignment for E .
(a) y1 is necessarily true.
(b) y1 + y2 is necessarily true.
(c) Proof by contradiction:

⋆ If y1, y2, · · · , yj are all false, then z1, z2, · · · , zj−3 are all
true.

⋆ But then (yj−1 + yj−2 + zj−3) is false, a contradiction.

We conclude SAT ≤ 3SAT and 3SAT is NP-complete.
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Proving 3SAT NP-hard (cont)

no notes

Tree of Reductions

SAT

IND_SET

CLIQUE

3COLOR

3SAT

3DM

VERTEX
COVER

X3C PARITION

KNAPSACK
HAM_CIR DOMINATING

SET

will do done

Manber GJ

GJGJ

will doManber

Manber

done

GJ

Reductions go down the tree.

Proofs that each problem ∈ NP are straightforward.
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Tree of Reductions

Refer to handout of NP-complete problems

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.
The complexity of all these problems depends on the
complexity of any one:

If any NP-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is NP-complete.

Observation: If we find a problem is NP-complete, then we
should do something other than try to find a P-time
algorithm.
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Perspective

Hundreds of problems, from many fields, have been shown to
be NP-complete.

More on this observation later.



SAT ≤p CLIQUE

(1) Easy to show CLIQUE in NP.
(2) An instance of SAT is a Boolean expression

B = C1 · C2 · · ·Cm,

where
Ci = y [i , 1] + y [i , 2] + · · · + y [i , ki ].

Transform this to an instance of CLIQUE G = (V , E) and K .

V = {v [i , j ]|1 ≤ i ≤ m, 1 ≤ j ≤ ki}

Two vertices v [i1, j1] and v [i2, j2] are adjacent in G if i1 6= i2
AND EITHER y [i1, j1] and y [i2, j2] are the same literal
OR y [i1, j1] and y [i2, j2] have different underlying variables.
K = m.
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SAT ≤p CLIQUE

One vertex for each literal in B.

No join if one is the negation of the other

SAT ≤p CLIQUE (cont)

Example: B = (x1 + x2) · (x1 + x2 + x3).
K = 2.

(3) B is satisfiable iff G has clique of size ≥ K .
B is satisfiable implies there is a truth assignment such
that y [i , ji ] is true for each i .
But then v [i , ji ] must be in a clique of size K = m.
If G has a clique of size ≥ K , then the clique must have
size exactly K and there is one vertex v [i , ji ] in the clique
for each i .
There is a truth assignment making each y [i , ji ] true.
That truth assignment satisfies B.

We conclude that CLIQUE is NP-hard, therefore
NP-complete.
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SAT ≤p CLIQUE (cont)

Need figure here. Another example is shown in Manber Figure
11.3.

It must connect to the other m − 1 literals that are also true.

No clique can have more than one member from the same
clause, since there are no links between members of a clause.

Co-NP

Note the asymmetry in the definition of NP.
◮ The non-determinism can identify a clique, and you can

verify it.
◮ But what if the correct answer is “NO”? How do you

verify that?

Co-NP: The complements of problems in NP.
◮ Is a boolean expression always false?
◮ Is there no clique of size k?

It seems unlikely that NP= co-NP.
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Co-NP

no notes

Is NP-complete = NP?

It has been proved that if P6= NP, then NP-complete 6=
NP.
The following problems are not known to be in P or NP,
but seem to be of a type that makes them unlikely to be
in NP.

◮ GRAPH ISOMORPHISM: Are two graphs isomorphic?
◮ COMPOSITE NUMBERS: For positive integer K , are

there integers m, n > 1 such that K = mn?
◮ LINEAR PROGRAMMING
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Is NP-complete = NP?

no notes



PARTITION ≤p KNAPSACK

PARTITION is a special case of KNAPSACK in which

K =
1
2

∑

a∈A

s(a)

assuming
∑

s(a) is even.

Assuming PARTITION is NP-complete, KNAPSACK is
NP-complete.
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PARTITION ≤p KNAPSACK

The assumption about PARITION is true, though we do not
prove it.

The “transformation” is simply to pass the input of PARTITION
to KNAPSACK.

“Practical” Exponential Problems

What about our O(KN) dynamic prog algorithm?
Input size for KNAPSACK is O(N log K )

◮ Thus O(KN) is exponential in N log K .

The dynamic programming algorithm counts through
numbers 1, · · · , K . Takes exponential time when
measured by number of bits to represent K .
If K is “small” (K = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.
An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.
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“Practical” Exponential Problems

This is an important point, about the input size. It has to do with
the “size” of a number (a value). We represent the value n with
log n bits, or more precisely, log N bits where N is the maximum
value. In the case of KNAPSACK, K (the knapsack size) is
effectively the maximum number. We will use this observation
frequently when we analyze numeric algorithms.

“Practical” Problems (cont)

Lesson: While KNAPSACK is NP-complete, it is often
not that hard.

Many NP-complete problems have no pseudo-
polynomial time algorithm unless P= NP.
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“Practical” Problems (cont)

The issue is what size input is practical. The problems we want
to solve for Traveling Salesman are not practical.

Coping with NP-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.

(3) Randomized Algorithms.

(4) Backtracking; Branch and Bound.

(5) Heuristics.
Greedy.
Simulated Annealing.
Genetic Algorithms.

CS 5114: Theory of Algorithms Spring 2010 36 / 109

Coping with NP-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.

(3) Randomized Algorithms.

(4) Backtracking; Branch and Bound.

(5) Heuristics.
Greedy.
Simulated Annealing.
Genetic Algorithms.

20
10

-0
4-

12

CS 5114

Coping with NP-completeness

The subproblems need to be “significant” special cases.

Approximation works for optimization problems (and there are a
LOT of those).

Randomized Algorithms typically work well for problems with a
lot of solutions.

(4) gives ways to (relatively efficiently) implement nd-choice.



Subproblems

Restrict attention to special classes of inputs.
Examples:

VERTEX COVER, INDEPENDENT SET, and CLIQUE,
when restricted to bipartite graphs, all have
polynomial-time algorithms (for VERTEX COVER, by
reduction to NETWORK FLOW).
2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and
EXACT COVER BY 2-SETS all have polynomial time
algorithms.
PARTITION and KNAPSACK have polynomial time
algorithms if the numbers in an instance are all O(p(n)).
However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain NP-complete even for a
planar graph.
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Subproblems

Assuming the subclass covers the inputs you are interested in!

Backtracking

We may view a nondeterministic algorithm executing on a
particular instance as a tree:

1 Each edge represents a particular nondeterministic
choice.

2 The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a
clique of size ≥ K can be done in polynomial time.
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Backtracking

Example for k-CLIQUE

Need a figure here. Manber Figure 11.7 has a similar example.

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

1 A leaf that accepts is found.
2 A partial solution that could not possibly lead to

acceptance is reached.

Example:

There cannot possibly be a set S of cardinality ≥ 2 under
this node, so backtrack.

Since (1, 2) /∈ E , no S under this node can be a clique, so
backtrack.

CS 5114: Theory of Algorithms Spring 2010 39 / 109

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

1 A leaf that accepts is found.
2 A partial solution that could not possibly lead to

acceptance is reached.

Example:

There cannot possibly be a set S of cardinality ≥ 2 under
this node, so backtrack.

Since (1, 2) /∈ E , no S under this node can be a clique, so
backtrack.

20
10

-0
4-

12

CS 5114

Backtracking (cont)

Need Figure here.

Need Figure here.

Branch and Bound

For optimization problems.
More sophisticated kind of backtracking.
Use the best solution found so far as a bound that
controls backtracking.
Example Problem: Given a graph G, find a minimum
vertex cover of G.
Computation tree for nondeterministic algorithm is
similar to CLIQUE.

◮ Every leaf represents a different subset S of the vertices.
Whenever a leaf is reached and it contains a vertex
cover of size B, B is an upper bound on the size of the
minimum vertex cover.

◮ Use B to prune any future tree nodes having size ≥ B.
Whenever a smaller vertex cover is found, update B.
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Branch and Bound

When the corresponding decision problem is NP-complete.



Branch and Bound (cont)

Improvement:
◮ Use a fast, greedy algorithm to get a minimal (not

minimum) vertex cover.
◮ Use this as the initial bound B.

While Branch and Bound is better than a brute-force
exhaustive search, it is usually exponential time, hence
impractical for all but the smallest instances.

◮ ... if we insist on an optimal solution.

Branch and Bound often practical as an approximation
algorithm where the search terminates when a “good
enough” solution is obtained.
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Branch and Bound (cont)

no notes

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V , E), find a vertex
cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in
G and let V ′ be the set of matched vertices.
If OPT is the size of a minimum vertex cover, then

|V ′| ≤ 2OPT

because at least one endpoint of every matched edge must
be in any vertex cover.
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Approximation Algorithms

Vertex cover: A set of vertices such that every edge is incident
on at least one vertex in the set.

Then every edge will be have at least one matched vertex (i.e.,
vertex in the set). Thus the matching qualifies as a vertex cover.

Since a vertex of M cannot cover more than one edge of M.
In fact, we always know how far we are from a perfect cover
(though we don’t always know the size of OPT).

Bin Packing

We have numbers x1, x2, · · · , xn between 0 and 1 as well as
an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so
that the sum of the numbers in any one bin does not exceed
1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].
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Bin Packing

Optimal in that the sum is 3 1/8, and we packed into 4 bins.
There is another optimal solution with the first 3 bins packed,
but this is more than we need to solve the problem.

First Fit Algorithm

Place x1 into the first bin.

For each i , 2 ≤ i ≤ n, place xi in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.
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First Fit Algorithm

Otherwise, the items in the second half-full bin would be put
into the first!



First Fit Does Poorly

Let ǫ be very small, e.g., ǫ = .00001.
Numbers (in this order):

6 of (1/7 + ǫ).
6 of (1/3 + ǫ).
6 of (1/2 + ǫ).

First fit returns:
1 bin of [6 of 1/7 + ǫ]
3 bins of [2 of 1/3 + ǫ]
6 bins of [1/2 + ǫ]

Optimal solution is 6 bins of [1/7 + ǫ, 1/3 + ǫ, 1/2 + ǫ].

First fit is 5/3 larger than optimal.
CS 5114: Theory of Algorithms Spring 2010 45 / 109

First Fit Does Poorly

Let ǫ be very small, e.g., ǫ = .00001.
Numbers (in this order):

6 of (1/7 + ǫ).
6 of (1/3 + ǫ).
6 of (1/2 + ǫ).

First fit returns:
1 bin of [6 of 1/7 + ǫ]
3 bins of [2 of 1/3 + ǫ]
6 bins of [1/2 + ǫ]

Optimal solution is 6 bins of [1/7 + ǫ, 1/3 + ǫ, 1/2 + ǫ].

First fit is 5/3 larger than optimal.

20
10

-0
4-

12

CS 5114

First Fit Does Poorly

no notes

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:

Sort the numbers in decreasing order.

Apply first fit.

This is called decreasing first fit .

The worst case performance of decreasing first fit is close to
11/9 times optimal.
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Decreasing First Fit

no notes

Summary

The theory of NP-completeness gives us a technique
for separating tractable from (probably) intractable
problems.
When faced with a new problem requiring algorithmic
solution, our thought process might resemble this
scheme:

Is it
NP-complete?

⇋
Is it
in P?

Alternately think about each question. Lack of progress
on either question might give insights into the answer to
the other question.
Once an affirmative answer is obtained to one of these
questions, one of two strategies is followed.
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Summary

no notes

Strategies

(1) The problem is in P.

This means there are polynomial-time algorithms for the
problem, and presumably we know at least one.

So, apply the techniques learned in this course to
analyze the algorithms and improve them to find the
lowest time complexity we can.

(2) The problem is NP-complete.

Apply the strategies for coping with NP-completeness.

Especially, find subproblems that are in P, or find
approximation algorithms.
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Strategies

That is the only way we could have proved it is in P.


