CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science Virginia Tech Blacksburg, Virginia

Spring 2010

Copyright © 2010 by Clifford A. Shaffer

Tractable Problems

We would like some convention for distinguishing tractable from intractable problems.

A problem is said to be <u>tractable</u> if an algorithm exists to solve it with polynomial time complexity: O(p(n)).

 It is said to be <u>intractable</u> if the best known algorithm requires exponential time.

Examples:

- Sorting: $O(n^2)$
- Convex Hull: $O(n^2)$
- Single source shortest path: $O(n^2)$
- All pairs shortest path: $O(n^3)$
- Matrix multiplication: O(n³)

Tractable Problems (cont)

The technique we will use to classify one group of algorithms is based on two concepts:

- A special kind of reduction.
- Nondeterminism.

Decision Problems

- (I, S) such that S(X) is always either "yes" or "no."
 - Usually formulated as a question.

Example:

• Instance: A weighted graph G = (V, E), two vertices s and t, and an integer K.

 Question: Is there a path from s to t of length ≤ K? In this example, the answer is "yes."

Decision Problems (cont)

Can also be formulated as a language recognition problem:

• Let *L* be the subset of *I* consisting of instances whose answer is "yes." Can we recognize *L*?

The class of tractable problems \mathcal{P} is the class of languages or decision problems recognizable in polynomial time.

Polynomial Reducibility

Reduction of one language to another language.

Let $L_1 \subset I_1$ and $L_2 \subset I_2$ be languages. L_1 is **polynomially reducible** to L_2 if there exists a transformation $\overline{f}: I_1 \to I_2$, computable in polynomial time, such that $f(x) \in L_2$ if and only if $x \in L_1$. We write: $L_1 \leq_p L_2$ or $L_1 \leq L_2$.

Examples

- CLIQUE \leq_p INDEPENDENT SET.
- An instance I of CLIQUE is a graph G = (V, E) and an integer K.
- The instance I' = f(I) of INDEPENDENT SET is the graph G' = (V, E') and the integer K, were an edge $(u, v) \in E'$ iff $(u, v) \notin E$.
- *f* is computable in polynomial time.

Transformation Example

- G has a clique of size ≥ K iff G' has an independent set of size ≥ K.
- Therefore, CLIQUE \leq_p INDEPENDENT SET.
- IMPORTANT WARNING: The reduction does not solve either INDEPENDENT SET or CLIQUE, it merely transforms one into the other.

Nondeterminism

Nondeterminism allows an algorithm to make an arbitrary choice among a finite number of possibilities.

Implemented by the "nd-choice" primitive: nd-choice(ch₁, ch₂, ..., ch_j) returns one of the choices ch₁, ch₂, ... **arbitrarily**.

Nondeterministic algorithms can be thought of as "correctly guessing" (choosing nondeterministically) a solution.

Nondeterministic CLIQUE Algorithm

```
procedure nd-CLIQUE(Graph G, int K) {
 VertexSet S = EMPTY; int size = 0;
  for (v in G.V)
    if (nd-choice(YES, NO) == YES) then {
      S = union(S, v);
      size = size + 1;
  if (size < K) then
   REJECT; // S is too small
  for (u in S)
    for (v in S)
      if ((u <> v) \&\& ((u, v) not in E))
        REJECT; // S is missing an edge
 ACCEPT;
```

Nondeterministic Acceptance

- (G, K) is in the "language" CLIQUE iff there exists a sequence of nd-choice guesses that causes nd-CLIQUE to accept.
- Definition of acceptance by a nondeterministic algorithm:
 - An instance is accepted iff there exists a sequence of nondeterministic choices that causes the algorithm to accept.
- An unrealistic model of computation.
 - There are an exponential number of possible choices, but only one must accept for the instance to be accepted.
- Nondeterminism is a useful concept
 - ► It provides insight into the nature of certain hard problems.

Class \mathcal{NP}

- The class of languages accepted by a nondeterministic algorithm in polynomial time is called \mathcal{NP} .
- There are an exponential number of different executions of nd-CLIQUE on a single instance, but any one execution requires only polynomial time in the size of that instance.
- Time complexity of nondeterministic algorithm is greatest amount of time required by any one of its executions.

Class $\mathcal{NP}(cont)$

Alternative Interpretation:

- NP is the class of algorithms that, never mind how we got the answer, can check if the answer is correct in polynomial time.
- If you cannot verify an answer in polynomial time, you cannot hope to find the right answer in polynomial time!

How to Get Famous

Clearly, $\mathcal{P} \subset \mathcal{NP}$.

Extra Credit Problem:

• Prove or disprove: $\mathcal{P} = \mathcal{NP}$.

This is important because there are many natural decision problems in \mathcal{NP} for which no \mathcal{P} (tractable) algorithm is known.

\mathcal{NP} -completeness

A theory based on identifying problems that are as hard as any problems in \mathcal{NP} .

The next best thing to knowing whether $P = \mathcal{NP}$ or not.

A decision problem A is $\underline{\mathcal{NP}\text{-hard}}$ if every problem in \mathcal{NP} is polynomially reducible to A, that is, for all

$$B \in \mathcal{NP}$$
, $B \leq_{p} A$.

A decision problem A is \mathcal{NP} -complete if $A \in \mathcal{NP}$ and A is \mathcal{NP} -hard.

Satisfiability

Let *E* be a Boolean expression over variables x_1, x_2, \dots, x_n in conjunctive normal form (CNF), that is, an AND of ORs.

$$E = (x_5 + x_7 + \overline{x_8} + x_{10}) \cdot (\overline{x_2} + x_3) \cdot (x_1 + \overline{x_3} + x_6).$$

A variable or its negation is called a <u>literal</u>. Each sum is called a **clause**.

SATISFIABILITY (SAT):

- Instance: A Boolean expression E over variables x_1, x_2, \dots, x_n in CNF.
- Question: Is E satisfiable?

Cook's Theorem: SAT is \mathcal{NP} -complete.

Proof Sketch

SAT $\in \mathcal{NP}$:

- A non-deterministic algorithm **guesses** a truth assignment for x_1, x_2, \dots, x_n and **checks** whether E is true in polynomial time.
- It accepts iff there is a satisfying assignment for *E*.

SAT is \mathcal{NP} -hard:

- Start with an arbitrary problem $B \in \mathcal{NP}$.
- We know there is a polynomial-time, nondeterministic algorithm to accept B.
- Cook showed how to transform an instance X of B into a Boolean expression E that is satisfiable if the algorithm for B accepts X.

Implications

- (1) Since SAT is \mathcal{NP} -complete, we have not defined an empty concept.
- (2) If SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$.
- (3) If $\mathcal{P} = \mathcal{NP}$, then SAT $\in \mathcal{P}$.
- (4) If $A \in \mathcal{NP}$ and B is \mathcal{NP} -complete, then $B \leq_p A$ implies A is \mathcal{NP} -complete.

Proof:

- Let $C \in \mathcal{NP}$.
- Then $C \leq_p B$ since B is \mathcal{NP} -complete.
- Since $B \leq_{p} A$ and \leq_{p} is transitive, $C \leq_{p} A$.
- Therefore, A is \mathcal{NP} -hard and, finally, \mathcal{NP} -complete.

Implications (cont)

- (5) This gives a simple two-part strategy for showing a decision problem A is \mathcal{NP} -complete.
 - (a) Show $A \in \mathcal{NP}$.
 - (b) Pick an \mathcal{NP} -complete problem B and show $B \leq_p A$.

\mathcal{NP} -completeness Proof Paradigm

To show that decision problem *B* is \mathcal{NP} -complete:

- $\mathbf{0}$ $B \in \mathcal{NP}$
 - Give a polynomial time, non-deterministic algorithm that accepts B.
 - **1** Given an instance *X* of *B*, **guess** evidence *Y*.
 - **2** Check whether Y is evidence that $X \in B$. If so, accept X.
- 2 B is \mathcal{NP} -hard.
 - ► Choose a known *NP*-complete problem, *A*.
 - Describe a polynomial-time transformation T of an arbitrary instance of A to a [not necessarily arbitrary] instance of B.
 - ▶ Show that $X \in A$ if and only if $T(X) \in B$.

3-SATISFIABILITY (3SAT)

Instance: A Boolean expression *E* in CNF such that each clause contains exactly 3 literals.

Question: Is there a satisfying assignment for E?

A special case of SAT.

One might hope that 3SAT is easier than SAT.

3SAT is \mathcal{NP} -complete

```
(1) 3SAT \in \mathcal{NP}.
procedure nd-3SAT(E) {
  for (i = 1 \text{ to } n)
    x[i] = nd-choice(TRUE, FALSE);
  Evaluate E for the guessed truth assignment.
  if (E evaluates to TRUE)
    ACCEPT;
  else
    REJECT;
```

nd-3SAT is a polynomial-time nondeterministic algorithm that accepts 3SAT.

Proving 3SAT \mathcal{NP} -hard

- ① Choose SAT to be the known \mathcal{NP} -complete problem.
 - ▶ We need to show that SAT \leq_p 3SAT.
- 2 Let $E = C_1 \cdot C_2 \cdots C_k$ be any instance of SAT.

Strategy: Replace any clause C_i that does not have exactly 3 literals with two or more clauses having exactly 3 literals.

Let
$$C_i = y_1 + y_2 + \cdots + y_j$$
 where y_1, \dots, y_j are literals. (a) $j = 1$

• Replace (y₁) with

$$(y_1 + v + w) \cdot (y_1 + \overline{v} + w) \cdot (y_1 + v + \overline{w}) \cdot (y_1 + \overline{v} + \overline{w})$$

where v and w are new variables.

Proving 3SAT \mathcal{NP} -hard (cont)

(b)
$$j = 2$$

• Replace $(y_1 + y_2)$ with $(y_1 + y_2 + z) \cdot (y_1 + y_2 + \overline{z})$ where z is a new variable.

(c) j > 3

• Relace $(y_1 + y_2 + \cdots + y_i)$ with

$$(y_1 + y_2 + z_1) \cdot (y_3 + \overline{z_1} + z_2) \cdot (y_4 + \overline{z_2} + z_3) \cdots$$

 $(y_{j-2} + \overline{z_{j-4}} + z_{j-3}) \cdot (y_{j-1} + y_j + \overline{z_{j-3}})$

where z_1, z_2, \dots, z_{i-3} are new variables.

- After replacements made for each C_i , a Boolean expression E' results that is an instance of 3SAT.
- The replacement clearly can be done by a polynomial-time deterministic algorithm.

Proving 3SAT \mathcal{NP} -hard (cont)

- (3) Show E is satisfiable iff E' is satisfiable.
 - Assume E has a satisfying truth assignment.
 - Then that extends to a satisfying truth assignment for cases (a) and (b).
 - In case (c), assume y_m is assigned "true".
 - Then assign z_t , $t \le m-2$, true and z_k , $t \ge m-1$, false.
 - Then all the clauses in case (c) are satisfied.

Proving 3SAT \mathcal{NP} -hard (cont)

- Assume E' has a satisfying assignment.
- By restriction, we have truth assignment for *E*.
 - (a) y_1 is necessarily true.
 - (b) $y_1 + y_2$ is necessarily true.
 - (c) Proof by contradiction:
 - * If y_1, y_2, \dots, y_j are all false, then z_1, z_2, \dots, z_{j-3} are all true.
 - ★ But then $(y_{j-1} + y_{j-2} + \overline{z_{j-3}})$ is false, a contradiction.

We conclude SAT < 3SAT and 3SAT is \mathcal{NP} -complete.

Tree of Reductions

Reductions go down the tree.

Proofs that each problem $\in \mathcal{NP}$ are straightforward.

Perspective

The reduction tree gives us a collection of 12 diverse \mathcal{NP} -complete problems.

The complexity of all these problems depends on the complexity of any one:

• If any \mathcal{NP} -complete problem is tractable, then they all are.

This collection is a good place to start when attempting to show a decision problem is \mathcal{NP} -complete.

Observation: If we find a problem is \mathcal{NP} -complete, then we should do something other than try to find a \mathcal{P} -time algorithm.

$SAT \leq_{p} CLIQUE$

- (1) Easy to show CLIQUE in \mathcal{NP} .
- (2) An instance of SAT is a Boolean expression

$$B = C_1 \cdot C_2 \cdot \cdot \cdot C_m$$

where

$$C_i = y[i, 1] + y[i, 2] + \cdots + y[i, k_i].$$

Transform this to an instance of CLIQUE G = (V, E) and K.

$$V = \{v[i,j] | 1 \le i \le m, 1 \le j \le k_i\}$$

Two vertices $v[i_1, j_1]$ and $v[i_2, j_2]$ are adjacent in G if $i_1 \neq i_2$ AND EITHER $y[i_1, j_1]$ and $y[i_2, j_2]$ are the same literal OR $y[i_1, j_1]$ and $y[i_2, j_2]$ have different underlying variables.

K=m.

SAT \leq_p CLIQUE (cont)

Example:
$$B = (x_1 + x_2) \cdot (\overline{x_1} + x_2 + x_3)$$
.
 $K = 2$.

- (3) B is satisfiable iff G has clique of size $\geq K$.
 - B is satisfiable implies there is a truth assignment such that $y[i, j_i]$ is true for each i.
 - But then $v[i, j_i]$ must be in a clique of size K = m.
 - If G has a clique of size $\geq K$, then the clique must have size exactly K and there is one vertex $v[i, j_i]$ in the clique for each i.
 - There is a truth assignment making each $y[i, j_i]$ true. That truth assignment satisfies B.

We conclude that CLIQUE is \mathcal{NP} -hard, therefore \mathcal{NP} -complete.

PARTITION \leq_{p} KNAPSACK

PARTITION is a special case of KNAPSACK in which

$$K = \frac{1}{2} \sum_{a \in A} s(a)$$

assuming $\sum s(a)$ is even.

Assuming PARTITION is $\mathcal{NP}\text{-complete}$, KNAPSACK is $\mathcal{NP}\text{-complete}$.

"Practical" Exponential Problems

- What about our O(MN) dynamic prog algorithm?
- Input size for KNAPSACK is O(N log M)
 - ► Thus O(MN) is exponential in $N \log M$.
- The dynamic programming algorithm counts through numbers 1, · · · , M. Takes exponential time when measured by number of bits to represent M.
- If M is "small" (M = O(p(N))), then algorithm has complexity polynomial in N and is truly polynomial in input size.
- An algorithm that is polynomial-time if the numbers IN the input are "small" (as opposed to number OF inputs) is called a pseudo-polynomial time algorithm.

"Practical" Problems (cont)

- Lesson: While KNAPSACK is \mathcal{NP} -complete, it is often not that hard.
- Many \mathcal{NP} -complete problems have no pseudopolynomial time algorithm unless $\mathcal{P} = \mathcal{NP}$.

Coping with \mathcal{NP} -completeness

- (1) Find subproblems of the original problem that have polynomial-time algorithms.
- (2) Approximation algorithms.
- (3) Randomized Algorithms.
- (4) Backtracking; Branch and Bound.
- (5) Heuristics.
 - Greedy.
 - Simulated Annealing.
 - Genetic Algorithms.

Subproblems

Restrict attention to special classes of inputs. Examples:

- VERTEX COVER, INDEPENDENT SET, and CLIQUE, when restricted to bipartite graphs, all have polynomial-time algorithms (for VERTEX COVER, by reduction to NETWORK FLOW).
- 2-SATISFIABILITY, 2-DIMENSIONAL MATCHING and EXACT COVER BY 2-SETS all have polynomial time algorithms.
- PARTITION and KNAPSACK have polynomial time algorithms if the numbers in an instance are all O(p(n)).
- However, HAMILTONIAN CIRCUIT and 3-COLORABILITY remain \mathcal{NP} -complete even for a planar graph.

Backtracking

We may view a nondeterministic algorithm executing on a particular instance as a tree:

- Each edge represents a particular nondeterministic choice.
- The checking occurs at the leaves.

Example:

Each leaf represents a different set S. Checking that S is a clique of size > K can be done in polynomial time.

Backtracking (cont)

Backtracking can be viewed as an in-order traversal of this tree with two criteria for stopping.

- A leaf that accepts is found.
- A partial solution that could not possibly lead to acceptance is reached.

Example:

There cannot possibly be a set S of cardinality ≥ 2 under this node, so backtrack.

Since $(1, 2) \notin E$, no S under this node can be a clique, so backtrack.

Branch and Bound

- For optimization problems.
 More sophisticated kind of backtracking.
- Use the best solution found so far as a <u>bound</u> that controls backtracking.
- Example Problem: Given a graph G, find a minimum vertex cover of G.
- Computation tree for nondeterministic algorithm is similar to CLIQUE.
 - Every leaf represents a different subset S of the vertices.
- Whenever a leaf is reached and it contains a vertex cover of size B, B is an upper bound on the size of the minimum vertex cover.
 - ► Use B to prune any future tree nodes having size ≥ B.
- Whenever a smaller vertex cover is found, update *B*.

Branch and Bound (cont)

- Improvement:
 - Use a fast, greedy algorithm to get a minimal (not minimum) vertex cover.
 - Use this as the initial bound B.
- While Branch and Bound is better than a brute-force exhaustive search, it is usually exponential time, hence impractical for all but the smallest instances.
 - ... if we insist on an optimal solution.
- Branch and Bound often practical as an approximation algorithm where the search terminates when a "good enough" solution is obtained.

Approximation Algorithms

Seek algorithms for optimization problems with a guaranteed bound on the quality of the solution.

VERTEX COVER: Given a graph G = (V, E), find a vertex cover of minimum size.

Let M be a maximal (not necessarily maximum) matching in G and let V' be the set of matched vertices. If OPT is the size of a minimum vertex cover, then

$$|V'| \leq 2OPT$$

because at least one endpoint of every matched edge must be in **any** vertex cover.

Bin Packing

We have numbers x_1, x_2, \dots, x_n between 0 and 1 as well as an unlimited supply of bins of size 1.

Problem: Put the numbers into as few bins as possible so that the sum of the numbers in any one bin does not exceed 1.

Example: Numbers 3/4, 1/3, 1/2, 1/8, 2/3, 1/2, 1/4.

Optimal solution: [3/4, 1/8], [1/2, 1/3], [1/2, 1/4], [2/3].

First Fit Algorithm

Place x_1 into the first bin.

For each $i, 2 \le i \le n$, place x_i in the first bin that will contain it.

No more than 1 bin can be left less than half full. The number of bins used is no more than twice the sum of the numbers.

The sum of the numbers is a lower bound on the number of bins in the optimal solution.

Therefore, first fit is no more than twice the optimal number of bins.

First Fit Does Poorly

Let ϵ be very small, e.g., $\epsilon = .00001$.

Numbers (in this order):

- 6 of $(1/7 + \epsilon)$.
- 6 of $(1/3 + \epsilon)$.
- 6 of $(1/2 + \epsilon)$.

First fit returns:

- 1 bin of [6 of $1/7 + \epsilon$]
- 3 bins of [2 of $1/3 + \epsilon$]
- 6 bins of $[1/2 + \epsilon]$

Optimal solution is 6 bins of $[1/7 + \epsilon, 1/3 + \epsilon, 1/2 + \epsilon]$.

First fit is 5/3 larger than optimal.

Decreasing First Fit

It can be proved that the worst-case performance of first-fit is 17/10 times optimal.

Use the following heuristic:

- Sort the numbers in decreasing order.
- Apply first fit.
- This is called decreasing first fit.

The worst case performance of decreasing first fit is close to 11/9 times optimal.

Summary

- The theory of NP-completeness gives us a technique for separating tractable from (probably) intractable problems.
- When faced with a new problem requiring algorithmic solution, our thought process might resemble this scheme:

- Alternately think about each question. Lack of progress on either question might give insights into the answer to the other question.
- Once an affirmative answer is obtained to one of these questions, one of two strategies is followed.

Strategies

- (1) The problem is in \mathcal{P} .
 - This means there are polynomial-time algorithms for the problem, and presumably we know at least one.
 - So, apply the techniques learned in this course to analyze the algorithms and improve them to find the lowest time complexity we can.
- (2) The problem is \mathcal{NP} -complete.
 - ullet Apply the strategies for coping with \mathcal{NP} -completeness.
 - ullet Especially, find subproblems that are in \mathcal{P} , or find approximation algorithms.

