
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 24

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer20
10

-0
3-

29

CS 5114

Title page

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

CS 5114: Theory of Algorithms Spring 2010 2 / 24

Reductions

A reduction is a transformation of one problem to another

Purpose: To compare the relative difficulty of two problems

Example:
Sorting reals reduces to (in linear time) the problem of
finding a convex hull in two dimensions

Use CH as a way to solve sorting

We argued that there is a lower bound of Ω(n log n) on
finding the convex hull since there is a lower bound of
Ω(n log n) on sorting

20
10

-0
3-

29

CS 5114

Reductions

This example we have already seen.

NOT reduce CH to sorting – that just means that we can make
CH as hard as sorting! Using sorting isn’t necessarily the only
way to solve the CH problem, perhaps there is a better way. So
just knowing that sorting is ONE WAY to solve CH doesn’t tell
us anything about the cost of CH. On the other hand, by
showing that we can use CH as a tool to solve sorting, we know
that CH cannot be faster than sorting.

Reduction Notation

We denote names of problems with all capital letters.
◮ Ex: SORTING, CONVEX HULL

What is a problem?
◮ A relation consisting of ordered pairs (I, SLN).
◮ I comes from the set of instances (allowed inputs).
◮ SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

◮ Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.

CS 5114: Theory of Algorithms Spring 2010 3 / 24

Reduction Notation

We denote names of problems with all capital letters.
◮ Ex: SORTING, CONVEX HULL

What is a problem?
◮ A relation consisting of ordered pairs (I, SLN).
◮ I comes from the set of instances (allowed inputs).
◮ SLN is the solution to the problem for instance I.

Example: SORTING = (I, SLN).
I is a finite subset of R.

◮ Prototypical instance: {x1, x2, ..., xn}.

SLN is the sequence of reals from I in sorted order.20
10

-0
3-

29

CS 5114

Reduction Notation

no notes

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I ⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

CS 5114: Theory of Algorithms Spring 2010 4 / 24

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a
solution SLN, or to report that there is no solution.

A reduction from problem A(I, SLN) to problem B(I’, SLN’)
requires two transformations (functions) T, T’.
T: I ⇒ I′

Maps instances of the first problem to instances of the
second.

T’: SLN′ ⇒ SLN
Maps solutions of the second problem to solutions of the
first.

20
10

-0
3-

29

CS 5114

Black Box Reduction (1)

no notes

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.

CS 5114: Theory of Algorithms Spring 2010 5 / 24

Black Box Reduction (2)

Black box idea:
1 Start with an instance I of problem A.
2 Transform to an instance I’ = T(I), an instance of

problem B.
3 Use a “black box” algorithm for B as a subroutine to find

a solution SLN’ for B.
4 Transform to a solution SLN = T’(SLN’), a solution to

the original instance I for problem A.20
10

-0
3-

29

CS 5114

Black Box Reduction (2)

no notes

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

CS 5114: Theory of Algorithms Spring 2010 6 / 24

More Notation
If (I, SLN) reduces to (I′, SLN′), write:

(I, SLN) ≤ (I′, SLN′).

This notation suggests that (I, SLN) is no harder than (I′,
SLN′).

Examples:
SORTING ≤ CONVEX HULL

The time complexity of T and T’ is important to the time
complexity of the black box algorithm for (I, SLN).

If combined time complexity is O(g(n)), write:
(I, SLN) ≤O(g(n)) (I′, SLN′).

20
10

-0
3-

29

CS 5114

More Notation

Sorting is no harder than Convex Hull. Conversely, Convex Hull
is at least as hard as Sorting.

If T or T’ is expensive, then we have proved nothing about the
relative bounds.

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

CS 5114: Theory of Algorithms Spring 2010 7 / 24

Reduction Example

SORTING = (I, SLN)
CONVEX HULL = (I’, SLN’).

1 I = {x1, x2, ..., xn}.
2 T(I) = I’ = {(x1, x2

1), (x2, x2
2), ..., (xn, x2

n)}.
3 Solve CONVEX HULL for I’ to give solution SLN’

= {(xi[1], x2
i[1]), (xi[2], x2

i[2]), ..., (xi[n], x2
i[n])}.

4 T’ finds a solution to I from SLN’ as follows:
1 Find (xi[k], x2

i[k]) such that xi[k] is minimum.
2 Y = xi[k], xi[k+1], ..., xi[n], xi[1], ..., xi[k−1].

For a reduction to be useful, T and T’ must be functions
that can be computed by algorithms.
An algorithm for the second problem gives an algorithm
for the first problem by steps 2 – 4.

20
10

-0
3-

29

CS 5114

Reduction Example

no notes

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.

CS 5114: Theory of Algorithms Spring 2010 8 / 24

Notation Warning

Example: SORTING ≤O(n) CONVEX HULL.

WARNING: ≤ is NOT a partial order because it is NOT
antisymmetric.

SORTING ≤0(n) CONVEX HULL.

CONVEX HULL ≤O(n) SORTING.

But, SORTING 6= CONVEX HULL.20
10

-0
3-

29

CS 5114

Notation Warning

no notes

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

CS 5114: Theory of Algorithms Spring 2010 9 / 24

Bounds Theorems
Lower Bound Theorem: If P1 ≤O(g(n)) P2, there is a lower
bound of Ω(h(n)) on the time complexity of P1, and
g(n) = o(h(n)), then there is a lower bound of Ω(h(n)) on P2.

Example:
SORTING ≤O(n) CONVEX HULL.
g(n) = n. h(n) = n log n. g(n) = o(h(n)).
Theorem gives Ω(n log n) lower bound on CONVEX
HULL.

Upper Bound Theorem: If P2 has time complexity O(h(n))
and P1 ≤O(g(n)) P2, then P1 has time complexity
O(g(n) + h(n)).

20
10

-0
3-

29

CS 5114

Bounds Theorems

Notice o, not O.So, given good transformations, both problems
take at least Ω(P1) and at most O(P2).

System of Distinct Representatives
(SDR)

Instance: Sets S1, S2, · · · , Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1, 2, 4}, {2, 3}, {1, 3, 4}.
Solution: R = {1, 2, 3, 4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1, S2, · · · , Sk of SDR, transform it
to an instance G = (U, V , E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1, S2, · · · , Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

CS 5114: Theory of Algorithms Spring 2010 10 / 24

System of Distinct Representatives
(SDR)

Instance: Sets S1, S2, · · · , Sk .
Solution: Set R = {r1, r2, · · · , rk} such that ri ∈ Si .
Example:

Instance: {1}, {1, 2, 4}, {2, 3}, {1, 3, 4}.
Solution: R = {1, 2, 3, 4}.

Reduction:
Let n be the size of an instance of SDR.
SDR ≤O(n) BIPARTITE MATCHING.
Given an instance of S1, S2, · · · , Sk of SDR, transform it
to an instance G = (U, V , E) of BIPARTITE MATCHING.
Let S = ∪k

i=1Si . U = {S1, S2, · · · , Sk}.
V = S. E = {(Si , xj)|xj ∈ Si}.

20
10

-0
3-

29

CS 5114

System of Distinct Representatives (SDR)

Since it is a set, there are no duplicates.

Or, R = {1, 4, 2, 3}

U is the sets.
V is the elements from all of the sets (union the sets).
E matches elements to sets.

SDR Example

{1} 1

{1, 2, 4} 2

{2, 3} 3

{1, 3, 4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

CS 5114: Theory of Algorithms Spring 2010 11 / 24

SDR Example

{1} 1

{1, 2, 4} 2

{2, 3} 3

{1, 3, 4} 4

A solution to SDR is easily obtained from a
maximum matching in G of size k .

20
10

-0
3-

29

CS 5114

SDR Example

Need better figure here.

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

◮ In linear time, find M = max |xi |.
◮ Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,

√

M2 − x2
i), · · · , (xn,

√

M2 − x2
n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

CS 5114: Theory of Algorithms Spring 2010 12 / 24

Simple Polygon Lower Bound (1)

SIMPLE POLYGON: Given a set of n points in the plane,
find a simple polygon with those points as vertices.
SORTING ≤O(n) SIMPLE POLYGON.
Instance of SORTING: {x1, x2, · · · , xn}.

◮ In linear time, find M = max |xi |.
◮ Let C be a circle centered at the origin, of radius M.

Instance of SIMPLE POLYGON:

{(x1,

√

M2 − x2
i), · · · , (xn,

√

M2 − x2
n)}.

All these points fall on C in their sorted order.
The only simple polygon having the points on C as
vertices is the convex one.

20
10

-0
3-

29

CS 5114

Simple Polygon Lower Bound (1)

Need a figure here showing the curve.

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.

By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

CS 5114: Theory of Algorithms Spring 2010 13 / 24

Simple Polygon Lower Bound (2)

As with CONVEX HULL, the sorted order is easily
obtained from the solution to SIMPLE POLYGON.

By the Lower Bound Theorem, SIMPLE POLYGON is
Ω(n log n).

20
10

-0
3-

29

CS 5114

Simple Polygon Lower Bound (2)

no notes

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.
[

0 A
AT 0

] [

0 BT

B 0

]

=

[

AB 0
0 AT BT

]

CS 5114: Theory of Algorithms Spring 2010 14 / 24

Matrix Multiplication

Matrix multiplication can be reduced to a number of other
problems.

In fact, certain special cases of MATRIX MULTIPLY are
equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):
Instance: a symmetric n × n matrix.

MATRIX MULTIPLY ≤O(n2) SYM.
[

0 A
AT 0

] [

0 BT

B 0

]

=

[

AB 0
0 AT BT

]20
10

-0
3-

29

CS 5114

Matrix Multiplication

Clearly SYM is not harder than MM. Is it easier? No...

So, having a good SYM would give a good MM. The other way
of looking at it is that SYM is just as hard as MM.

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[

0 A
B 0

]2

=

[

AB 0
0 BA

]

CS 5114: Theory of Algorithms Spring 2010 15 / 24

Matrix Squaring

Problem: Compute A2 where A is an n × n matrix.

MATRIX MULTIPLY ≤O(n2) SQUARING.

[

0 A
B 0

]2

=

[

AB 0
0 BA

]

20
10

-0
3-

29

CS 5114

Matrix Squaring

no notes

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.

CS 5114: Theory of Algorithms Spring 2010 16 / 24

Linear Programming (LP)

Maximize or minimize a linear function subject to linear
constraints.
Variables: vector X = (x1, x2, · · · , xn).

Objective Function: c · X =
∑

cixi .
Inequality Constraints: Ai · X ≤ bi 1 ≤ i ≤ k .
Equality Constraints: Ei · X = di 1 ≤ i ≤ m.

Non-negative Constraints: xi ≥ 0 for some is.20
10

-0
3-

29

CS 5114

Linear Programming (LP)

Example of a “super problem” that many problems can reduce
to.

Objective function defeinse what we want to minimize.

Ai is a vector – k vectors give the k b’s.

Not all of the constraint types are used for every problem.

Use of LP

Reasons for considering LP:

Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

CS 5114: Theory of Algorithms Spring 2010 17 / 24

Use of LP

Reasons for considering LP:

Practical algorithms exist to solve LP.
Many real-world optimization problems are naturally
stated as LP.
Many optimization problems are reducible to LP.

20
10

-0
3-

29

CS 5114

Use of LP

no notes

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize

∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .
∑

Z (V)

xi −
∑

Y (V)

xi = 0.

CS 5114: Theory of Algorithms Spring 2010 18 / 24

Network Flow Reduction (1)

Reduce NETWORK FLOW to LP.
Let x1, x2, · · · , xn be the flows through edges.
Objective function: For S = edges out of the source,
maximize

∑

i∈S

xi .

Capacity constraints: xi ≤ ci 1 ≤ i ≤ n.
Flow conservation:

For a vertex v ∈ V − {s, t},
let Y (v) = set of xi for edges leaving v .

Z (v) = set of xi for edges entering v .
∑

Z (V)

xi −
∑

Y (V)

xi = 0.

20
10

-0
3-

29

CS 5114

Network Flow Reduction (1)

Obviously, maximize the objective function by maximizing the
Xi ’s!! But we can’t do that arbirarily because of the constraints.

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4

x2 ≤ 3

x3 ≤ 2

x4 ≤ 5

x5 ≤ 7

x1 + x3 − x2 = 0

x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 0

CS 5114: Theory of Algorithms Spring 2010 19 / 24

Network Flow Reduction (2)

Non-negative constraints: xi ≥ 0 1 ≤ i ≤ n.
Maximize: x1 + x4 subject to:

x1 ≤ 4

x2 ≤ 3

x3 ≤ 2

x4 ≤ 5

x5 ≤ 7

x1 + x3 − x2 = 0

x4 − x3 − x5 = 0

x1, · · · , x5 ≥ 020
10

-0
3-

29

CS 5114

Network Flow Reduction (2)

Need graph:
Vertices: s, a, b, t.

Edges:

• s → a with capacity c1 = 4.

• a → t with capacity c2 = 3.

• a → b with capacity c3 = 2.

• s → b with capacity c4 = 5.

• b → t with capacity c5 = 7.

Matching

Start with graph G = (V , E).
Let x1, x2, · · · , xn represent the edges in E .

◮ xi = 1 means edge i is matched.
Objective function: Maximize

n
∑

i=1

xi .

subject to: (Let N(v) denote edges incident on v)
∑

N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

CS 5114: Theory of Algorithms Spring 2010 20 / 24

Matching

Start with graph G = (V , E).
Let x1, x2, · · · , xn represent the edges in E .

◮ xi = 1 means edge i is matched.
Objective function: Maximize

n
∑

i=1

xi .

subject to: (Let N(v) denote edges incident on v)
∑

N(V)

xi ≤ 1

xi ≥ 0 1 ≤ i ≤ n

Integer constraints: Each xi must be an integer.
Integer constraints makes this INTEGER LINEAR
PROGRAMMING (ILP).

20
10

-0
3-

29

CS 5114

Matching

no notes

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

CS 5114: Theory of Algorithms Spring 2010 21 / 24

Summary

NETWORK FLOW ≤O(n) LP.

MATCHING ≤O(n) ILP.

20
10

-0
3-

29

CS 5114

Summary

no notes

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

CS 5114: Theory of Algorithms Spring 2010 22 / 24

Summary of Reduction

Importance:
1 Compare difficulty of problems.
2 Prove new lower bounds.
3 Black box algorithms for “new” problems in terms of

(already solved) “old” problems.
4 Provide insights.

Warning:
A reduction does not provide an algorithm to solve a
problem – only a transformation.
Therefore, when you look for a reduction, you are not
trying to solve either problem.

20
10

-0
3-

29

CS 5114

Summary of Reduction

no notes

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!

CS 5114: Theory of Algorithms Spring 2010 23 / 24

Another Warning

The notation P1 ≤ P2 is meant to be suggestive.

Think of P1 as the easier, P2 as the harder problem.

Always transform from instance of P1 to instance of P2.

Common mistake: Doing the reduction backwards (from P2

to P1).

DON’T DO THAT!

20
10

-0
3-

29

CS 5114

Another Warning

no notes

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS
CS 5114: Theory of Algorithms Spring 2010 24 / 24

Common Problems used in Reductions

NETWORK FLOW

MATCHING

SORTING

LP

ILP

MATRIX MULTIPLICATION

SHORTEST PATHS

20
10

-0
3-

29

CS 5114

Common Problems used in Reductions

no notes

