Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2010

Copyright (C) 2010 by Clifford A. Shaffer

Reductions

A reduction is a transformation of one problem to another
Purpose: To compare the relative difficulty of two problems

Example:

Sorting reals reduces to (in linear time) the problem of finding a convex hull in two dimensions

- Use CH as a way to solve sorting

We argued that there is a lower bound of $\Omega(n \log n)$ on finding the convex hull since there is a lower bound of $\Omega(n \log n)$ on sorting

Reduction Notation

- We denote names of problems with all capital letters.
- Ex: SORTING, CONVEX HULL
- What is a problem?
- A relation consisting of ordered pairs (I, SLN).
- I comes from the set of instances (allowed inputs).
- SLN is the solution to the problem for instance I.
- Example: SORTING = (I, SLN).
I is a finite subset of \mathcal{R}.
- Prototypical instance: $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- SLN is the sequence of reals from I in sorted order.

Black Box Reduction (1)

The job of an algorithm is to take an instance I and return a solution SLN, or to report that there is no solution.

A reduction from problem $\mathbf{A}(\mathbf{I}, \mathbf{S L N})$ to problem $\mathbf{B}\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$ requires two transformations (functions) T, T '.
$\mathrm{T}: \mathbf{I} \Rightarrow \mathbf{I}^{\prime}$

- Maps instances of the first problem to instances of the second.
$\mathrm{T}^{\prime}: \mathbf{S L N}{ }^{\prime} \Rightarrow \mathbf{S L N}$
- Maps solutions of the second problem to solutions of the first.

This example we have already seen.

NOT reduce CH to sorting - that just means that we can make CH as hard as sorting! Using sorting isn't necessarily the only way to solve the CH problem, perhaps there is a better way. So just knowing that sorting is ONE WAY to solve CH doesn't tell us anything about the cost of CH . On the other hand, by showing that we can use CH as a tool to solve sorting, we know that CH cannot be faster than sorting.

no notes

no notes

Black Box Reduction (2)

(1) Start with an instance I of problem \mathbf{A}.
(2) Transform to an instance $\mathbf{I}^{\prime}=\mathrm{T}(\mathbf{I})$, an instance of problem B.
(3) Use a "black box" algorithm for B as a subroutine to find a solution SLN' for B.
(4) Transform to a solution $\mathbf{S L N}=\mathrm{T}^{\prime}\left(\mathbf{S L N}^{\prime}\right)$, a solution to the original instance I for problem A.

More Notation

If (I, SLN) reduces to ($\mathbf{I}^{\prime}, \mathbf{S L N}{ }^{\prime}$), write:
$(\mathbf{I}, \mathbf{S L N}) \leq\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$.
This notation suggests that (I, SLN) is no harder than (\mathbf{I}^{\prime}, SLN').

Examples:

- SORTING \leq CONVEX HULL

The time complexity of T and T^{\prime} is important to the time complexity of the black box algorithm for (I, SLN).

If combined time complexity is $O(g(n))$, write: $(\mathbf{I}, \mathbf{S L N}) \leq_{o(g(n))}\left(\mathbf{I}^{\prime}, \mathbf{S L N}^{\prime}\right)$.

Reduction Example

SORTING $=(\mathbf{I}, \mathbf{S L N})$
CONVEX HULL $=\left(\mathbf{l}^{\prime}, \mathbf{S L N}{ }^{\prime}\right)$.
(1) $\mathbf{I}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(2) $\mathrm{T}(\mathbf{I})=\mathbf{I}^{\prime}=\left\{\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right), \ldots,\left(x_{n}, x_{n}^{2}\right)\right\}$.
(3) Solve CONVEX HULL for I' to give solution SLN'
$=\left\{\left(x_{i[1]}, x_{i[1]}^{2}\right),\left(x_{i[2]}, x_{i[2]}^{2}\right), \ldots,\left(x_{i[n]}, x_{i[n]}^{2}\right)\right\}$.
(a) T' finds a solution to I from SLN' as follows:
(1) Find $\left(x_{[k]}, x_{i[k]}^{2}\right)$ such that $x_{i[k]}$ is minimum.
(2) $\mathrm{Y}=x_{i[k]}, x_{i[k+1]}, \ldots, x_{i[n]}, x_{i[1]}, \ldots, x_{i[k-1]}$.

- For a reduction to be useful, T and T' must be functions that can be computed by algorithms.
- An algorithm for the second problem gives an algorithm for the first problem by steps $2-4$.

Notation Warning

no notes

Bounds Theorems

Lower Bound Theorem: If $P_{1} \leq_{o(g(n))} P_{2}$, there is a lower bound of $\Omega(h(n))$ on the time complexity of P_{1}, and $g(n)=o(h(n))$, then there is a lower bound of $\Omega(h(n))$ on P_{2}.

Example:

- SORTING $\leq_{O(n)}$ CONVEX HULL.
- $g(n)=n . \quad h(n)=n \log n . \quad g(n)=o(h(n))$.
- Theorem gives $\Omega(n \log n)$ lower bound on CONVEX HULL.

Upper Bound Theorem: If P_{2} has time complexity $O(h(n))$ and $P_{1} \leq o(g(n)) P_{2}$, then P_{1} has time complexity $O(g(n)+h(n))$.

System of Distinct Representatives (SDR)

```
Instance: Sets \(S_{1}, S_{2}, \cdots, S_{k}\).
Solution: Set \(R=\left\{r_{1}, r_{2}, \cdots, r_{k}\right\}\) such that \(r_{i} \in S_{i}\).
Example:
```

 Instance: \(\{1\},\{1,2,4\},\{2,3\},\{1,3,4\}\).
 Solution: \(R=\{1,2,3,4\}\).

Reduction:

- Let n be the size of an instance of SDR.
- SDR $\leq_{o(n)}$ BIPARTITE MATCHING.
- Given an instance of $S_{1}, S_{2}, \cdots, S_{k}$ of SDR, transform it to an instance $G=(U, V, E)$ of BIPARTITE MATCHING.
- Let $S=\cup_{i=1}^{k} S_{i} . U=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$.
- $V=S . E=\left\{\left(S_{i}, x_{j}\right) \mid x_{j} \in S_{i}\right\}$.

SDR Example

\{1\} 1
$\{1,2,4\} \quad 2$
$\{2,3\} \quad 3$
$\{1,3,4\} \quad 4$

A solution to SDR is easily obtained from a maximum matching in G of size k.

Simple Polygon Lower Bound (1)

- SIMPLE POLYGON: Given a set of n points in the plane, find a simple polygon with those points as vertices.
- SORTING $\leq_{o(n)}$ SIMPLE POLYGON.
- Instance of SORTING: $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$.
- In linear time, find $M=\max \left|x_{i}\right|$.
- Let C be a circle centered at the origin, of radius M.
- Instance of SIMPLE POLYGON:

$$
\left\{\left(x_{1}, \sqrt{M^{2}-x_{i}^{2}}\right), \cdots,\left(x_{n}, \sqrt{M^{2}-x_{n}^{2}}\right)\right\} .
$$

All these points fall on C in their sorted order.

- The only simple polygon having the points on C as vertices is the convex one.

Notice o, not O.So, given good transformations, both problems take at least $\Omega\left(P_{1}\right)$ and at most $O\left(P_{2}\right)$.

Since it is a set, there are no duplicates.

Or, $R=\{1,4,2,3\}$
U is the sets.
V is the elements from all of the sets (union the sets).
E matches elements to sets.

Need better figure here.

Need a figure here showing the curve.

Simple Polygon Lower Bound (2)

\qquad Simple Polygon Lower Bound (2)

- As with CONVEX HULL, the sorted order is easily obtained from the solution to SIMPLE POLYGON.
- By the Lower Bound Theorem, SIMPLE POLYGON is $\Omega(n \log n)$.

Matrix Multiplication

Matrix multiplication can be reduced to a number of other problems.

In fact, certain special cases of MATRIX MULTIPLY are equivalent to MATRIX MULTIPLY in asymptotic complexity.

SYMMETRIC MATRIX MULTIPLY (SYM):

- Instance: a symmetric $n \times n$ matrix.

MATRIX MULTIPLY $\leq_{O\left(n^{2}\right)}$ SYM.

$$
\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & B^{T} \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
A B & 0 \\
0 & A^{T} B^{T}
\end{array}\right]
$$

Matrix Squaring

Problem: Compute A^{2} where A is an $n \times n$ matrix.

MATRIX MULTIPLY $\leq_{O\left(n^{2}\right)}$ SQUARING.

$$
\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
A B & 0 \\
0 & B A
\end{array}\right]
$$

Linear Programming (LP)

Maximize or minimize a linear function subject to linear constraints.
Variables: vector $\mathbf{X}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
Objective Function: $\mathbf{c} \cdot \mathbf{X}=\sum c_{i} x_{i}$.
Inequality Constraints: $\mathbf{A}_{\mathbf{i}} \cdot \mathbf{X} \leq b_{i} \quad 1 \leq i \leq k$.
Equality Constraints: $\mathbf{E}_{\mathbf{i}} \cdot \mathbf{X}=d_{i} \quad 1 \leq i \leq m$.
Non-negative Constraints: $x_{i} \geq 0$ for some is.

Clearly SYM is not harder than MM. Is it easier? No...

So, having a good SYM would give a good MM. The other way of looking at it is that SYM is just as hard as MM.

no notes

Example of a "super problem" that many problems can reduce to. Objective function defeinse what we want to minimize.
$\mathbf{A}_{\mathbf{i}}$ is a vector $-k$ vectors give the k b's.

Not all of the constraint types are used for every problem.

Use of LP

$\mathrm{N}_{\mathrm{N}}^{\mathrm{CS} 5114}$

Reasons for considering LP:

- Practical algorithms exist to solve LP.
- Many real-world optimization problems are naturally stated as LP.
- Many optimization problems are reducible to LP.

Network Flow Reduction (1)

- Reduce NETWORK FLOW to LP.
- Let $x_{1}, x_{2}, \cdots, x_{n}$ be the flows through edges.
- Objective function: For $S=$ edges out of the source, maximize

$$
\sum_{i \in S} x_{i} .
$$

- Capacity constraints: $x_{i} \leq c_{i} \quad 1 \leq i \leq n$.
- Flow conservation:

For a vertex $v \in V-\{s, t\}$,
let $Y(v)=$ set of x_{i} for edges leaving v.
$Z(v)=$ set of x_{i} for edges entering v.

$$
\sum_{Z(V)} x_{i}-\sum_{Y(V)} x_{i}=0 .
$$

Network Flow Reduction (2)

Non-negative constraints: $x_{i} \geq 0 \quad 1 \leq i \leq n$.
Maximize: $x_{1}+x_{4}$ subject to:

$$
\begin{aligned}
& x_{1} \leq 4 \\
& x_{2} \leq 3 \\
& x_{3} \leq 2 \\
& x_{4} \leq 5 \\
& x_{5} \leq 7 \\
& x_{1}+x_{3}-x_{2}=0 \\
& x_{4}-x_{3}-x_{5}=0 \\
& x_{1}, \cdots, x_{5} \geq 0
\end{aligned}
$$

Matching

- Start with graph $G=(V, E)$.
- Let $x_{1}, x_{2}, \cdots, x_{n}$ represent the edges in E.
- $x_{i}=1$ means edge i is matched.
- Objective function: Maximize

$$
\sum_{i=1}^{n} x_{i} .
$$

- subject to: (Let $N(v)$ denote edges incident on v)

$$
\begin{aligned}
& \sum_{N(V)} x_{i} \leq 1 \\
& x_{i} \geq 0 \quad 1 \leq i \leq n
\end{aligned}
$$

- Integer constraints: Each x_{i} must be an integer.
- Integer constraints makes this INTEGER LINEAR PROGRAMMING (ILP).

Summary

NETWORK FLOW $\leq_{o(n)}$ LP.
MATCHING $\leq_{o(n)}$ ILP.

Summary of Reduction

Importance:

(1) Compare difficulty of problems.
(2) Prove new lower bounds.
(3) Black box algorithms for "new" problems in terms of (already solved) "old" problems.
(4) Provide insights.

Warning:

- A reduction does not provide an algorithm to solve a problem - only a transformation.
- Therefore, when you look for a reduction, you are not trying to solve either problem.

Another Warning

The notation $P_{1} \leq P_{2}$ is meant to be suggestive.
Think of P_{1} as the easier, P_{2} as the harder problem.

Always transform from instance of P_{1} to instance of P_{2}.

Common mistake: Doing the reduction backwards (from P_{2} to P_{1}).

DON'T DO THAT!

Common Problems used in Reductions

NETWORK FLOW

MATCHING
SORTING

no notes

