
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 39

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer20
10

-0
3-

24

CS 5114

Title page

Geometric Algorithms

Potentially large set of objects to manipulate.

Possibly millions of points, lines, squares, circles.

Efficiency is crucial.

Computational Geometry

Will concentrate on discrete algorithms – 2D

Practical considerations

Special cases

Numeric stability

CS 5114: Theory of Algorithms Spring 2010 2 / 39

Geometric Algorithms

Potentially large set of objects to manipulate.

Possibly millions of points, lines, squares, circles.

Efficiency is crucial.

Computational Geometry

Will concentrate on discrete algorithms – 2D

Practical considerations

Special cases

Numeric stability

20
10

-0
3-

24

CS 5114

Geometric Algorithms

Same principles often apply to 3D, but it may be more
complicated.
We will avoid continuous problems such as polygon
intersection.

Special cases: Geometric programming is much like other
programming in this sense. But there are a LOT of special
cases! Co-point, co-linear, co-planar, horizontal, vertical, etc.

Numeric stability: Each intersection point in a cascade of
intersections might require increasing precision to represent the
computed intersection, even when the point coordinates start
as integers. Floating point causes problems!

Definitions

A point is represented by a pair of coordinates (x , y).
A line is represented by distinct points p and q.

◮ Manber’s notation: −p − q−.
A line segment is also represented by a pair of distinct
points: the endpoints.

◮ Notation: p − q.

A path P is a sequence of points p1, p2, · · · , pn and the
line segments p1 − p2, p2 − p3, · · · , pn−1 − pn connecting
them.
A closed path has p1 = pn. This is also called a
polygon .

◮ Points ≡ vertices.
◮ A polygon is a sequence of points, not a set .

CS 5114: Theory of Algorithms Spring 2010 3 / 39

Definitions

A point is represented by a pair of coordinates (x , y).
A line is represented by distinct points p and q.

◮ Manber’s notation: −p − q−.
A line segment is also represented by a pair of distinct
points: the endpoints.

◮ Notation: p − q.

A path P is a sequence of points p1, p2, · · · , pn and the
line segments p1 − p2, p2 − p3, · · · , pn−1 − pn connecting
them.
A closed path has p1 = pn. This is also called a
polygon .

◮ Points ≡ vertices.
◮ A polygon is a sequence of points, not a set .

20
10

-0
3-

24

CS 5114

Definitions

Line alternate representation: slope and intercept.
For polygons, order matters. A left-handed and right-handed
triangle are not the same even if they occupy the same space.

Definitions (cont)

Simple Polygon : The corresponding path does not
intersect itself.

◮ A simple polygon encloses a region of the plane INSIDE
the polygon.

Basic operations, assumed to be computed in constant
time:

◮ Determine intersection point of two line segments.
◮ Determine which side of a line that a point lies on.
◮ Determine the distance between two points.

CS 5114: Theory of Algorithms Spring 2010 4 / 39

Definitions (cont)

Simple Polygon : The corresponding path does not
intersect itself.

◮ A simple polygon encloses a region of the plane INSIDE
the polygon.

Basic operations, assumed to be computed in constant
time:

◮ Determine intersection point of two line segments.
◮ Determine which side of a line that a point lies on.
◮ Determine the distance between two points.20

10
-0

3-
24

CS 5114

Definitions (cont)

no notes



Point in Polygon

Problem : Given a simple polygon P and a point q,
determine whether q is inside or outside P.

Basic approach:
Cast a ray from q to outside P. Call this L.
Count the number of intersections between L and the
edges of P.
If count is even, then q is outside. Else, q is inside.

Problems:
How to find intersections?
Accuracy of calculations.
Special cases.

CS 5114: Theory of Algorithms Spring 2010 5 / 39

Point in Polygon

Problem : Given a simple polygon P and a point q,
determine whether q is inside or outside P.

Basic approach:
Cast a ray from q to outside P. Call this L.
Count the number of intersections between L and the
edges of P.
If count is even, then q is outside. Else, q is inside.

Problems:
How to find intersections?
Accuracy of calculations.
Special cases.

20
10

-0
3-

24

CS 5114

Point in Polygon

Special cases:

• Line intersects polygon at a vertex, goes in to out.

• Line intersects poly. at inflection point (stays in or stays out).

• Line intersects polygon through a line.

Simplify calculations by making line horizontal.

Accuracy of calculations is not a problem with integer
coordinates for points and a horizontal line. But think about
representing the intersection point for two arbitrary line
segements (from a polygon intersection operation). Cascading
intersections can lead to ever-increasing demand for precision
in coordinate representation.

Point in Polygon Analysis (1)

Time complexity:

Compare the ray to each edge.

Each intersection takes constant time.

Running time is O(n).

Improving efficiency:

O(n) is best possible for problem as stated.

Many lines are “obviously” not intersected.

CS 5114: Theory of Algorithms Spring 2010 6 / 39

Point in Polygon Analysis (1)

Time complexity:

Compare the ray to each edge.

Each intersection takes constant time.

Running time is O(n).

Improving efficiency:

O(n) is best possible for problem as stated.

Many lines are “obviously” not intersected.20
10

-0
3-

24

CS 5114

Point in Polygon Analysis (1)

no notes

Point in Polygon Analysis (2)

Two general principles for geometrical and graphical
algorithms:

1 Operational (constant time) improvements:
◮ Only do full calc. for ‘good’ candidates
◮ Perform ‘fast checks’ to eliminate edges.
◮ Ex: If p1.y > q.y and p2.y > q.y then don’t bother to do

full intersection calculation.
2 For many point-in-polygon operations, preprocessing

may be worthwhile.
◮ Ex: Sort edges by min and max y values.

Only check for edges covering y value of point q.

CS 5114: Theory of Algorithms Spring 2010 7 / 39

Point in Polygon Analysis (2)

Two general principles for geometrical and graphical
algorithms:

1 Operational (constant time) improvements:
◮ Only do full calc. for ‘good’ candidates
◮ Perform ‘fast checks’ to eliminate edges.
◮ Ex: If p1.y > q.y and p2.y > q.y then don’t bother to do

full intersection calculation.
2 For many point-in-polygon operations, preprocessing

may be worthwhile.
◮ Ex: Sort edges by min and max y values.

Only check for edges covering y value of point q.

20
10

-0
3-

24

CS 5114

Point in Polygon Analysis (2)

Spatial data structures can help.

“Fast checks” take time. When they “win” (they rule something
out), they save time. When they “lose” (they fail to rule
something out) they add extra time. Sot hey have to “win” often
enough so that the time savings outweighs the cost of the
check.

Constructing Simple Polygons

Problem : Given a set of points, connect them with a simple
closed path.

Approaches:
1 Randomly select points.
2 Use a scan line:

◮ Sort points by y value.
◮ Connect in sorted order.

3 Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.

◮ Simplifying assumption: The scan line hits one point at a
time.

◮ Do a rotating scan through points, connecting as you go.

CS 5114: Theory of Algorithms Spring 2010 8 / 39

Constructing Simple Polygons

Problem : Given a set of points, connect them with a simple
closed path.

Approaches:
1 Randomly select points.
2 Use a scan line:

◮ Sort points by y value.
◮ Connect in sorted order.

3 Sort points, but instead of by y value, sort by angle with
respect to the vertical line passing through some point.

◮ Simplifying assumption: The scan line hits one point at a
time.

◮ Do a rotating scan through points, connecting as you go.

20
10

-0
3-

24

CS 5114

Constructing Simple Polygons

(1) Could easily yield an intersection.

(2) The problem is connecting point pn back to p1. This could
yield an intersection.

Simplifying assumption is that the points are not colinear w.r.t.
the scan line.



Validation

Theorem : Connecting points in the order in which they are
encountered by the rotating scan line creates a simple
polygon.

Proof :

Denote the points p1, · · · , pn by the order in which they
are encountered by the scan line.

For all i , 1 ≤ i < n, edge pi − pi+1 is in a distinct slice of
the circle formed by a rotation of the scan line.

Thus, edge pi − pi+1 does not intersect any other edge.

Exception: If the angle between points pi and pi+1 is
greater than 180◦.

CS 5114: Theory of Algorithms Spring 2010 9 / 39

Validation

Theorem : Connecting points in the order in which they are
encountered by the rotating scan line creates a simple
polygon.

Proof :

Denote the points p1, · · · , pn by the order in which they
are encountered by the scan line.

For all i , 1 ≤ i < n, edge pi − pi+1 is in a distinct slice of
the circle formed by a rotation of the scan line.

Thus, edge pi − pi+1 does not intersect any other edge.

Exception: If the angle between points pi and pi+1 is
greater than 180◦.

20
10

-0
3-

24

CS 5114

Validation

So, the key is to pick a point for the center of the rotating scan
that guarentees that the angle never reachese 180◦.

Implementation

How do we find the point for the scanline center?

Actually, we don’t care about angle – slope will do.

Select z;
for (i = 2 to n)

compute the slope of line z − pi .
Sort points pi by slope;
label points in sorted order;

Time complexity: Dominated by sort.
CS 5114: Theory of Algorithms Spring 2010 10 / 39

Implementation

How do we find the point for the scanline center?

Actually, we don’t care about angle – slope will do.

Select z;
for (i = 2 to n)

compute the slope of line z − pi .
Sort points pi by slope;
label points in sorted order;

Time complexity: Dominated by sort.

20
10

-0
3-

24

CS 5114

Implementation

Pick as z the point with greatest x value (and least y value if
there is a tie).

The next point is the next largest angle between z − pi and the
vertical line through z. It is important to use the slope, because
then our computation is a constant-time operation with no
transendental functions.

z is the point with greatest x value (minimum y in case of tie)So,
time is Θ(n log n)

Convex Hull

A convex hull is a polygon such that any line segment
connecting two points inside the polygon is itself entirely
inside the polygon.

A convex path is a path of points p1, p2, · · · , pn such
that connecting p1 and pn results in a convex polygon.
The convex hull for a set of points is the smallest convex
polygon enclosing all the points.

◮ imagine placing a tight rubberband around the points.

The point belongs to the hull if it is a vertex of the hull.

Problem : Compute the convex hull of n points.

CS 5114: Theory of Algorithms Spring 2010 11 / 39

Convex Hull

A convex hull is a polygon such that any line segment
connecting two points inside the polygon is itself entirely
inside the polygon.

A convex path is a path of points p1, p2, · · · , pn such
that connecting p1 and pn results in a convex polygon.
The convex hull for a set of points is the smallest convex
polygon enclosing all the points.

◮ imagine placing a tight rubberband around the points.

The point belongs to the hull if it is a vertex of the hull.

Problem : Compute the convex hull of n points.20
10

-0
3-

24

CS 5114

Convex Hull

no notes

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

1 nth point is inside the hull.
◮ No change.

2 nth point is outside the convex hull
◮ “Stretch” hull to include the point (dropping other points).

CS 5114: Theory of Algorithms Spring 2010 12 / 39

Simple Convex Hull Algorithm

IH: Assume that we can compute the convex hull for < n
points, and try to add the nth point.

1 nth point is inside the hull.
◮ No change.

2 nth point is outside the convex hull
◮ “Stretch” hull to include the point (dropping other points).

20
10

-0
3-

24

CS 5114

Simple Convex Hull Algorithm

no notes



Subproblems (1)

Potential problems as we process points:
1 Determine if point is inside convex hull.
2 Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point – some sort of min or max point.

If we always pick the point with max x , what problem is
eliminated?
Stretch:

1 Find vertices to eliminate
2 Add new vertex between existing vertices.

CS 5114: Theory of Algorithms Spring 2010 13 / 39

Subproblems (1)

Potential problems as we process points:
1 Determine if point is inside convex hull.
2 Stretch a hull.

The straightforward induction approach is inefficient. (Why?)

Our standard induction alternative: Select a special point for
the nth point – some sort of min or max point.

If we always pick the point with max x , what problem is
eliminated?
Stretch:

1 Find vertices to eliminate
2 Add new vertex between existing vertices.

20
10

-0
3-

24

CS 5114

Subproblems (1)

Why? Lots of points don’t affect the hull, and stretching is
expensive.

Subproblem 1 can be eliminated: the max is always outside the
polygon.

Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point q.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.

CS 5114: Theory of Algorithms Spring 2010 14 / 39

Subproblems (2)

Supporting line of a convex polygon is a line intersecting
the polygon at exactly one vertex.

Only two supporting lines between convex hull and max
point q.

These supporting lines intersect at “min” and “max” points
on the (current) convex hull.20

10
-0

3-
24

CS 5114

Subproblems (2)

“Min” and “max” with respect to the angle formed by the
supporting lines.

Sorted-Order Algorithm

set convex hull to be p1, p2, p3;
for q = 4 to n {

order points on hull with respect to pq;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

}

CS 5114: Theory of Algorithms Spring 2010 15 / 39

Sorted-Order Algorithm

set convex hull to be p1, p2, p3;
for q = 4 to n {

order points on hull with respect to pq;
Select the min and max values from ordering;
Delete all points between min and max;
Insert pq between min and max;

}20
10

-0
3-

24

CS 5114

Sorted-Order Algorithm

Sort by x value.

Time complexity

Sort by x value: O(n log n).

For qth point:

Compute angles: O(q)

Find max and min: O(q)

Delete and insert points: O(q).

T (n) = T (n − 1) + O(n) = O(n2)

CS 5114: Theory of Algorithms Spring 2010 16 / 39

Time complexity

Sort by x value: O(n log n).

For qth point:

Compute angles: O(q)

Find max and min: O(q)

Delete and insert points: O(q).

T (n) = T (n − 1) + O(n) = O(n2)20
10

-0
3-

24

CS 5114

Time complexity

no notes



Gift Wrapping Concept

Straightforward algorithm has inefficiencies.
Alternative: Consider the whole set and build hull
directly.
Approach:

◮ Find an extreme point as start point.
◮ Find a supporting line.
◮ Use the vertex on the supporting line as the next start

point and continue around the polygon.

Corresponding Induction Hypothesis:
◮ Given a set of n points, we can find a convex path of

length k < n that is part of the convex hull.

The induction step extends the PATH, not the hull.

CS 5114: Theory of Algorithms Spring 2010 17 / 39

Gift Wrapping Concept

Straightforward algorithm has inefficiencies.
Alternative: Consider the whole set and build hull
directly.
Approach:

◮ Find an extreme point as start point.
◮ Find a supporting line.
◮ Use the vertex on the supporting line as the next start

point and continue around the polygon.

Corresponding Induction Hypothesis:
◮ Given a set of n points, we can find a convex path of

length k < n that is part of the convex hull.

The induction step extends the PATH, not the hull.

20
10

-0
3-

24

CS 5114

Gift Wrapping Concept

Straightforward algorithm spends time to build convex hull with
points interior to final convex hull.

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P;

P = ∅;
Point p = the point in S with largest x coordinate;
P = P ∪ p;
Line L = the vertical line containing p;
while (P is not complete) do {

Point q = the point in S such that angle between line
−p − q− and L is minimal along all points;

P = P ∪ q;
L = −p − q−;
p = q;

}
}

CS 5114: Theory of Algorithms Spring 2010 18 / 39

Gift Wrapping Algorithm

ALGORITHM GiftWrapping(Pointset S) {
ConvexHull P;

P = ∅;
Point p = the point in S with largest x coordinate;
P = P ∪ p;
Line L = the vertical line containing p;
while (P is not complete) do {

Point q = the point in S such that angle between line
−p − q− and L is minimal along all points;

P = P ∪ q;
L = −p − q−;
p = q;

}
}

20
10

-0
3-

24

CS 5114

Gift Wrapping Algorithm

no notes

Gift Wrapping Analysis

Complexity:

To add k th point, find the min angle among n − k lines.

Do this h times (for h the number of points on hull).

Often good in average case.

Could be bad in worst case.

CS 5114: Theory of Algorithms Spring 2010 19 / 39

Gift Wrapping Analysis

Complexity:

To add k th point, find the min angle among n − k lines.

Do this h times (for h the number of points on hull).

Often good in average case.

Could be bad in worst case.

20
10

-0
3-

24

CS 5114

Gift Wrapping Analysis

O(n2). Actually, O(hn) where h is the number of edges to hull.

Graham’s Scan

Approach:
◮ Start with the points ordered with respect to some

maximal point.
◮ Process these points in order, adding them to the set of

processed points and its convex hull.
◮ Like straightforward algorithm, but pick better order.

Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.

Process points in this order, maintaining the convex hull
of points seen so far.

CS 5114: Theory of Algorithms Spring 2010 20 / 39

Graham’s Scan

Approach:
◮ Start with the points ordered with respect to some

maximal point.
◮ Process these points in order, adding them to the set of

processed points and its convex hull.
◮ Like straightforward algorithm, but pick better order.

Use the Simple Polygon algorithm to order the points by
angle with respect to the point with max x value.

Process points in this order, maintaining the convex hull
of points seen so far.20

10
-0

3-
24

CS 5114

Graham’s Scan

See Manber Figure 8.11.



Graham’s Scan (cont)

Induction Hypothesis:

Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n − 1 points corresponding to the convex hull of the
n − 1 points.

Induction Step:

Add the k th point to the set.

Check the angle formed by pk , pk−1, pk−2.

If angle < 180◦ with respect to inside of the polygon,
then delete pk−1 and repeat.

CS 5114: Theory of Algorithms Spring 2010 21 / 39

Graham’s Scan (cont)

Induction Hypothesis:

Given a set of n points ordered according to algorithm
Simple Polygon, we can find a convex path among the
first n − 1 points corresponding to the convex hull of the
n − 1 points.

Induction Step:

Add the k th point to the set.

Check the angle formed by pk , pk−1, pk−2.

If angle < 180◦ with respect to inside of the polygon,
then delete pk−1 and repeat.

20
10

-0
3-

24

CS 5114

Graham’s Scan (cont)

no notes

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p1 = the point in P with largest x coordinate;
P = SimplePolygon(P, p1); // Order points in P
Point q1 = p1;
Point q2 = p2;
Point q3 = p3;
int m = 3;
for (k = 4 to n) {

while (angle(−qm−1 − qm−, −qm − pk−) ≤ 180◦) do
m = m − 1;

m = m + 1;
qm = pk ;

}
}

CS 5114: Theory of Algorithms Spring 2010 22 / 39

Graham’s Scan Algorithm

ALGORITHM GrahamsScan(Pointset P) {
Point p1 = the point in P with largest x coordinate;
P = SimplePolygon(P, p1); // Order points in P
Point q1 = p1;
Point q2 = p2;
Point q3 = p3;
int m = 3;
for (k = 4 to n) {

while (angle(−qm−1 − qm−, −qm − pk−) ≤ 180◦) do
m = m − 1;

m = m + 1;
qm = pk ;

}
}

20
10

-0
3-

24

CS 5114

Graham’s Scan Algorithm

no notes

Graham’s Scan Analysis

Time complexity:

Other than Simple Polygon, all steps take O(n) time.

Thus, total cost is O(n log n).

CS 5114: Theory of Algorithms Spring 2010 23 / 39

Graham’s Scan Analysis

Time complexity:

Other than Simple Polygon, all steps take O(n) time.

Thus, total cost is O(n log n).

20
10

-0
3-

24

CS 5114

Graham’s Scan Analysis

no notes

Lower Bound for Computing Convex
Hull

Theorem : Sorting is transformable to the convex hull
problem in linear time.

Proof :
Given a number xi , convert it to point (xi , x2

i ) in 2D.
All such points lie on the parabla y = x2.
The convex hull of this set of points will consist of a list
of the points sorted by x .

Corollary : A convex hull algorithm faster than O(n log n)
would provide a sorting algorithm faster than O(n log n).

CS 5114: Theory of Algorithms Spring 2010 24 / 39

Lower Bound for Computing Convex
Hull

Theorem : Sorting is transformable to the convex hull
problem in linear time.

Proof :
Given a number xi , convert it to point (xi , x2

i ) in 2D.
All such points lie on the parabla y = x2.
The convex hull of this set of points will consist of a list
of the points sorted by x .

Corollary : A convex hull algorithm faster than O(n log n)
would provide a sorting algorithm faster than O(n log n).

20
10

-0
3-

24

CS 5114

Lower Bound for Computing Convex Hull

WARNING: These are the most important two slides of the
semester!



“Black Box” Model

A Sorting Algorithm:

keys → points: O(n)

Convex Hull

CH Polygon → Sorted Keys: O(n)

CS 5114: Theory of Algorithms Spring 2010 25 / 39

“Black Box” Model

A Sorting Algorithm:

keys → points: O(n)

Convex Hull

CH Polygon → Sorted Keys: O(n)

20
10

-0
3-

24

CS 5114

“Black Box” Model

This is the fundamental concept of a reduction. We will use this
constantly for the rest of the semester.

Closest Pair

Problem : Given a set of n points, find the pair whose
separation is the least.
Example of a proximity problem

◮ Make sure no two components in a computer chip are
too close.

Related problem:
◮ Find the nearest neighbor (or k nearest neighbors) for

every point.

Straightforward solution: Check distances for all pairs.
Induction Hypothesis: Can solve for n − 1 points.
Adding the nth point still requires comparing to all other
points, requiring O(n2) time.

CS 5114: Theory of Algorithms Spring 2010 26 / 39

Closest Pair

Problem : Given a set of n points, find the pair whose
separation is the least.
Example of a proximity problem

◮ Make sure no two components in a computer chip are
too close.

Related problem:
◮ Find the nearest neighbor (or k nearest neighbors) for

every point.

Straightforward solution: Check distances for all pairs.
Induction Hypothesis: Can solve for n − 1 points.
Adding the nth point still requires comparing to all other
points, requiring O(n2) time.

20
10

-0
3-

24

CS 5114

Closest Pair

Next try: Ordering the points by x value still doesn’t help.

Divide and Conquer Algorithm

Approach: Split into two equal size sets, solve for each,
and rejoin.
How to split?

◮ Want as much valid information as possible to result.

Try splitting into two disjoint parts separated by a
dividing plane.

Then, need only worry about points close to the dividing
plane when rejoining.

To divide: Sort by x value and split in the middle.

CS 5114: Theory of Algorithms Spring 2010 27 / 39

Divide and Conquer Algorithm

Approach: Split into two equal size sets, solve for each,
and rejoin.
How to split?

◮ Want as much valid information as possible to result.

Try splitting into two disjoint parts separated by a
dividing plane.

Then, need only worry about points close to the dividing
plane when rejoining.

To divide: Sort by x value and split in the middle.20
10

-0
3-

24

CS 5114

Divide and Conquer Algorithm

Assume n = 2k points.

Note: We will actually compute smallest distance, not pair of
points with smallest distance.

Closest Pair Algorithm

Induction Hypothesis:

We can solve closest pair for two sets of size n/2
named P1 and P2.

Let minimal distance in P1 be d1, and for P2 be d2.

Assume d1 ≤ d2.

Only points in the strip of width d1 to either side of the
dividing line need to be considered.

Worst case: All points are in the strip.

CS 5114: Theory of Algorithms Spring 2010 28 / 39

Closest Pair Algorithm

Induction Hypothesis:

We can solve closest pair for two sets of size n/2
named P1 and P2.

Let minimal distance in P1 be d1, and for P2 be d2.

Assume d1 ≤ d2.

Only points in the strip of width d1 to either side of the
dividing line need to be considered.

Worst case: All points are in the strip.

20
10

-0
3-

24

CS 5114

Closest Pair Algorithm

See Manber Figure 8.13



Closest Pair Algorithm (cont)

Observation:

A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d1 distance apart.

Sorting by y value limits the search required.

CS 5114: Theory of Algorithms Spring 2010 29 / 39

Closest Pair Algorithm (cont)

Observation:

A single point can be close to only a limited number of
points from the other set.

Reason: Points in the other set are at least d1 distance apart.

Sorting by y value limits the search required.

20
10

-0
3-

24

CS 5114

Closest Pair Algorithm (cont)

See Manber Figure 8.14

Closest Pair Algorithm Cost

O(n log n) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(n log n).

Scan points in strip, comparing against the other strip: O(n).

T (n) = 2T (n/2) + O(n log n).

T (n) = O(n log2 n).

CS 5114: Theory of Algorithms Spring 2010 30 / 39

Closest Pair Algorithm Cost

O(n log n) to sort by x coordinates.

Eliminate points outside strip: O(n).

Sort according to y coordinate: O(n log n).

Scan points in strip, comparing against the other strip: O(n).

T (n) = 2T (n/2) + O(n log n).

T (n) = O(n log2 n).

20
10

-0
3-

24

CS 5114

Closest Pair Algorithm Cost

no notes

A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets – an O(n) step.

T (n) = 2T (n/2) + O(n).
T (n) = O(n log n).

CS 5114: Theory of Algorithms Spring 2010 31 / 39

A Faster Algorithm

The bottleneck was sorting by y coordinate.

If solving the subproblem gave us a sorted set, this would be
avoided.

Strengthen the induction hypothesis:
Given a set of < n points, we know how to find the
closest distance and how to output the set ordered by
the points’ y coordinates.

All we need do is merge the two sorted sets – an O(n) step.

T (n) = 2T (n/2) + O(n).
T (n) = O(n log n).

20
10

-0
3-

24

CS 5114

A Faster Algorithm

no notes

Horizontal and Vertical Segments

Intersection Problems:
◮ Detect if any intersections ...
◮ Report any intersections ...

... of a set of <line segments>.
We can simplify the problem by restricting to vertical
and horizontal line segments.
Example applications:

◮ Determine if wires or components of a VLSI design
cross.

◮ Determine if they are too close.
⋆ Solution: Expand by 1/2 the tolerance distance and

check for intersection.
◮ Hidden line/hidden surface elimination for Computer

Graphics.

CS 5114: Theory of Algorithms Spring 2010 32 / 39

Horizontal and Vertical Segments

Intersection Problems:
◮ Detect if any intersections ...
◮ Report any intersections ...

... of a set of <line segments>.
We can simplify the problem by restricting to vertical
and horizontal line segments.
Example applications:

◮ Determine if wires or components of a VLSI design
cross.

◮ Determine if they are too close.
⋆ Solution: Expand by 1/2 the tolerance distance and

check for intersection.
◮ Hidden line/hidden surface elimination for Computer

Graphics.

20
10

-0
3-

24

CS 5114

Horizontal and Vertical Segments

no notes



Sweep Line Algorithms (1)

Problem : Given a set of n horizontal and m vertical line
segments, find all intersections between them.

Assume no intersections between 2 vertical or 2
horizontal lines.

Straightforward algorithm: Make all n × m comparisons.

If there are n × m intersections, this cannot be avoided.

However, we would like to do better when there are fewer
intersections.

Solution: Special order of induction will be imposed by a
sweep line .

CS 5114: Theory of Algorithms Spring 2010 33 / 39

Sweep Line Algorithms (1)

Problem : Given a set of n horizontal and m vertical line
segments, find all intersections between them.

Assume no intersections between 2 vertical or 2
horizontal lines.

Straightforward algorithm: Make all n × m comparisons.

If there are n × m intersections, this cannot be avoided.

However, we would like to do better when there are fewer
intersections.

Solution: Special order of induction will be imposed by a
sweep line .

20
10

-0
3-

24

CS 5114

Sweep Line Algorithms (1)

This is a “classic” computational geometry problem/algorithm

Sweep Line Algorithms (2)

Plane sweep or sweep line algorithms pass an imaginary
line through the set of objects.

As objects are encountered, they are stored in a data
structure.

When the sweep passes, they are removed.

Preprocessing Step:

Sort all line segments by x coordinate.

CS 5114: Theory of Algorithms Spring 2010 34 / 39

Sweep Line Algorithms (2)

Plane sweep or sweep line algorithms pass an imaginary
line through the set of objects.

As objects are encountered, they are stored in a data
structure.

When the sweep passes, they are removed.

Preprocessing Step:

Sort all line segments by x coordinate.20
10

-0
3-

24

CS 5114

Sweep Line Algorithms (2)

The induction here is to add a special nth element.

Sweep Line Algorithms (3)

Inductive approach:
We have already processed the first k − 1 end points
when we encounter endpoint k .
Furthermore, we store necessary information about the
previous line segments to efficiently calculate
intersections with the line for point k .

Possible approaches:
1 Store vertical lines, calculate intersection for horizontal

lines.
2 Store horizontal lines, calculate intersection for vertical

lines.
CS 5114: Theory of Algorithms Spring 2010 35 / 39

Sweep Line Algorithms (3)

Inductive approach:
We have already processed the first k − 1 end points
when we encounter endpoint k .
Furthermore, we store necessary information about the
previous line segments to efficiently calculate
intersections with the line for point k .

Possible approaches:
1 Store vertical lines, calculate intersection for horizontal

lines.
2 Store horizontal lines, calculate intersection for vertical

lines.

20
10

-0
3-

24

CS 5114

Sweep Line Algorithms (3)

Since we processed by x coordinate (i.e., sweeping
horizontally) do (2). When we process a vertical line, it is clear
which horizontal lines would be relevent (the ones that cross
that include the x coordinate of the vertical line), and so could
hope to find them in a data structure. If we stored vertical lines,
when we process the next horizontal line, it is not so obvious
how to find all vertical lines in the horizontal range.

Organizing Sweep Info

What do we need when encountering line L?
NOT horizontal lines whose right endpoint is to the left
of L.
Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:
Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k .x , and to eliminate horizontal
lines to the left of k .

CS 5114: Theory of Algorithms Spring 2010 36 / 39

Organizing Sweep Info

What do we need when encountering line L?
NOT horizontal lines whose right endpoint is to the left
of L.
Maintain active line segments.

What do we check for intersection?

Induction Hypothesis:
Given a list of k sorted coordinates, we know how to
report all intersections among the corresponding lines
that occur to the left of k .x , and to eliminate horizontal
lines to the left of k .

20
10

-0
3-

24

CS 5114

Organizing Sweep Info

See Figure 8.17 in Manber.

y coordinates of the active horizontal lines.



Sweep Line Tasks

Things to do:
1 (k + 1)th endpoint is right endpoint of horizontal line.

◮ Delete horizontal line.
2 (k + 1)th endpoint is left endpoint of horizontal line.

◮ Insert horizontal line.
3 (k + 1)th endpoint is vertical line.

◮ Find intersections with stored horizontal lines.

CS 5114: Theory of Algorithms Spring 2010 37 / 39

Sweep Line Tasks

Things to do:
1 (k + 1)th endpoint is right endpoint of horizontal line.

◮ Delete horizontal line.
2 (k + 1)th endpoint is left endpoint of horizontal line.

◮ Insert horizontal line.
3 (k + 1)th endpoint is vertical line.

◮ Find intersections with stored horizontal lines.

20
10

-0
3-

24

CS 5114

Sweep Line Tasks

Deleting horizontal line is O(log n).

Inserting horizontal line is O(log n).

Finding intersections is O(log n + r) for r intersections.

Data Structure Requirements (1)

To have an efficient algorithm, we need efficient

Intersection

Deletion

1 dimensional range query

Example solution: Balanced search tree

Insert, delete, locate in log n time.

Each additional intersection calculation is of constant
cost beyond first (traversal of tree).

CS 5114: Theory of Algorithms Spring 2010 38 / 39

Data Structure Requirements (1)

To have an efficient algorithm, we need efficient

Intersection

Deletion

1 dimensional range query

Example solution: Balanced search tree

Insert, delete, locate in log n time.

Each additional intersection calculation is of constant
cost beyond first (traversal of tree).20

10
-0

3-
24

CS 5114

Data Structure Requirements (1)

no notes

Data Structure Requirements (2)

Time complexity:
Sort by x : O((m + n) log(m + n)).
Each insert/delete: O(log n).
Total cost is O(n log n) for horizontal lines.

Processing vertical lines includes one-dimensional range
query:

O(log n + r) where r is the number of intersections for
this line.

Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.

CS 5114: Theory of Algorithms Spring 2010 39 / 39

Data Structure Requirements (2)

Time complexity:
Sort by x : O((m + n) log(m + n)).
Each insert/delete: O(log n).
Total cost is O(n log n) for horizontal lines.

Processing vertical lines includes one-dimensional range
query:

O(log n + r) where r is the number of intersections for
this line.

Thus, total time is O((m + n) log(m + n) + R), where R is the
total number of intersections.

20
10

-0
3-

24

CS 5114

Data Structure Requirements (2)

no notes


