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Geometric Algorithms g Geometrie Algoriihms -
Potentially large set of objects to manipulate. Same principles often apply to 3D, but it may be more
@ Possibly millions of points, lines, squares, circles. complicated.

- . . We will avoid continuous problems such as polygon
@ Efficiency is crucial. P pog

intersection.
Computational Geometry Special cases: Geometric programming is much like other
@ Will concentrate on discrete algorithms — 2D programming in this sense. But there are a LOT of special

cases! Co-point, co-linear, co-planar, horizontal, vertical, etc.

Practical considerations

. Numeric stability: Each intersection point in a cascade of
@ Special cases

) S intersections might require increasing precision to represent the
® Numeric stability computed intersection, even when the point coordinates start
as integers. Floating point causes problems!

< CS5114 Defintons
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Definitions 3 —efiitions
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@ A point is represented by a pair of coordinates (x,y).

@ Aline is represented by distinct points p and q. Line alternate representation: slope and intercept.

» Manber’s notation: —p — q—. For polygons, order matters. A left-handed and right-handed

@ Aline segment is also represented by a pair of distinct triangle are not the same even if they occupy the same space.

points: the endpoints.
» Notation: p — q.

@ A path P is a sequence of points py, p2, - -, pn @nd the
line segments p; — P2, P2 — Ps. - - - , Pn_1 — Pn CONNEcting
them.

@ A closed path has p; = p,. This is also called a
polygon .

» Points = vertices.
» A polygon is a sequence of points, not a set.
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Definitions (cont)

L Definitions (cont)
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Definitions (cont)

no notes
@ Simple Polygon : The corresponding path does not
intersect itself.
» A simple polygon encloses a region of the plane INSIDE
the polygon.
@ Basic operations, assumed to be computed in constant
time:
» Determine intersection point of two line segments.
» Determine which side of a line that a point lies on.
» Determine the distance between two points.
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§ CS 5114 Point in Polygon
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Point in Polygon 2 L pointin Polygon
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Problem : Given a simple polygon P and a point g,
determine whether q is inside or outside P. Special cases:
Basic approach: e Line intersects polygon at a vertex, goes in to out.
e Castaray f-rom q to outside P. Call this L e Line intersects poly. at inflection point (stays in or stays out).
@ Count the number of intersections between L and the e Line intersects polygon through a line.

edges of P.

i ] i L Simplify calculations by making line horizontal.
@ If count is even, then q is outside. Else, q is inside.

Accuracy of calculations is not a problem with integer
coordinates for points and a horizontal line. But think about
representing the intersection point for two arbitrary line

Problems:
@ How to find intersections?

@ Accuracy of calculations. segements (from a polygon intersection operation). Cascading
@ Special cases. intersections can lead to ever-increasing demand for precision
Spring 2010 5/39 in coordinate representation.
g CS 5114 Point in Polygon Analysis (1)
o
a L
.. : Point in Polygon Analysis (1
Point in Polygon Analysis (1) = it in Polygon Analysis (1
8

' _ no notes
Time complexity:

@ Compare the ray to each edge.
@ Each intersection takes constant time.
@ Running time is O(n).

Improving efficiency:
@ O(n) is best possible for problem as stated.
@ Many lines are “obviously” not intersected.
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Point in Polygon Analysis (2)

LPoint in Polygon Analysis (2)

Point in Polygon Analysis (2)
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Two general principles for geometrical and graphical Spatial data structures can help.
algorithms:
@ Operational (constant time) improvements: “Fast checks” take time. When they “win” (they rule something
» Only do full calc. for ‘good’ candidates out), they save time. When they “lose” (they fail to rule
» Perform ‘fast checks’ to eliminate edges. something out) they add extra time. Sot hey have to “win” often
» Ex: If p.y > g.y and p,.y > q.y then don’t bother to do enough so that the time savings outweighs the cost of the
full intersection calculation. check.

© For many point-in-polygon operations, preprocessing
may be worthwhile.
» Ex: Sort edges by min and max y values.
Only check for edges covering y value of point g.

< CS5114 Constructing Simple Polygons
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Constructing Simple Polygons S Constructing Simple Polygons
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Problem : Given a set of points, connect them with a simple o ) )
closed path. (1) Could easily yield an intersection.

Approaches: (2) The problem is connecting point p, back to p;. This could

. ield an intersection.
© Randomly select points. y

© Use a scan line:
» Sort points by y value.
» Connect in sorted order.
© Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.
» Simplifying assumption: The scan line hits one point at a
time.
» Do a rotating scan through points, connecting as you go.
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Simplifying assumption is that the points are not colinear w.r.t.
the scan line.
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Validation

Theorem : Connecting points in the order in which they are
encountered by the rotating scan line creates a simple

polygon.

So, the key is to pick a point for the center of the rotating scan
that guarentees that the angle never reachese 180oc.

Proof :
@ Denote the points py, - - - , pn by the order in which they
are encountered by the scan line.
@ Foralli, 1 <i < n,edge p;i — pi.1 is in a distinct slice of
the circle formed by a rotation of the scan line.
@ Thus, edge p; — pi+1 does not intersect any other edge.

@ Exception: If the angle between points p; and p;.; is
greater than 180o.
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Implementation
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Time complexsy: Dominated by sort.

How do we find the point for the scanline center? Pick as z the point with greatest x value (and least y value if
there is a tie).

Actually, we don’t care about angle — slope will do.
The next point is the next largest angle between z — p; and the
vertical line through z. It is important to use the slope, because

Select z; then our computation is a constant-time operation with no
for (i = 2 to n) transendental functions.
compute the slope of line z — p;.
Sort points p; by slope; z is the point with greatest x value (minimum y in case of tie)So,
label points in sorted order; time is ©(n logn)

Time complexity: Dominated by sort.
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Convex Hull

@ A convex hull_is a polygon such that any line segment no notes

connecting two points inside the polygon is itself entirely
inside the polygon.
@ A convex path is a path of points p1,p2,-- - , pn Such
that connecting p; and p, results in a convex polygon.
@ The convex hull for a set of points is the smallest convex
polygon enclosing all the points.
» imagine placing a tight rubberband around the points.

@ The point belongs to the hull if it is a vertex of the hull.
@ Problem : Compute the convex hull of n points.
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CS 5114 Simple Convex Hull Algorithm
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LSimpIe Convex Hull Algorithm

Simple Convex Hull Algorithm
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no notes
IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

© nth point is inside the hull.
» No change.
@ nth point is outside the convex hull
» “Stretch” hull to include the point (dropping other points).
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Subproblems (1)

Potential problems as we process points:
© Determine if point is inside convex hull.
© Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point — some sort of min or max point.

If we always pick the point with max x, what problem is
eliminated?
Stretch:

© Find vertices to eliminate

@ Add new vertex between existing vertices.

CS 5114: Theory of Algorithms Spring 2010

Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point q.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.
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Sorted-Order Algorithm

set convex hull to be p1, p2, ps;

forqg=4ton {
order points on hull with respect to pg;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

Time complexity

Sort by x value: O(nlogn).

For gth point:
@ Compute angles: O(q)
@ Find max and min: O(q)
@ Delete and insert points: O(q).

T(n) =T(n—1)+0O(n) = O(n?)

13/39
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Why? Lots of points don't affect the hull, and stretching is
expensive.

Subproblem 1 can be eliminated: the max is always outside the
polygon.
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Subproblems (2)
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Thes supporingInes iersec at i and T ot
on'he (cuten)conie hu.

“Min” and “max” with respect to the angle formed by the
supporting lines.
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Sorted-Order Algorithm

LSorted-Order Algorithm
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Sort by x value.

< CS5114 Time compledy
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[s2] ‘Sort by x value: O{nlogn).

o L .

o Time complexity e

=1 S

g =Tl 1) 00 ~0()
no notes
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Gift Wrapping Concept

LGift Wrapping Concept

Gift Wrapping Concept
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@ Straightforward algorithm has inefficiencies. Straightforward algorithm spends time to build convex hull with
@ Alternative: Consider the whole set and build hull points interior to final convex hull.
directly.
@ Approach:
» Find an extreme point as start point.
» Find a supporting line.
» Use the vertex on the supporting line as the next start
point and continue around the polygon.
@ Corresponding Induction Hypothesis:
» Given a set of n points, we can find a convex path of
length k < n that is part of the convex hull.
@ The induction step extends the PATH, not the hull.

CS 5114 Gift Wrapping Algorithm
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Gift Wrapping Algorithm

LGift Wrapping Algorithm

2010-03-24

ALGORITHM GiftWrapping(Pointset S) { no notes
ConvexHull P;

P =0;
Point p = the point in S with largest x coordinate;
P=PUp;
Line L = the vertical line containing p;
while (P is not complete) do {
Point q = the point in S such that angle between line
—p — g— and L is minimal along all points;
P=PuUQq;
L=-p-0q-
p=aq;
}
}
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Gift Wrapping Analysis

LGift Wrapping Analysis

Gift Wrapping Analysis
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0O(n?). Actually, O(hn) where h is the number of edges to hull.

Complexity:
@ To add kth point, find the min angle among n — k lines.
@ Do this h times (for h the number of points on hull).
@ Often good in average case.
@ Could be bad in worst case.
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Graham'’s Scan
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@ Approach: See Manber Figure 8.11.

» Start with the points ordered with respect to some
maximal point.
» Process these points in order, adding them to the set of
processed points and its convex hull.
» Like straightforward algorithm, but pick better order.
@ Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.
@ Process points in this order, maintaining the convex hull
of points seen so far.
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Graham'’s Scan (cont)

Induction Hypothesis:

@ Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n — 1 points corresponding to the convex hull of the
n — 1 points.

Induction Step:
@ Add the kth point to the set.
@ Check the angle formed by px, Px_1, Pk_2-

@ If angle < 1800 with respect to inside of the polygon,
then delete pyx_; and repeat.
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Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p; = the point in P with largest x coordinate;
P = SimplePolygon(P, p1); // Order points in P

Point q; = p1;
Point g, = py;
Point g3 = ps;
intm = 3;

for (k =4 ton){
while (angle(—Qm-1 — dm—, —Gm — Px—) < 180°) do
m=m-1;
m=m-+1;
Om = Px;
}
}
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Graham’s Scan Analysis

Time complexity:
@ Other than Simple Polygon, all steps take O(n) time.
@ Thus, total cost is O(nlogn).
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Lower Bound for Computing Convex
Hull

Theorem : Sorting is transformable to the convex hull
problem in linear time.

Proof :
@ Given a number x;, convert it to point (x;, x?) in 2D.
@ All such points lie on the parablay = x?2.

@ The convex hull of this set of points will consist of a list
of the points sorted by x.

Corollary : A convex hull algorithm faster than O(n log n)
would provide a sorting algorithm faster than O(nlogn).
Spring 2010 24/39
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Graham's Scan (cont)

LGraham’s Scan (cont)
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no notes

CS 5114 Graham's Scan Algorithm

LGraham’s Scan Algorithm
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no notes
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Graham's Scan Analysis

Tine complessy
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LGraham’s Scan Analysis
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no notes
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Lower Bound for Computing Convex
Hul

LLower Bound for Computing Convex Hull
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(Corolary : A convex hl ks tasterten O{ologr)
ok roide  Soring algrihm fstertan Ofnlog).

WARNING: These are the most important two slides of the
semester!
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“Black Box” Model
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This is the fundamental concept of a reduction. We will use this

. . constantly for the rest of the semester.
A Sorting Algorithm: y

keys — points: O(n)
Convex Hull
CH Polygon — Sorted Keys: O(n)
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@ Problem : Given a set of n points, find the pair whose

L Next try: Ordering the points by x value still doesn’t help.
separation is the least.

Example of a proximity problem

» Make sure no two components in a computer chip are
too close.

Related problem:

» Find the nearest neighbor (or k nearest neighbors) for
every point.

Straightforward solution: Check distances for all pairs.
Induction Hypothesis: Can solve for n — 1 points.
Adding the nth point still requires comparing to all other
points, requiring O(n?) time.
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Divide and Conquer Algorithm

2010-03-24

Assume n = 2K points.
@ Approach: Split into two equal size sets, solve for each,

and rejoin.

@ How to split?

» Want as much valid information as possible to result.

@ Try splitting into two disjoint parts separated by a
dividing plane.

@ Then, need only worry about points close to the dividing
plane when rejoining.

@ To divide: Sort by x value and split in the middle.

Note: We will actually compute smallest distance, not pair of
points with smallest distance.
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§, CS 5114 Closest Pair Algorithm

o e R——
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1 1 o Closest Pair Algorithm e R IR
Closest Pair Algorithm = ¢ =
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Induction Hypothesis: See Manber Figure 8.13

@ We can solve closest pair for two sets of size n/2
named P, and Ps.

Let minimal distance in P; be d;, and for P, be d,.
@ Assume d; < d,.

Only points in the strip of width d; to either side of the
dividing line need to be considered.

Worst case: All points are in the strip.
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Closest Pair Algorithm (cont)

Observation:

@ A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d; distance apart.

Sorting by y value limits the search required.
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Closest Pair Algorithm Cost

O(nlogn) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(nlogn).

Scan points in strip, comparing against the other strip: O(n).
T(n) =2T(n/2) + O(nlogn).

2
T(n) = O(nlog”n).
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A Faster Algorithm
The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
@ Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets — an O(n) step.

T(n) =2T(n/2) + O(n).
T(n) = O(nlogn).
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Horizontal and Vertical Segments

@ Intersection Problems:
» Detect if any intersections ...
» Report any intersections ...
... of a set of <line segments>.
@ We can simplify the problem by restricting to vertical
and horizontal line segments.
@ Example applications:
» Determine if wires or components of a VLSI design
Cross.
» Determine if they are too close.

* Solution: Expand by 1/2 the tolerance distance and
check for intersection.

» Hidden line/hidden surface elimination for Computer
Graphics.
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LCIosest Pair Algorithm (cont)

See Manber Figure 8.14
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LCIosest Pair Algorithm Cost

no notes
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LA Faster Algorithm

no notes
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LHorizontal and Vertical Segments

no notes
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Problem : Given a set of n horizontal and m vertical line mT—
segments, find all intersections between them. This is a “classic” computational geometry problem/algorithm
@ Assume no intersections between 2 vertical or 2
horizontal lines.
Straightforward algorithm: Make all n x m comparisons.
If there are n x m intersections, this cannot be avoided.
However, we would like to do better when there are fewer
intersections.
Solution: Special order of induction will be imposed by a
sweep line .
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Sweep Line Algorithms (2) g Steep Line Algoritm (2) B ——
Plane sweep or sweep line algorithms pass an imaginary The induction here is to add a special nth element.
line through the set of objects.
As objects are encountered, they are stored in a data
structure.
When the sweep passes, they are removed.
Preprocessing Step:
@ Sort all line segments by x coordinate.
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Inductive approach: Since we processed by x coordinate (i.e., sweeping

@ We have already processed the first k — 1 end points horizontally) do (2). When we process a vertical line, it is clear
when we encounter endpoint K. which horizontal lines would be relevent (the ones that cross

@ Furthermore, we store necessary information about the that include the x coordinate of the vertical line), and so could
previous line segments to efficiently calculate hope to find them in a data structure. If we stored vertical lines,
intersections with the line for point k. when we process the next horizontal line, it is not so obvious

how to find all vertical lines in the horizontal range.

Possible approaches:
@ Store vertical lines, calculate intersection for horizontal

lines.
@ Store horizontal lines, calculate intersection for vertical
lines.
Spring 2010 35/39
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What do we need when encountering line L?

@ NOT horizontal lines whose right endpoint is to the left
of L.

@ Maintain active line segments.

See Figure 8.17 in Manber.

y coordinates of the active horizontal lines.

What do we check for intersection?

Induction Hypothesis:

@ Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k.x, and to eliminate horizontal
lines to the left of k.
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Sweep Line Tasks
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Deleting horizontal line is O(log n).
Things to do:

@ (k + 1)th endpoint is right endpoint of horizontal line. Inserting horizontal line is O(log n).
> Delete horizontal line.

© (k + 1)th endpoint is left endpoint of horizontal line. Finding intersections is O(logn + r) for r intersections.
> Insert horizontal line.

© (k + 1)th endpoint is vertical line.
» Find intersections with stored horizontal lines.
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To have an efficient algorithm, we need efficient no notes
@ Intersection
@ Deletion
@ 1 dimensional range query

Example solution: Balanced search tree
@ Insert, delete, locate in log n time.

@ Each additional intersection calculation is of constant
cost beyond first (traversal of tree).
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Data Structure Requirements (2)

LData Structure Requirements (2)

Data Structure Requirements (2)
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Time complexity:
@ Sort by x: O((m + n)log(m + n)).
@ Each insert/delete: O(logn).
@ Total cost is O(nlogn) for horizontal lines.

no notes

Processing vertical lines includes one-dimensional range
query:
@ O(logn +r) where r is the number of intersections for
this line.

Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.
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