CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright (© 2010 by Clifford A. Shaffer

[m] = =
CS 5114: Theory of Algorithms

Spring 2010

1/332

Tractable Problems

We would like some convention for distinguishing tractable
from intractable problems.

A problem is said to be tractable if an algorithm exists to
solve it with polynomial time complexity: O(p(n)).

@ Itis said to be intractable if the best known algorithm
requires exponential time.

Examples:
@ Sorting: O(n?)
@ Convex Hull: O(n?)
@ Single source shortest path: O(n?)
@ All pairs shortest path: O(n®)
@ Matrix multiplication: O(n3)
Spring 2010 2/332

Tractable Problems (cont)

The technique we will use to classify one group of algorithms
is based on two concepts:

© A special kind of reduction.
© Nondeterminism.

CS 5114: Theory of Algorithms Spring 2010 3/332

Decision Problems

(I, S) such that S(X) is always either “yes” or “no.”
@ Usually formulated as a question.
Example :

@ Instance: A weighted graph G = (V, E), two vertices s
and t, and an integer K.

@ Question: Is there a path from s to t of length < K? In
this example, the answer is “yes.”

CS 5114: Theory of Algorithms Spring 2010 4332

Decision Problems (cont)

Can also be formulated as a language recognition problem:

@ Let L be the subset of | consisting of instances whose
answer is “yes.” Can we recognize L?

The class of tractable problems P is the class of languages
or decision problems recognizable in polynomial time.

CS 5114: Theory of Algorithms Spring 2010 5/332

Polynomial Reducibility

Reduction of one language to another language.

LetL; C I, and L, C I, be languages. L, is

polynomially reducible to L, if there exists a transformation
f : 13 — I, computable in polynomial time, such that

f(x) € Ly ifand only if x € L;.

We write: Ly <, L, or L; < L,.

CS 5114: Theory of Algorithms Spring 2010 6/332

Examples

@ CLIQUE <, INDEPENDENT SET.

@ Aninstance | of CLIQUE is a graph G = (V,E) and an
integer K.

@ The instance I’ = f(I) of INDEPENDENT SET is the
graph G’ = (V,E’) and the integer K, were an edge
(u,v) e E'iff (u,v) ¢ E.

@ f is computable in polynomial time.

CS 5114: Theory of Algorithms Spring 2010 71332

Transformation Example

@ G has a clique of size > K iff G’ has an independent set
of size > K.
@ Therefore, CLIQUE <, INDEPENDENT SET.

@ IMPORTANT WARNING: The reduction does not solve
either INDEPENDENT SET or CLIQUE, it merely
transforms one into the other.

CS 5114: Theory of Algorithms Spring 2010 81332

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary
choice among a finite number of possibilities.

Implemented by the “nd-choice” primitive:
nd-choice(chy, chy, ..., ch;)
returns one of the choices chy, ch,, ... arbitrarily .

Nondeterministic algorithms can be thought of as “correctly
guessing” (choosing nondeterministically) a solution.

CS 5114: Theory of Algorithms Spring 2010 9/332

Nondeterministic CLIQUE Algorithm

procedure nd-CLI QUE(Graph G int K) {
VertexSet S = EMPTY; int size = 0;
for (vin GYV)
i f (nd-choice(YES, NO == YES) then {
S = union(S, v);
size = size + 1;

}
if (size < K) then
REJECT; /[l Sis too small
for (uinS)
for (vin S
if ((u<>v) & ((u, v) not in E))
REJECT; // S is nissing an edge
ACCEPT;

CS 5114: Theory of Algorithms Spring 2010

10/332

Nondeterministic Acceptance

® (G,K) is in the “language” CLIQUE iff there exists a
sequence of nd-choice guesses that causes nd-CLIQUE
to accept.

@ Definition of acceptance by a nondeterministic
algorithm:

» An instance is accepted iff there exists a sequence of
nondeterministic choices that causes the algorithm to
accept.

@ An unrealistic model of computation.

» There are an exponential number of possible choices,
but only one must accept for the instance to be accepted.

@ Nondeterminism is a useful concept

» It provides insight into the nature of certain hard
problems.

CS 5114: Theory of Algorithms Spring 2010 11/332

Class NP

@ The class of languages accepted by a nondeterministic
algorithm in polynomial time is called N'P.

@ There are an exponential number of different
executions of nd-CLIQUE on a single instance, but any
one execution requires only polynomial time in the size
of that instance.

@ Time complexity of nondeterministic algorithm is
greatest amount of time required by any one of its
executions.

CS 5114: Theory of Algorithms Spring 2010 12/332

Class N'P(cont)

Alternative Interpretation

@ NP is the class of algorithms that, never mind how we
got the answer, can check if the answer is correct in
polynomial time.

@ If you cannot verify an answer in polynomial time, you
cannot hope to find the right answer in polynomial time!

CS 5114: Theory of Algorithms Spring 2010 13/332

How to Get Famous

Clearly, P c N'P.

Extra Credit Problem :
@ Prove or disprove: P = N'P.

This is important because there are many natural decision
problems in /P for which no P (tractable) algorithm is
known.

CS 5114: Theory of Algorithms Spring 2010 147332

NP-completeness

A theory based on identifying problems that are as hard as
any problems in N'P.

The next best thing to knowing whether P= NP or not.

A decision problem A is N'P-hard if every problem in NP is
polynomially reducible to A, that is, for all

Be NP, B<,A

A decision problem A is N'P-complete if A€ NP and A is
NP-hard.

CS 5114: Theory of Algorithms Spring 2010 15/332

Satisfiability

Let E be a Boolean expression over variables X1, Xz, - -+ , Xp
in conjunctive normal form (CNF), that is, an AND of ORs.

E = (X5 + X7 + Xg + X10) - (X2 + X3) - (X1 + X3 + Xs).

A variable or its negation is called a literal .
Each sum is called a clause .

SATISFIABILITY (SAT):

@ Instance: A Boolean expression E over variables
X1,X2, -+ ,Xn IN CNF.
@ Question: Is E satisfiable?

Cook’s Theorem : SAT is N'P-complete.
Spring 2010 16/332

Proof Sketch

SAT € N'P:
@ A non-deterministic algorithm guesses a truth
assignment for x;, X, - - - , X, and checks whether E is

true in polynomial time.
@ It accepts iff there is a satisfying assignment for E.

SAT is N'P-hard:
@ Start with an arbitrary problem B € N'P.

@ We know there is a polynomial-time, nondeterministic
algorithm to accept B.

@ Cook showed how to transform an instance X of B into
a Boolean expression E that is satisfiable if the
algorithm for B accepts X.

CS 5114: Theory of Algorithms Spring 2010 171332

Implications

(1) Since SAT is N'P-complete, we have not defined an
empty concept.

(2) If SAT € P, then P= NP.
(3) If P= NP, then SAT € P.

(4) If A € NP and B is N'P-complete, then B <, A implies A

is N'P-complete.

Proof:
@ LetC c NP.
@ Then C <, B since B is A'/P-complete.
@ Since B <, A and <, is transitive, C <, A.
@ Therefore, A is N'P-hard and, finally, N"P-complete.

Spring 2010 18/332

Implications (cont)

(5) This gives a simple two-part strategy for showing a
decision problem A is N'P-complete.

(@) Show A € N'P.
(b) Pick an N'P-complete problem B and show B <, A.

CS 5114: Theory of Algorithms Spring 2010 19/332

NP-completeness Proof Paradigm

To show that decision problem B is N'P-complete:
@ BcANP

» Give a polynomial time, non-deterministic algorithm that
accepts B.

@ Given an instance X of B, guess evidence Y.
© Check whether Y is evidence that X € B. If so, accept
X.
@ B is N'P-hard.

» Choose a known N'P-complete problem, A.

» Describe a polynomial-time transformation T of an
arbitrary instance of A to a [not necessarily arbitrary]
instance of B.

» Show that X € Aif and only if T(X) € B.

CS 5114: Theory of Algorithms Spring 2010 20/332

3-SATISFIABILITY (3SAT)

Instance : A Boolean expression E in CNF such that each
clause contains exactly 3 literals.

Question : Is there a satisfying assignment for E?
A special case of SAT.

One might hope that 3SAT is easier than SAT.

CS 5114: Theory of Algorithms Spring 2010 21/332

3SAT is N'P-complete

(1) 3SAT € N'P.

procedure nd-3SAT(E) {
for (i =1 to n)
x[i] = nd-choi ce(TRUE, FALSE);
Eval uate E for the guessed truth assignnent.
if (E evaluates to TRUE)
ACCEPT;
el se
REJECT;

}

nd-3SAT is a polynomial-time nondeterministic algorithm
that accepts 3SAT.

CS 5114: Theory of Algorithms Spring 2010

22/332

Proving 3SAT NP-hard

© Choose SAT to be the known A/P-complete problem.
» We need to show that SAT <, 3SAT.

@ LetE =C;-C,---C, be any instance of SAT.

Strategy: Replace any clause C; that does not have exactly
3 literals with two or more clauses having exactly 3 literals.

LetCi =y1 +Y2+--- +Y; Whereyy,---,y; are literals.
@j=1
@ Replace (y;) with
(Yi+V+W)-(yr+V+W) (yr+V+W):(y1+V+W)

where v and w are new variables.

Proving 3SAT NP-hard (cont)

(b)j =2

@ Replace (y1 +Y2) with (y1 + Y2 + 2) - (Y1 + Y2 + Z) where
Z is a new variable.

©j>3
® Relace (y; +Yy2+ - +Y;) with

(Yr+Yo+21) (Ya+Za+22) (Ya+2Z2+23)- -
(Yi-2 +Z—a +Z-3) - (V-1 +Yj +Z-3)
where z4,2,,-- - ,zj_3 are new variables.

@ After replacements made for each C;, a Boolean
expression E’ results that is an instance of 3SAT.

@ The replacement clearly can be done by a
polynomial-time deterministic algorithm.

CS 5114: Theory of Algorithms Spring 2010 241332

Proving 3SAT N'P-hard (cont)

(3) Show E is satisfiable iff E’ is satisfiable.
@ Assume E has a satisfying truth assignment.
@ Then that extends to a satisfying truth assignment for
cases (a) and (b).
@ In case (c), assume y,, is assigned “true”.
@ Then assign z;,t <m — 2, true and z,,t > m — 1, false.
@ Then all the clauses in case (c) are satisfied.

CS 5114: Theory of Algorithms Spring 2010 25/332

Proving 3SAT N'P-hard (cont)

@ Assume E’ has a satisfying assignment.
@ By restriction, we have truth assignment for E.

(@) yi is necessarily true.
(b) y1 + V> is necessarily true.
(c) Proof by contradiction:

* Ify1,y2,---,y; are all false, then z,,25,--- ,z_3 are all
true.
* Butthen (y;—1 +Yj_» + Zj_3) is false, a contradiction.

We conclude SAT < 3SAT and 3SAT is N'P-complete.

CS 5114: Theory of Algorithms Spring 2010 26/332

Tree of Reductions

will do done
CLIQUE 3SAT
on Manber
IND, SET 3COLOR 3

Manber GJ GJ
VERTEX X3C PARITION
COVER Manber ill do

GJ KNAPSACK

HAM_CIR DOMINATING
- SET
Reductions go down the tree.

Proofs that each problem € NP are straightforward.

CS 5114: Theory of Algorithms Spring 2010

271332

Perspective

The reduction tree gives us a collection of 12 diverse
NP-complete problems.

The complexity of all these problems depends on the
complexity of any one:

@ If any N'P-complete problem is tractable, then they all
are.

This collection is a good place to start when attempting to
show a decision problem is N'P-complete.

Observation: If we find a problem is N'’P-complete, then we
should do something other than try to find a P-time
algorithm.

CS 5114: Theory of Algorithms Spring 2010 28/332

SAT <, CLIQUE

(1) Easy to show CLIQUE in N'P.
(2) An instance of SAT is a Boolean expression

B=C; C;-Cn,
where
Transform this to an instance of CLIQUE G = (V,E) and K.
V={vijlll<i<m1<j<k}

Two vertices Vi, ji] and v|[iz, j,] are adjacent in G if iy # i,
AND EITHER y(i, 1] and y[iz, 2] are the same literal

OR y/[i1,J1] and y/iz, 2] have different underlying variables.
K =m.

CS 5114: Theory of Algorithms Spring 2010 29/332

SAT <, CLIQUE (cont)

Example: B = (X + Xz) - (X1 + X2 + X3).
K=2.

(3) B is satisfiable iff G has clique of size > K.
@ B is satisfiable implies there is a truth assignment such
that y|[i, ji] is true for each i.
@ But then v|i,j] must be in a clique of size K = m.
@ If G has a clique of size > K, then the clique must have
size exactly K and there is one vertex v/|i,ji] in the clique
for each i.
@ There is a truth assignment making each y|i, j] true.
That truth assignment satisfies B.
We conclude that CLIQUE is N'P-hard, therefore
NP-complete.
Spring 2010 30/332

PARTITION <, KNAPSACK

PARTITION is a special case of KNAPSACK in which

assuming > s(a) is even.

Assuming PARTITION is N'P-complete, KNAPSACK is
NP-complete.

CS 5114: Theory of Algorithms Spring 2010 31/332

“Practical” Exponential Problems

@ What about our O(MN) dynamic prog algorithm?
@ Input size for KNAPSACK is O(N log M)
» Thus O(MN) is exponential in N log M.

@ The dynamic programming algorithm counts through
numbers 1,--- M. Takes exponential time when
measured by number of bits to represent M.

@ If M is “small” (M = O(p(N))), then algorithm has
complexity polynomial in N and is truly polynomial in
input size.

@ An algorithm that is polynomial-time if the numbers IN
the input are “small” (as opposed to number OF inputs)
is called a pseudo-polynomial time algorithm.

CS 5114: Theory of Algorithms Spring 2010 32/332

“Practical” Problems (cont)

@ Lesson: While KNAPSACK is N'P-complete, it is often
not that hard.

@ Many N'P-complete problems have no pseudo-
polynomial time algorithm unless P= NP.

CS 5114: Theory of Algorithms Spring 2010 33/332

Coping with A/P-completeness

(1) Find subproblems of the original problem that have
polynomial-time algorithms.

(2) Approximation algorithms.
(3) Randomized Algorithms.
(4) Backtracking; Branch and Bound.

(5) Heuristics.
@ Greedy.
@ Simulated Annealing.
@ Genetic Algorithms.

CS 5114: Theory of Algorithms Spring 2010 34/332

Subproblems

Restrict attention to special classes of inputs.
Examples:

@ VERTEX COVER, INDEPENDENT SET, and CLIQUE,
when restricted to bipartite graphs, all have
polynomial-time algorithms (for VERTEX COVER, by
reduction to NETWORK FLOW).

@ 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and
EXACT COVER BY 2-SETS all have polynomial time
algorithms.

@ PARTITION and KNAPSACK have polynomial time
algorithms if the numbers in an instance are all O(p(n)).

@ However, HAMILTONIAN CIRCUIT and
3-COLORABILITY remain N'P-complete even for a
planar graph.

CS 5114: Theory of Algorithms Spring 2010 35/332

Backtracking

We may view a nondeterministic algorithm executing on a
particular instance as a tree:
© Each edge represents a particular nondeterministic
choice.
@ The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a
clique of size > K can be done in polynomial time.

CS 5114: Theory of Algorithms Spring 2010 36/332

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this
tree with two criteria for stopping.

© A leaf that accepts is found.

© A partial solution that could not possibly lead to
acceptance is reached.

Example:

There cannot possibly be a set S of cardinality > 2 under
this node, so backtrack.

Since (1, 2) ¢ E, no S under this node can be a clique, so
backtrack.

CS 5114: Theory of Algorithms Spring 2010 371332

Branch and Bound

@ For optimization problems.
More sophisticated kind of backtracking.
@ Use the best solution found so far as a bound that
controls backtracking.
@ Example Problem: Given a graph G, find a minimum
vertex cover of G.
@ Computation tree for nondeterministic algorithm is
similar to CLIQUE.
» Every leaf represents a different subset S of the vertices.
@ Whenever a leaf is reached and it contains a vertex
cover of size B, B is an upper bound on the size of the
minimum vertex cover.
» Use B to prune any future tree nodes having size > B.
@ Whenever a smaller vertex cover is found, update B.

CS 5114: Theory of Algorithms Spring 2010 38/332

Branch and Bound (cont)

@ Improvement:
» Use a fast, greedy algorithm to get a minimal (not
minimum) vertex cover.
» Use this as the initial bound B.
@ While Branch and Bound is better than a brute-force
exhaustive search, it is usually exponential time, hence
impractical for all but the smallest instances.

» ... if we insist on an optimal solution.

@ Branch and Bound often practical as an approximation
algorithm where the search terminates when a “good
enough” solution is obtained.

CS 5114: Theory of Algorithms Spring 2010 39/332

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed
bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V,E), find a vertex
cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in
G and let V' be the set of matched vertices.
If OPT is the size of a minimum vertex cover, then

V| < 20PT

because at least one endpoint of every matched edge must
be in any vertex cover.

CS 5114: Theory of Algorithms Spring 2010 40/ 332

Bin Packing

We have numbers Xy, Xo, - - - , X, between 0 and 1 as well as
an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so
that the sum of the numbers in any one bin does not exceed
1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].

CS 5114: Theory of Algorithms Spring 2010 41/332

First Fit Algorithm

Place x; into the first bin.

For eachi,2 <i < n, place x; in the first bin that will contain
it.

No more than 1 bin can be left less than half full.
The number of bins used is no more than twice the sum of
the numbers.

The sum of the numbers is a lower bound on the number of
bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number
of bins.

CS 5114: Theory of Algorithms Spring 2010 42332

First Fit Does Poorly

Let € be very small, e.g., e = .00001.
Numbers (in this order):

@ 60f(1/7 +¢).

@ 60f (1/3 + ¢).

@ 60f (1/2 +¢).

First fit returns:
@ 1binof [60of 1/7 + €]
@ 3 binsof [20f 1/3 + €]
® 6 bins of [1/2 + €]

Optimal solution is 6 bins of [1/7 4+ ¢,1/3 +¢,1/2 + €].

First fit is 5/3 larger than optimal.

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is
17/10 times optimal.

Use the following heuristic:
@ Sort the numbers in decreasing order.
@ Apply first fit.
@ This is called decreasing first fit

The worst case performance of decreasing first fit is close to
11/9 times optimal.

CS 5114: Theory of Algorithms Spring 2010 44332

Summary

@ The theory of N"P-completeness gives us a technique
for separating tractable from (probably) intractable
problems.

@ When faced with a new problem requiring algorithmic
solution, our thought process might resemble this
scheme:

Is it | Isit

NP-complete? in P?

@ Alternately think about each question. Lack of progress
on either question might give insights into the answer to
the other question.

@ Once an affirmative answer is obtained to one of these
guestions, one of two strategies is followed.

CS 5114: Theory of Algorithms Spring 2010 45/ 332

Strategies

(1) The problem s in P.

@ This means there are polynomial-time algorithms for the
problem, and presumably we know at least one.

@ So, apply the techniques learned in this course to
analyze the algorithms and improve them to find the
lowest time complexity we can.

(2) The problem is N"P-complete.
@ Apply the strategies for coping with A/P-completeness.

@ Especially, find subproblems that are in P, or find
approximation algorithms.

CS 5114: Theory of Algorithms Spring 2010 46 /332

