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Graph Algorithms

Graphs are useful for representing a variety of concepts:

@ Data Structures

@ Relationships

@ Families

@ Communication Networks
@ Road Maps
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A Tree Proof

@ Definition : A free tree is a connected, undirected graph
that has no cycles.
@ Theorem: If T is a free tree having n vertices, then T
has exactly n — 1 edges.
@ Proof: By induction on n.
@ Base Case: n = 1. T consists of 1 vertex and 0 edges.
@ Inductive Hypothesis : The theorem is true for a tree
having n — 1 vertices.
@ Inductive Step :
» If T has n vertices, then T contains a vertex of degree 1.
» Remove that vertex and its incident edge to obtain T/, a
free tree with n — 1 vertices.
» By IH, T/ has n — 2 edges.
» Thus, T has n — 1 edges.
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Graph Traversals

Various problems require a way to traverse a graph — that is,
visit each vertex and edge in a systematic way.

Three common traversals:
@ Eulerian tours
Traverse each edge exactly once

@ Depth-first search
Keeps vertices on a stack

© Breadth-first search
Keeps vertices on a queue
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e Agraph G = (V,E) consists of a set of vertices V, and a set
of edges E, such that each edge in E is a connection
between a pair of vertices in V.

e Directed vs. Undirected

e Labeled graph, weighted graph

e Labels for edges vs. weights for edges
e Multiple edges, loops

e Cycle, Circuit, path, simple path, tours
e Bipartite, acyclic, connected

e Rooted tree, unrooted tree, free tree
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This is close to a satisfactory definition for free tree. There are
several equivalent definitions for free trees, with similar proofs
to relate them.

Why do we know that some vertex has degree 1? Because the
definition says that the Free Tree has no cycles.
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A circuit that contains every edge exactly once. )
Example: f Why no tour? Because some vertices have odd degree.
a c All even nodes is a necessary condition. Is it sufficient?
b g
Tour: bafcde.
Example:
No Eulerian tour. How can you tell for sure?
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@ Theorem: A connected, undirected graph with m edges _ )
that has no vertices of odd degree has an Eulerian tour. Base case : 0 edges and 1 vertex fits the theorem.
] . . IH: The theorem is true for < m edges.
@ Proof: By induction on m. . . L . .
) Always possible to find a circuit starting at any arbitrary vertex,
O Bese Qase. ) since each vertex has even degree.
@ Inductive Hypothesis

@ Inductive Step :

» Start with an arbitrary vertex and follow a path until you
return to the vertex.

» Remove this circuit. What remains are connected
components Gy, Gy, ..., Gk each with nodes of even
degree and < m edges.

» By IH, each connected component has an Eulerian tour.

» Combine the tours to get a tour of the entire graph.
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N Iniial cat DFS(G, ) where 1 5 the ot of he DFS.
void DFS(Graph G int v) { // Depth first search no notes
PreVisit(G v); /| Take appropriate action
G set Mark(v, VISITED);
for (Edge w = each nei ghbor of v)
if (GgetMark(G v2(w)) == UNVI SI TED)
DFS(G G v2(w);
PostVisit (G vVv); /| Take appropriate action
}
Initial call: DFS( G, r) where r is the root of the DFS.
Cost: O(|V| + |EJ).
~ CS5114 Depth st Satch Example
—
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Depth Flrst Seal’Ch Example g Depth First Search Example . .
« o= o=

The directions are imposed by the traversal. This is the Depth
First Search Tree.

(b)
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Results: No “cross edges.” That is, no edges connecting

Lemma 7.2: Every edge e € E is either in the DFS tree T, vertices sideways in the tree.
or connects two vertices of G, one of which is an ancestor of
the otherin T.

Proof : Consider the first time an edge (v, w) is examined,
with v the current vertex.
@ If w is unmarked, then (v,w)isin T.
@ If w is marked, then w has a smaller DFS number than
v AND (v,w) is an unexamined edge of w.
@ Thus, w is still on the stack. That is, w is on a path from
V.
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Main problem: A connected graph may not give a single no notes
DFS tree. @

(/% ’
Forward edges: (1, 3) ? DI
® -—O—

Back edges: (5, 1)
Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution : Maintain a list of unmarked vertices.

» Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

®
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Directed Cycles
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Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge. See earlier lemma.

Proof :

© Suppose a DFS produces a back edge (v, w).
» v and w are in the same DFS tree, w an ancestor of v.
» (v,w) and the path in the tree from w to v form a

directed cycle.

@ Suppose G has a directed cycle C.

Do a DFS on G.

Let w be the vertex of C with smallest DFS number.

Let (v,w) be the edge of C coming into w.

v is a descendant of w in a DFS tree.

» Therefore, (v,w) is a back edge.
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no notes

@ Like DFS, but replace stack with a queue.
@ Visit vertex’s neighbors before going deeper in tree.
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Breadth First Search Algorithm

void BFS(Graph G int start) {
Queue QG n());
Q enqueue(start);
G set Mark(start, VI SITED);
while (!QisEmty()) {
int v = Q dequeue();
PreVisit(G v); /| Take appropriate action
for (Edge w = each nei ghbor of v)
if (GgetMark(G v2(w)) == UNVISITED) {
G set Mark(G v2(w), VISITED);
Q enqueue(G v2(w));
}
PostVisit(G v); [/ Take appropriate action

b}
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Breadth First Search Example

(2) . .. (b)
Non-tree edges connect vertices at levels differing by O or 1.
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Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.
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Topological Sort Algorithm

void topsort(Graph G { // Top sort: recursive
for (int i=0; i<Gn(); i++) // Initialize Mark
G set Mark(i, UNVISI TED);
for (i=0; i<Gn(); i++) /'l Process vertices
if (G getMark(i) == UNVI SI TED)
tophel p(G i); /1 Call hel per
}
voi d tophel p(Gaph G int v) { // Helper function
G set Mark(v, VISITED);
for (Edge w = each nei ghbor of v)
if (GgetMark(G v2(w)) == UNVI SI TED)
tophel p(G G v2(w));
printout (Vv); /1l PostVisit for Vertex v
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Prints in reverse order.

Breadih First Search Algorithm

Breadth First Search Example
Q ®

Q@

©
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void topsort(Graph G { // Top sort: Queue
Queue Gn()); int Count[Gn()];
for (int v=0; v<Gn(); v++) Count[v] = O;
for (v=0; v<Gn(); v++) // Process every edge
for (Edge w each nei ghbor of v)
Count[G v2(w)]++; // Add to v2's count
for (v=0; v<Gn(); v++) // Initialize Queue
if (Count[v] == 0) Q enqueue(V);
while (!QisEmpty()) { // Process the vertices
int v = Q dequeue();
printout(v); /] PreVisit for v
for (Edge w = each nei ghbor of v) {
Count[G v2(wW)]--; /] One | ess prereq
if (Count[G v2(w)]==0) Q enqueue(G v2(w));

no notes
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Input: A graph with weights or costs associated with each
edge.

no notes

Output: The list of edges forming the shortest path.

Sample problems:
@ Find the shortest path between two specified vertices.
@ Find the shortest path from vertex S to all other vertices.
@ Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances .
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d(A, B) is the shortest distance from vertex A to B.

W(A, D) = 20; d(A, D) = 10 (through ACBD).
W(A, B) is the weight of the edge connecting A to B.
@ If there is no such edge, then w(A, B) = .
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Given start vertex s, find the shortest path from s to all other no notes

vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x.

Problem: Shortest path to a vertex already processed might
go through x.
Solution: Process vertices in order of distance from s.
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8
|A|B|C|D]JE
Initial 0| oo0|oo0|o0| o0 no notes
ProcessA | 0 (10| 3 |20 | c©
ProcessC | 0| 5 | 3 |20 | 18
ProcessB |0 | 5 | 3 |10 |18
0|53
0| 5|3
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Dijkstra’s Algorithm: Array (1) 2 | Dijkstra's Algorithm: Array (1
o
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void Dijkstra(Gaph G int s) { // Use array
int D{Gn()]; no notes
for (int i=0; i<G n(); i++) /1 Initialize
Di] = INFINITY;
Ds] =0;
for (i=0; i<Gn(); i++) { // Process vertices
int v = mnVertex(G D);
if (D[vl] == INFINITY) return; // Unreachabl e
G set Mark(v, VISITED);
for (Edge w = each nei ghbor of v)
if (DGv2(w] > (Dv] + Gweight(w))
DGv2(w] = Dv] + G weight(w:;
}
}
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e bl onesch pass o losest verten:

Appoach 1 Scan
ol ost: 6(V + €) - (V).

/] Get m ncost vertex
int mnVertex(Gaph G intx D) { no notes
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<Gn(); i++)
if (GgetMark(i) == UNVI SI TED)
{ v =1i; break; }
for (i++ i<Gn(); i++) // Find snallest D val
if ((GgetMark(i)==UNVISITED) && (D[i]<DVv]))
vV =i
return v;

}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: O(|V|2 + |E|) = ©(|V/?).
Spring 2010 231226
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class Elem{ public: int vertex, dist; };
int key(Elemx) { return x.dist; } no notes
void Dijkstra(Gaph G int s) { // priority queue

int v; El em t enp;

int DJGn()]; EemEGe()];

tenp.dist = 0; tenp.vertex =s; E[0] = tenp;

heap H(E, 1, Ge()); /I Create the heap
for (int i=0; i<Gn(); i++) Di] = INFINTY;
Dis] = 0;

for (i=0; i<Gn(); i++) { /] Get distances

do { tenmp = H removenin(); v = tenp.vertex; }
while (G getMark(v) == VI SITED);

G set Mark(v, VI SITED);

if (Dlvl] == INFINITY) return; // Unreachabl e
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Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each nei ghbor of v)
if (D{Gv2(w] > (Dv] + Gweight(w)) {
DGv2(w] = Dv] + G weight(w;
tenp.dist = DG v2(w];
tenp.vertex = Gv2(w;
H insert(temp); // Insert new distance

11}

@ Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.

@ Total cost: ©((|V| + |E|)log |V]).
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All Pairs Shortest Paths

@ For every vertex u,v € V, calculate d(u, v).

@ Could run Dijkstra’s Algorithm [V| times.

@ Better is Floyd’s Algorithm

@ Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k.
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Floyd's Algorithm

void Floyd(Gaph G { // Al-pairs shortest paths
int DDGn()][Gn()]; // Store distances
for (int i=0; i<Gn(); i++) // Initialize D
for (int j=0; j<Gn(); j++)
Dil[ji] = Gweight(i, j);
for (int k=0; k<G n(); k++) // Conpute k paths
for (int i=0; i<Gn(); i++)
for (int j=0; j<Gn(); j++)
if (DLiJ[j] > (Dfi][k] + DIKI[j]))
DIiJ[j] = Dfi][k] + DIKI[j];
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Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
@ Input: An undirected, connected graph G.
@ Output: The subgraph of G that
© has minimum total cost as measured by summing the
values for all of the edges in the subset, and
© keeps the vertices connected.
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L All Pairs Shortest Paths

Multiple runs of Dijkstra’s algorithm Cost:
[V|[E|log |V | = [V|®log |V | for dense graph.

The issue driving the concept of “k paths” is how to efficiently
check all the paths without computing any path more than once.

0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a 2

or 1 path. Everything is a 4 path.

CSs 5114
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no notes

CSs 5114

LMinimum Cost Spanning Trees

no notes

Floyd's Algorithm

Minimum Cost Spanning Trees




Key Theorem for MST

Let V1, V, be an arbitrary, non-trivial partition of V. Let
(v1,V2), V1 € V1,V € Vp, be the cheapest edge between V;
and V,. Then (v1,V,) is in some MST of G.
Proof :
@ Let T be an arbitrary MST of G.
@ If (v4,v2) isin T, then we are done.
@ Otherwise, adding (vi1,V2) to T creates a cycle C.
At least one edge (us, uy) of C other than (vi, v2) must
be between V; and V..
@ c(ug,uy) > c(vy,Va).
@ LetT' =T U{(v1,v2)} — {(u1,uz)}.
@ Then, T'is a spanning tree of G and ¢(T’) < c(T).
@ But ¢(T) is minimum cost.
Therefore, ¢(T’) = ¢(T) and T’ is a MST containing (vy, V2).
Spring 2010 29/226

Key Theorem Figure

Marked Unmarked
Vertices vi, i > j

Vertices vj, i < j
“correct” edge

e

Vu
Vp
el
Prim’s edge
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Prim’s MST Algorithm (1)

void Prim(Graph G int s) { /'l Prims MST alg
int D{Gn()]; int V[Gn()]; // Distances
for (int i=0; i<Gn(); i++) [/ Initialize
Di] = INFINTY;
Ds] = 0;
for (i=0; i<Gn(); i++) {
int v = mnVertex(G D);
G set Mark(v, VISITED);
if (v !=s) AddEdget oMST(V[V], V);
if (Dlvl] == INFINITY) return; //v unreachabl e
for (Edge w = each nei ghbor of v)
if (DJGv2(w] > Gweight(w) {
DGv2(w] = Gweight(w); // Update dist

/'l Process vertices

V[G v2(Ww)] v; /'l who cane from
11}

Prim’s MST Algorithm (2)

int mnVertex(Gaph G intx D) ({
int v; // Initialize v to any unvisited vertex
for (int i=0; i<Gn(); i++)
if (GgetMark(i) == UNVI SI TED)
{ v =1i; break; }
for (i=0; i<Gn(); i++) // Find smallest value
if ((GgetMark(i)==UNVISITED) && (D[i]<D[v]))
vV =i
return v;

}

This is an example of a greedy algorithm.
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There can only be multiple MSTs when there are edges with
equal cost.
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Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G int s) {

int v; /1
int D{Gn()]; I/
int V[Gn()]; /1
El em t enp;

ElemE[ G e()]; /1

The current vertex
Di st ance array
Who’ s cl osest

Heap array

tenp. di stance = 0; tenp.vertex = s;

E[ 0] = tenp; Il
heap H(E, 1, Ge()); [/

Initialize heap array
Create the heap

for (int i=0; i<Gn(); i++) Di] = INFINTY;

Ds] =0;
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Alternative Prim’s Implementation (2)

for (i=0; i<Gn(); i++) {

/1 Now build MST

do { tenp = Hyrenpvemn(); v = tenp.vertex; }

while (G getMark(v) ==

G set Mark(v, VISITED);

VI SI TED) ;

if (v !=s) AddEdget oMST(V[V], V);
if (Dlvl] == INFINITY) return; // Unreachabl e

for (Edge w = each nei ghbor of v)
if (DDGv2(w)] > Gweight(w)) { // Update D
DGv2(wW] = Gweight(w;
VG Vv2(wW] = v;

/1l Who cane from

tenp. di stance = DG v2(w)];

tenp.vertex = G v2(w;

H.insert(tenp); /1 Insert dist in heap

Kruskal's MST Algorithm (1)

Kruskel (Graph G { // Kruskal’s MST al gorithm
CGentree A(G n()); // Equival ence class array
ElemE[Ge()];
int edgecnt = O;

/'l Array of edges for m n-heap

for (int i=0; i<Gn(); i++) // Put edges into E

for (Edge w = Gfirst(i);
G i sEdge(w); w = G next(w)) {
E[ edgecnt] . wei ght = G wei ght (w);
E[ edgecnt ++] . edge w,

heap H(E, edgecnt, edgecnt); // Heapify edges

int numMVST = Gn(); // Init w n equiv classes

CS 5114: Theory of Algorithms Spring 2010

Kruskal's MST Algorithm (2)

for (i=0; numvBsT>1; i++) { // Conbine

35/226

Elemtenp = Hrenovemin(); // Next cheap edge

Edge w = tenp. edge;

int v=Gvl(w; int u=Gv2(w;

if (Adiffer(v, u)) { // If different
A UNLO\(v, u); I Conbi ne
AddEdget oMST(G vi(wW), Gv2(w); // Add
numvsT- - ; /1 Now one | ess MST

}

}
}

How do we compute function MSTof (v) ?
Solution: UNION-FIND algorithm (Section 4.3).
Spring 2010
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Kruskal’s Algorithm Example
Total cost: ©(|V| + |E| log |E|).
“w@|lo|ole|o]|e
©

SN0 Y NCENG!
Process edge (C. D)
©

sz () ‘

Process edge (E, F)

. ‘

Process edge (C, F)

Matching

@ Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.

@ Problem : Form as many compatible non-overlapping
teams as possible.

@ Model using G, an undirected graph.

» Join vertices if the workers will work together.

@ A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

» A maximal matching has no free pairs of vertices that
can extend the matching.

» A maximum matching has the greatest possible
number of edges.

» A perfect matching includes every vertex.
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Very Dense Graphs (1)

Theorem: Let G = (V, E) be an undirected graph with
|[V| = 2n and every vertex having degree > n. Then G
contains a perfect matching.

Proof : Suppose that G does not contain a perfect matching.

9 Let M C E be a max matching. M| < n.

@ There must be two unmatched vertices v1, v, that are
not adjacent.

@ Every vertex adjacent to v, or to v, is matched.

@ Let M’ C M be the set of edges involved in matching the
neighbors of v; and v,.

@ There are > 2n edges from v; and v, to vertices
covered by M’, but |[M’| < n.
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Very Dense Graphs (2)

Proof : (continued)

@ Thus, some edge of M’ is adjacent to 3 edges from vy
and vs.

@ Let (uy,uz) be such an edge.

@ Replacing (uy, u) with (v1,up) and (v,, u;) results in a
larger matching.

@ Theorem proven by contradiction.

CS 5114: Theory of Algorithms Spring 2010 40/ 226
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Kruskal's Algorithm Example
ot cost: &V €1 ).
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LKruskaI’s Algorithm Example

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.

CS 5114 Matching

LMatching

An example:
(1-3) is a matching.
(1-3) (5, 4) is both maximal and maximum.
Take away the edge (5-4). Then (3, 2) would be maximal but
not a maximum matching.
O—2)

© (@

CS 5114 Very Dense Graphs (1)

LVery Dense Graphs (1)

There must be two unmatched vertices not adjacent:
Otherwise it would either be perfect (if there are no 2 free
vertices) or we could just match v; and v, (because they are
adjacent).

Every adjacent vertex is matched, otherwise the matching
would not be maximal.

See Manber Figure 3.76.
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LVery Dense Graphs (2)

Pigeonhole Principle



Generalizing the Insight
(V3 (2

(u @

@ Vi, Uy, Uy, Vs is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.

@ In one step, switch unmatched and matched edges.

® Let G = (V,E) be an undirected graph and M C E a
matching.

@ An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.
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Matching Example
@)

®
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s
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The Alternating Path Theorem (1)

Theorem : A matching is maximum iff it has no alternating
paths.

Proof :
@ Clearly, if a matching has alternating paths, then it is not
maximum.
@ Suppose M is a hon-maximum matching.
@ Let M’ be any maximum matching. Then, [M’| > [M]|.
@ Let M@M' be the symmetric difference of M and M’.

Me&M' =M UM’ — (M N M).
o G' = (V,M&M’) is a subgraph of G having maximum
degree < 2.
Spring 2010 431226

The Alternating Path Theorem (2)

Proof : (continued)

@ Therefore, the connected components of G’ are either
even-length cycles or a path with alternating edges.

@ Since [M’| > |[M|, there must be a component of G’ that
is an alternating path having more M’ edges than M
edges.
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CS 5114 Generalizing the Insight
LGeneraIizing the Insight

no notes

CS 5114 Matching Example
LMatching Example Z

1, 2, 3, 5is NOT an alternating path (it does not start with an
unmatch vertex).

7,6, 11, 10, 9, 8 is an alternating path with respect to the given
matching.

Observation: If a matching has an alternating path, then the
size of the matching can be increased by one by switching
matched and unmatched edges along the alternating path.

CSs 5114 The Alternating Path Theorem (1)

Theorom : A matcing s maimum i s o aeating

LThe Alternating Path Theorem (1)

The first point is the obvious part of the iff. If there is an
alternating path, simply switch the match and umatched edges
to augment the match.

Symmetric difference: Those in either, but not both.

A vertex matches one different vertex in M and M’.

CSs 5114

‘The Alternating Path Theorem (2)

LThe Alternating Path Theorem (2)

no notes



CS 5114 Bipartte Matching

Bipartite Matching

LBipartite Matching

2010-03-17

@ A bipartite graph G = (U, V, E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V.

@ Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.

@ Alternating paths will work to find a maximum bipartite
matching. An alternating path always has one end in U
and the other in V.

@ If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an alternating path.
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no notes

CS 5114 Bipartite Matching Example
LBipartite Matching Example

Bipartite Matching Example

@
©)

©)
)

2010-03-17

Naive algorithm: Find a maximal matching (greedy algorithm).

For each vertex:
Do a DFS or other search until an alternating path is found.
Use the alternating path to improve the match.

® © @ @

® VIV +[E])

2, 8, 5, 10 is an alternating path.

1,6,3,7,4,9and 2, 8, 5, 10 are disjoint alternating paths

that we can augment independently .
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~ CS5114 PR —
— Matching
@ I —
) ] ] ) . . _ o _ A
A|gOfIthm for Maleum Blpartlte g Algorithm for Maximum Bipartite Matching ——
Matching T
Order doesn’t matter. Find a path, remove its vertices, then

Construct BFS subgraph from the set of unmatched vertices repeat.Augment along the paths independently since they are

in U until a level with unmatched vertices in V is found. disjoint.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity O((|V| + [E|)\/|V]).
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~ CS5114
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Network Flows g Network Flows
no notes

Models distribution of utilities in networks such as oil
pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:
A network is a directed graph G = (V, E) having a
distinguished source vertex s and a distinguished sink vertex

t. Every edge (u,Vv) of G has a capacity c(u,v) > 0. If
(u,v) ¢ E, then c(u,v) =0.
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~ CS5114 Network Flow Graph
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Network Flow Graph g Network Flow Graph
no notes
3
5
10 : .
0 » ©
2 :
@ 20 M
0
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~ CS5114 Network Flow Definitions
F
. e [s2]
Network Flow Definitions & L NeworkFiow Deiions
o
A flow in a network is a function f : V. x V. — R with the o Dot b
following properties.
(i) Skew Symmetry : no notes
YW,w eV, f(v,w)=—f(w,v).
(ii) Capacity Constraint
YWow, eV, f(v,w) <c(v,w).
If f(v,w) = c(v,w) then (v,w) is saturated .
(iii) Flow Conservation
W€ V—{sit} > f(v,w)=0. Equivaently,
Woe V—{sit}, > f(uv)=> f(v,w).
u w
In other words, flow into v equals flow out of v.
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~ CS5114 Flow Example
— 33
3
FIOW Example ‘C_I>' LFIow Example ‘ -
3,3 & R
G 3, -3 is an illustration of “negative flow” returning. Every node
: can be thought of as having negative flow. We will make use of
25 @ this later — augmenting paths.

10,8/

Edges are labeled “capacity, flow?, ... Finfinity, 13-

Can omit edges w/o capacity and non-negative flow.
The value of a flow is

fl=> f(s,w)=> f(w.t).

weV wev
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~ CS5114 Max Flow Problem
5
by i ot
OI L Cut (X, X')is a parition of V' such that s € X, € X"
) Max Flow Probl et

Max Flow Problem g  Flow Proem
N

Problem : Find a flow of maximum value. no notes

Cut (X, X’) is a partition of V such thats € X,t € X".

The capacity of a cutis

c(X,X)= > c(v,w)

vex,weX’

A min cut is a cut of minimum capacity.
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Cut Flows

For any flow f, the flow across a cut is:

fX XY= > f(v,w).

veX,wex’

Lemma: For all flows f and all cuts (X, X’), f(X,X’) = |f|.

@ Clearly, the flow out of s = |f| = the flow into t.

@ |t can be proved that the flow across every other cut is
also |f].

Corollary : The value of any flow is less than or equal to the
capacity of a min cut.
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Residual Graph
Given any flow f, the residual capacity of the edge is
res(v,w) = c(v,w) —f(v,w) > 0.

Residual graph is a network R = (V, Egr) where Er
contains edges of non-zero residual capacity.
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Observations

@ Any flow in R can be added to F to obtain a larger flow
in G.

@ In fact, a max flow f/ in R plus the flow f (written f + ') is
a max flow in G.

© Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

» Such a path is called an augmenting path .
» For example, the path

s,1,2,t

can carry a flow of 2 units = ¢(1, 2).
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Max-flow Min-cut Theorem

The following are equivalent:
(i) fis a max flow.
(ii) f has no augmenting path in R.
(iii) |f| = c(X,X") for some min cut (X, X’).

Proof :

@) = (ii):

@ If f has an augmenting path, then f is not a max flow.

CS 5114: Theory of Algorithms Spring 2010 56 /226

2010-03-17

2010-03-17

2010-03-17

2010-03-17

CS 5114

L—cut Flows

no notes

CS 5114

= Residual Graph

R is the network after f has been subtracted.
Saturated edges do not appear.
Some edges have larger capacity than in G.

CSs 5114

LObservations

no notes

CSs 5114

LMax-flow Min-cut Theorem

no notes

Cut Flows
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Residual Graph

Max-flow Min-cut Theorem




Max-flow Min-cut Theorem (2)

(i) = (iii):
@ Suppose f has no augmenting path in R.
@ Let X be the subset of V reachable from s and
X'=V —X.
@ Thens e X,t € X/, so (X, X’) is a cut.
o W e X,w e X', res(v,w) =c(v,w)—f(v,w)=0.

o f(X,X’) = Zvex,wewf(vyw) _
Zvex,wex' c(v,w) =c(X,X’).
@ By Lemma, [f| = c(X,X") and (X, X") is a min cut.

CS 5114: Theory of Algorithms Spring 2010

Max-flow Min-cut Theorem (3)

(i) = (i)
@ Letf be a flow such that |f| = ¢(X, X") for some (min)
cut (X, X").
@ By Lemma, all flows f’ satisfy |f/| < c(X,X’) = |f|.

Thus, f is a max flow.

CS 5114: Theory of Algorithms Spring 2010

Max-flow Min-cut Corollary

CS 5114

LMax-row Min-cut Theorem (2)

2010-03-17

Line 4: Because no augmenting path.
Line 5: Because we know the residuals are all 0.

Max-flow Min-cut Theorem (2)

In other words, look at the capacity of G at the cut separating s
from t in the residual graph. This must be a min cut (for G) with

capacity |f|.
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LMax-row Min-cut Theorem (3)
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LMax-row Min-cut Corollary

2010-03-17

Corollary : The value of a max flow equals the capacity of a

min cut.

This suggests a strategy for finding a max flow.
R=G f =0;

r epeat

find a path froms tot in R
augnent along path to get a larger flow f;
update R for new fl ow,

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.
Spring 2010

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of
edges.

Performance: O(|V [?).

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.
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Problem with Ford-Fulkerson:

Max-flow Min-cut Theorem (3)

®=0
© Let boafow such that ] (X, X) o some (i)
(X0,
By Lamma. a8 faus sty ] < (. X) —

Ths, 5.2 max fow.

Max-flow Min-cut Corollary

Corolary - T vae of  ma o equsls e capsciy of

1 capacios ao a raoral, thn i abvays orminates wih
Tow.

equal o max

Draw graph with nodes nodes s, t, a, and b. Flow from S to a
and b is M, flow from a and b to tis M, flow from a to b is 1.

Now, pick s-a-b-t.
Then s-b-a-t. (reverse 1 unit of flow).
Repeat M times.

M is unrelated to the size of V, E, so this is potentially

exponential.
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LEdmonds-Karp Algorithm
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Edmonds-Karp Algorithm

Forimegal capaces.

St an avgmeningpth Rt o e of
g

perormance: O(V/)

Ther v numerous tvrappreaches o g
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