Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2010

Copyright (c) 2010 by Clifford A. Shaffer

Graph Algorithms

Graphs are useful for representing a variety of concepts:

- Data Structures
- Relationships
- Families
- Communication Networks
- Road Maps

A Tree Proof

- Definition: A free tree is a connected, undirected graph that has no cycles.
- Theorem: If T is a free tree having n vertices, then T has exactly $n-1$ edges.
- Proof: By induction on n.
- Base Case: $n=1$. T consists of 1 vertex and 0 edges.
- Inductive Hypothesis: The theorem is true for a tree having $n-1$ vertices.
- Inductive Step:
- If T has n vertices, then T contains a vertex of degree 1 .
- Remove that vertex and its incident edge to obtain T^{\prime}, a free tree with $n-1$ vertices.
- By IH, T^{\prime} has $n-2$ edges.
- Thus, T has $n-1$ edges.

Graph Traversals

Various problems require a way to traverse a graph - that is, visit each vertex and edge in a systematic way.

Three common traversals:
(1) Eulerian tours

Traverse each edge exactly once
(2) Depth-first search

Keeps vertices on a stack
(3) Breadth-first search

Keeps vertices on a queue

- A graph $G=(V, E)$ consists of a set of vertices V, and a set of edges E, such that each edge in E is a connection between a pair of vertices in V.
- Directed vs. Undirected
- Labeled graph, weighted graph
- Labels for edges vs. weights for edges
- Multiple edges, loops
- Cycle, Circuit, path, simple path, tours
- Bipartite, acyclic, connected
- Rooted tree, unrooted tree, free tree

This is close to a satisfactory definition for free tree. There are several equivalent definitions for free trees, with similar proofs to relate them.

Why do we know that some vertex has degree 1? Because the definition says that the Free Tree has no cycles.

- Nopentusearn mand

Eulerian Tours

A circuit that contains every edge exactly once.
Example:

Tour: b a f c de.
Example:

No Eulerian tour. How can you tell for sure?

Eulerian Tour Proof

- Theorem: A connected, undirected graph with m edges that has no vertices of odd degree has an Eulerian tour.
- Proof: By induction on m.
- Base Case:
- Inductive Hypothesis:
- Inductive Step:
- Start with an arbitrary vertex and follow a path until you return to the vertex.
- Remove this circuit. What remains are connected components $G_{1}, G_{2}, \ldots, G_{k}$ each with nodes of even degree and < m edges.
- By IH, each connected component has an Eulerian tour.
- Combine the tours to get a tour of the entire graph.

Depth First Search

```
void DFS(Graph G, int v) { // Depth first search
    PreVisit(G, v); // Take appropriate action
    G.setMark(v, VISITED);
    for (Edge w = each neighbor of v)
            if (G.getMark(G.v2(w)) == UNVISITED)
                DFS(G, G.v2(w));
    PostVisit(G, v); // Take appropriate action
}
```

Initial call: DFS (G, r) where r is the root of the DFS.
Cost: $\Theta(|\mathrm{V}|+|\mathrm{E}|)$.

(a)

(b)

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

Base case: 0 edges and 1 vertex fits the theorem.
$\mathbf{I H}$: The theorem is true for $<m$ edges.
Always possible to find a circuit starting at any arbitrary vertex, since each vertex has even degree.

no notes

The directions are imposed by the traversal. This is the Depth First Search Tree.

DFS Tree

If we number the vertices in the order that they are marked, we get DFS numbers.

Lemma 7.2: Every edge $e \in E$ is either in the DFS tree T, or connects two vertices of G, one of which is an ancestor of the other in T.

Proof: Consider the first time an edge (v, w) is examined, with v the current vertex.

- If w is unmarked, then (v, w) is in T.
- If w is marked, then w has a smaller DFS number than v AND (v, w) is an unexamined edge of w.
- Thus, w is still on the stack. That is, w is on a path from v.

DFS for Directed Graphs

- Main problem: A connected graph may not give a single DFS tree.
- Forward edges: $(1,3)$
- Back edges: $(5,1)$

- Cross edges: $(6,1),(8,7),(9,5),(9,8),(4,2)$
- Solution: Maintain a list of unmarked vertices.
- Whenever one DFS tree is complete, choose an arbitrary unmarked vertex as the root for a new tree.

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed cycle iff every DFS of G produces a back edge.

Proof:

(1) Suppose a DFS produces a back edge (v, w).

- v and w are in the same DFS tree, w an ancestor of v.
- (v, w) and the path in the tree from w to v form a directed cycle.
(2) Suppose G has a directed cycle C.
- Do a DFS on G.
- Let w be the vertex of C with smallest DFS number.
- Let (v, w) be the edge of C coming into w.
- v is a descendant of w in a DFS tree.
- Therefore, (v, w) is a back edge.

Breadth First Search

- Like DFS, but replace stack with a queue.
- Visit vertex's neighbors before going deeper in tree.

no notes

See earlier lemma.

no notes

Breadth First Search Algorithm

```
void BFS(Graph G, int start) {
    Queue Q(G.n());
    Q.enqueue(start);
    G.setMark(start, VISITED);
    while (!Q.isEmpty()) {
        int v = Q.dequeue();
        PreVisit(G, v); // Take appropriate action
        for (Edge w = each neighbor of v)
            if (G.getMark(G.v2(w)) == UNVISITED) {
                G.setMark(G.v2(w), VISITED);
                Q.enqueue(G.v2(w));
            }
        PostVisit(G, v); // Take appropriate action
} }
```


Breadth First Search Example

Non-tree edgé (a) ennect vertices at levels differing by 0 or 1 .
(b)

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite constraints, output the jobs in an order that does not violate any of the prerequisites.

Topological Sort Algorithm

```
void topsort(Graph G) { // Top sort: recursive
```

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark
for (int i=0; i<G.n(); i++) // Initialize Mark
G.setMark(i, UNVISITED);
G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices
for (i=0; i<G.n(); i++) // Process vertices
if (G.getMark(i) == UNVISITED)
if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper
tophelp(G, i); // Call helper
}
}
void tophelp(Graph G, int v) { // Helper function
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)
for (Edge w = each neighbor of v)
if (G.getMark(G.v2(w)) == UNVISITED)
if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));
tophelp(G, G.v2(w));
printout(v); // PostVisit for Vertex v
printout(v); // PostVisit for Vertex v
}

```
}
```

Breadth First Search Algorithm

no notes

no notes

Prints in reverse order.

Queue-based Topological Sort

```
void topsort(Graph G) { // Top sort: Queue
    Queue Q(G.n()); int Count[G.n()];
    for (int v=0; v<G.n(); v++) Count[v] = 0;
    for (v=0; v<G.n(); v++) // Process every edge
        for (Edge w each neighbor of v)
            Count[G.v2(w)]++; // Add to v2's count
    for (v=0; v<G.n(); v++) // Initialize Queue
        if (Count[v] == 0) Q.enqueue(v);
    while (!Q.isEmpty()) { // Process the vertices
        int v = Q.dequeue();
        printout(v); // PreVisit for v
        for (Edge w = each neighbor of v) {
            Count[G.v2(w)]--; // One less prereq
            if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));
} } }
CS 5114: Theory of Algorithms Spring 2010 17/226
```


Shortest Paths Problems

Input: A graph with weights or costs associated with each edge.

Output: The list of edges forming the shortest path.

Sample problems:

- Find the shortest path between two specified vertices.
- Find the shortest path from vertex S to all other vertices.
- Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances.

Shortest Paths Definitions

$d(A, B)$ is the shortest distance from vertex A to B.
$w(A, B)$ is the weight of the edge connecting A to B.

- If there is no such edge, then $w(A, B)=\infty$.

CS 5114: Theory of Algorithms

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other vertices.

Try 1: Visit all vertices in some order, compute shortest paths for all vertices seen so far, then add the shortest path to next vertex x.

Problem: Shortest path to a vertex already processed might go through x.
Solution: Process vertices in order of distance from s.

no notes

$w(A, D)=20 ; d(A, D)=10$ (through ACBD).

no notes

	A	B	C	D	E
Initial	0	∞	∞	∞	∞
Process A	0	10	3	20	∞
Process C	0	5	3	20	18
Process B	0	5	3	10	18
Process D	0	5	3	10	18
Process E	0	5	3	10	18

Dijkstra's Algorithm: Array (1)

```
void Dijkstra(Graph G, int s) { // Use array
    int D[G.n()];
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        int v = minVertex(G, D);
        if (D[v] == INFINITY) return; // Unreachable
        G.setMark(v, VISITED);
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > (D[v] + G.weight(w)))
            D[G.v2(w)] = D[v] + G.weight(w);
        }
    }
```


Dijkstra's Algorithm: Array (2)

```
// Get mincost vertex
int minVertex(Graph G, int* D) {
    int v; // Initialize v to an unvisited vertex;
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            { v = i; break; }
    for (i++; i<G.n(); i++) // Find smallest D val
            if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```

Approach 1: Scan the table on each pass for closest vertex.
Total cost: $\Theta\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)=\Theta\left(|\mathrm{V}|^{2}\right)$.

Dijkstra's Algorithm: Priority Queue (1)

```
class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
    int v; Elem temp;
    int D[G.n()]; Elem E[G.e()];
    temp.dist = 0; temp.vertex = s; E[0] = temp;
    heap H(E, 1, G.e()); // Create the heap
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Get distances
        do { temp = H.removemin(); v = temp.vertex; }
            while (G.getMark(v) == VISITED);
        G.setMark(v, VISITED);
        if (D[v] == INFINITY) return; // Unreachable
```


no notes

Dijkstra's Algorithm: Priority Queue (2)

```
for (Edge w = each neighbor of v)
    if (D[G.v2(w)] > (D[v] + G.weight(w))) {
        D[G.v2(w)] = D[v] + G.weight(w);
        temp.dist = D[G.v2(w)];
        temp.vertex = G.v2(w);
        H.insert(temp); // Insert new distance
```

\} \} \}

- Approach 2: Store unprocessed vertices using a min-heap to implement a priority queue ordered by D value. Must update priority queue for each edge.
- Total cost: $\Theta((|\mathrm{V}|+|\mathrm{E}|) \log |\mathrm{V}|)$.

All Pairs Shortest Paths

- For every vertex $u, v \in \mathrm{~V}$, calculate $\mathrm{d}(u, v)$.
- Could run Dijkstra's Algorithm |V| times.
- Better is Floyd's Algorithm.
- Define a k-path from u to v to be any path whose intermediate vertices all have indices less than k.

Floyd's Algorithm

```
void Floyd(Graph G) { // All-pairs shortest paths
    int D[G.n()][G.n()]; // Store distances
    for (int i=0; i<G.n(); i++) // Initialize D
        for (int j=0; j<G.n(); j++)
            D[i][j] = G.weight(i, j);
    for (int k=0; k<G.n(); k++) // Compute k paths
        for (int i=0; i<G.n(); i++)
            for (int j=0; j<G.n(); j++)
            if (D[i][j] > (D[i][k] + D[k][j]))
                    D[i][j] = D[i][k] + D[k][j];
}
```


Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:

- Input: An undirected, connected graph G.
- Output: The subgraph of G that
(1) has minimum total cost as measured by summing the values for all of the edges in the subset, and
(2) keeps the vertices connected.

Key Theorem for MST

Let V_{1}, V_{2} be an arbitrary, non-trivial partition of V. Let (v_{1}, V_{2}), $v_{1} \in V_{1}, v_{2} \in V_{2}$, be the cheapest edge between V_{1} and V_{2}. Then $\left(v_{1}, v_{2}\right)$ is in some MST of G.

Proof:

- Let T be an arbitrary MST of G.
- If $\left(v_{1}, v_{2}\right)$ is in T, then we are done.
- Otherwise, adding $\left(v_{1}, v_{2}\right)$ to T creates a cycle C.
- At least one edge $\left(u_{1}, u_{2}\right)$ of C other than $\left(v_{1}, v_{2}\right)$ must be between V_{1} and V_{2}.
- $c\left(u_{1}, u_{2}\right) \geq c\left(v_{1}, v_{2}\right)$.
- Let $T^{\prime}=T \cup\left\{\left(v_{1}, v_{2}\right)\right\}-\left\{\left(u_{1}, u_{2}\right)\right\}$.
- Then, T^{\prime} is a spanning tree of G and $c\left(T^{\prime}\right) \leq c(T)$.
- But $c(T)$ is minimum cost.

Therefore, $c\left(T^{\prime}\right)=c(T)$ and T^{\prime} is a MST containing $\left(v_{1}, v_{2}\right)$.

Key Theorem Figure

Prim's MST Algorithm (1)

```
void Prim(Graph G, int s) {
    // Prim's MST alg
    int D[G.n()]; int V[G.n()]; // Distances
    for (int i=0; i<G.n(); i++) // Initialize
        D[i] = INFINITY;
    D[s] = 0;
    for (i=0; i<G.n(); i++) { // Process vertices
        int v = minVertex(G, D);
        G.setMark(v, VISITED);
        if (v != s) AddEdgetoMST(V[v], v);
        if (D[v] == INFINITY) return; //v unreachable
        for (Edge w = each neighbor of v)
            if (D[G.v2(w)] > G.weight(w)) {
                    D[G.v2(w)] = G.weight(w); // Update dist
                    V[G.v2(w)] = v; // who came from
    } } }
```


Prim's MST Algorithm (2)

```
int minVertex(Graph G, int* D) {
    int v; // Initialize v to any unvisited vertex
    for (int i=0; i<G.n(); i++)
        if (G.getMark(i) == UNVISITED)
            { v = i; break; }
    for (i=0; i<G.n(); i++) // Find smallest value
        if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
            v = i;
    return v;
}
```


no notes

This is an example of a greedy algorithm.

no notes

There can only be multiple MSTs when there are edges with equal cost.

animg (M, b)

Alternative Prim's Implementation (1)

Like Dijkstra's algorithm, can implement with priority queue.

```
void Prim(Graph G, int s) {
    int v; // The current vertex
    int D[G.n()]; // Distance array
    int V[G.n()]; // Who's closest
    Elem temp;
    Elem E[G.e()]; // Heap array
    temp.distance = 0; temp.vertex = s;
    E[0] = temp; // Initialize heap array
    heap H(E, 1, G.e()); // Create the heap
    for (int i=0; i<G.n(); i++) D[i] = INFINITY;
    D[s] = 0;
```


Alternative Prim's Implementation (2)

```
for (i=0; i<G.n(); i++) { // Now build MST
    do { temp = H.removemin(); v = temp.vertex; }
        while (G.getMark(v) == VISITED);
    G.setMark(v, VISITED);
    if (v != s) AddEdgetoMST(V[v], v);
    if (D[v] == INFINITY) return; // Unreachable
    for (Edge w = each neighbor of v)
        if (D[G.v2(w)] > G.weight(w)) { // Update D
            D[G.v2(w)] = G.weight(w);
            V[G.v2(w)] = v; // Who came from
            temp.distance = D[G.v2(w)];
            temp.vertex = G.v2(w);
            H.insert(temp); // Insert dist in heap
        }
```

\} \}
CS 5144: Theory of Algorihms Spring $2010 \quad 34 / 226$

Kruskal's MST Algorithm (1)

Kruskel(Graph G) \{ // Kruskal's MST algorithm Gentree A(G.n()); // Equivalence class array Elem E[G.e()]; // Array of edges for min-heap int edgecnt $=0$;
for (int i=0; i<G.n(); i++) // Put edges into E
for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) \{
E[edgecnt].weight = G.weight(w);
$\mathrm{E}[$ edgecnt++].edge $=\mathrm{w}$;
\}
heap $H(E$, edgecnt, edgecnt); // Heapify edges
int numMST $=$ G.n(); // Init w/ n equiv classes
no notes

CS 5114: Theory of Algorithms

Kruskal's MST Algorithm (2)

for (i=0; numMST>1; i++) \{ // Combine
Elem temp $=$ H.removemin(); // Next cheap edge
Edge w = temp.edge;
int $v=G . v 1(w)$; int $u=G . v 2(w)$;
if (A.differ(v, u)) \{ // If different
A. UNION (v, u); // Combine AddEdgetoMST (G.v1(w), G.v2(w)); // Add numMST--; // Now one less MST
\}
\}
\}

How do we compute function MSTof (v) ?
Solution: UNION-FIND algorithm (Section 4.3).

no notes

$$
\begin{aligned}
& \wedge \operatorname{CS5114} \\
& \text { LKruskal's MST Algorithm (2) }
\end{aligned}
$$

$=\square=$
ane
논

Kruskal's Algorithm Example

CS 5114

Total cost: $\Theta(|\mathrm{V}|+|\mathrm{E}| \log |\mathrm{E}|)$.

Matching

- Suppose there are n workers that we want to work in teams of two. Only certain pairs of workers are willing to work together.
- Problem: Form as many compatible non-overlapping teams as possible.
- Model using G, an undirected graph.
- Join vertices if the workers will work together.
- A matching is a set of edges in G with no vertex in more than one edge (the edges are independent).
- A maximal matching has no free pairs of vertices that can extend the matching.
- A maximum matching has the greatest possible number of edges.
- A perfect matching includes every vertex.

Very Dense Graphs (1)

Theorem: Let $G=(V, E)$ be an undirected graph with $|V|=2 n$ and every vertex having degree $\geq n$. Then G contains a perfect matching.

Proof: Suppose that G does not contain a perfect matching.

- Let $M \subseteq E$ be a max matching. $|M|<n$.
- There must be two unmatched vertices v_{1}, v_{2} that are not adjacent.
- Every vertex adjacent to v_{1} or to v_{2} is matched.
- Let $M^{\prime} \subseteq M$ be the set of edges involved in matching the neighbors of v_{1} and v_{2}.
- There are $\geq 2 n$ edges from v_{1} and v_{2} to vertices covered by M^{\prime}, but $\left|M^{\prime}\right|<n$.

Very Dense Graphs (2)

Proof: (continued)

- Thus, some edge of M^{\prime} is adjacent to 3 edges from v_{1} and v_{2}.
- Let $\left(u_{1}, u_{2}\right)$ be such an edge.
- Replacing $\left(u_{1}, u_{2}\right)$ with $\left(v_{1}, u_{2}\right)$ and $\left(v_{2}, u_{1}\right)$ results in a larger matching.
- Theorem proven by contradiction.

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left. "Kth-smallest" implementation.

An example:
(1-3) is a matching.
$(1-3)(5,4)$ is both maximal and maximum.
Take away the edge $(5-4)$. Then $(3,2)$ would be maximal but not a maximum matching.

There must be two unmatched vertices not adjacent: Otherwise it would either be perfect (if there are no 2 free vertices) or we could just match v_{1} and v_{2} (because they are adjacent).

Every adjacent vertex is matched, otherwise the matching would not be maximal.

See Manber Figure 3.76.

Pigeonhole Principle

Generalizing the Insight

- $v_{1}, u_{2}, u_{1}, v_{2}$ is a path from an unmatched vertex to an unmatched vertex such that alternate edges are unmatched and matched.
- In one step, switch unmatched and matched edges.
- Let $G=(V, E)$ be an undirected graph and $M \subseteq E$ a matching.
- An alternating path P goes from v to u, consists of alternately matched and unmatched edges, and both v and u are not in the match.

Matching Example

$1,2,3,5$ is NOT an alternating path (it does not start with an unmatch vertex).
$7,6,11,10,9,8$ is an alternating path with respect to the given matching.

Observation: If a matching has an alternating path, then the size of the matching can be increased by one by switching matched and unmatched edges along the alternating path.

The first point is the obvious part of the iff. If there is an alternating path, simply switch the match and umatched edges to augment the match.

Symmetric difference: Those in either, but not both.

A vertex matches one different vertex in M and M^{\prime}.

- Let M^{\prime} be any maximum matching. Then, $\left|M^{\prime}\right|>|M|$.
- Let $M \oplus M^{\prime}$ be the symmetric difference of M and M^{\prime}.

$$
M \oplus M^{\prime}=M \cup M^{\prime}-\left(M \cap M^{\prime}\right) .
$$

- $G^{\prime}=\left(V, M \oplus M^{\prime}\right)$ is a subgraph of G having maximum degree ≤ 2.

The Alternating Path Theorem (2)

Proof: (continued)

- Therefore, the connected components of G^{\prime} are either even-length cycles or a path with alternating edges.
- Since $\left|M^{\prime}\right|>|M|$, there must be a component of G^{\prime} that is an alternating path having more M^{\prime} edges than M edges.

The Alternating Path Theorem (1)

Theorem: A matching is maximum iff it has no alternating paths.

Proof:

- Clearly, if a matching has alternating paths, then it is not maximum.
- Suppose M is a non-maximum matching.

no notes

Bipartite Matching

- A bipartite graph $G=(U, V, E)$ consists of two disjoint sets of vertices U and V together with edges E such that every edge has an endpoint in U and an endpoint in V.
- Bipartite matching naturally models a number of assignment problems, such as assignment of workers to jobs.
- Alternating paths will work to find a maximum bipartite matching. An alternating path always has one end in U and the other in V.
- If we direct unmatched edges from U to V and matched edges from V to U, then a directed path from an unmatched vertex in U to an unmatched vertex in V is an alternating path.

Bipartite Matching Example

$2,8,5,10$ is an alternating path.
$1,6,3,7,4,9$ and $2,8,5,10$ are disjoint alternating paths that we can augment independently.

Algorithm for Maximum Bipartite Matching

Construct BFS subgraph from the set of unmatched vertices in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.
Augment along each path independently.
Repeat until no alternating paths remain.
Time complexity $O((|V|+|E|) \sqrt{|V|})$.

Network Flows

Models distribution of utilities in networks such as oil pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph $G=(V, E)$ having a distinguished source vertex s and a distinguished sink vertex
t. Every edge (u, v) of G has a capacity $c(u, v) \geq 0$. If $(u, v) \notin E$, then $c(u, v)=0$.

Naive algorithm: Find a maximal matching (greedy algorithm).
For each vertex:
Do a DFS or other search until an alternating path is found. Use the alternating path to improve the match.

$$
|V|(|V|+|E|)
$$

Order doesn't matter. Find a path, remove its vertices, then repeat.Augment along the paths independently since they are disjoint.

Network Flow Graph

Network Flow Definitions

A flow in a network is a function $f: V \times V \rightarrow R$ with the following properties.
(i) Skew Symmetry:

$$
\forall v, w \in V, \quad f(v, w)=-f(w, v)
$$

(ii) Capacity Constraint:

$$
\forall v, w, \in V, \quad f(v, w) \leq c(v, w)
$$

If $f(v, w)=c(v, w)$ then (v, w) is saturated.
(iii) Flow Conservation:

$$
\begin{aligned}
& \forall v \in V-\{s, t\}, \quad \sum f(v, w)=0 . \quad \text { Equivalently, } \\
& \forall v \in V-\{s, t\}, \quad \sum_{u} f(u, v)=\sum_{w} f(v, w)
\end{aligned}
$$

In other words, flow into v equals flow out of v.

Flow Example

Edges are labeled "capacity, flow". $\because \ddots$ + +infinity, 13
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

$$
|f|=\sum_{w \in V} f(s, w)=\sum_{w \in V} f(w, t)
$$

Max Flow Problem

Problem: Find a flow of maximum value.

Cut $\left(X, X^{\prime}\right)$ is a partition of V such that $s \in X, t \in X^{\prime}$.
The capacity of a cut is

$$
c\left(X, X^{\prime}\right)=\sum_{v \in X, w \in X^{\prime}} c(v, w) .
$$

A min cut is a cut of minimum capacity.
no notes

$3,-3$ is an illustration of "negative flow" returning. Every node can be thought of as having negative flow. We will make use of this later - augmenting paths.

no notes

Cut Flows

For any flow f, the flow across a cut is:

$$
f\left(X, X^{\prime}\right)=\sum_{v \in X, w \in X^{\prime}} f(v, w) .
$$

Lemma: For all flows f and all cuts $\left(X, X^{\prime}\right), f\left(X, X^{\prime}\right)=|f|$.

- Clearly, the flow out of $s=|f|=$ the flow into t.
- It can be proved that the flow across every other cut is also $|f|$.

Corollary: The value of any flow is less than or equal to the capacity of a min cut.

Residual Graph

Given any flow f, the residual capacity of the edge is

$$
\operatorname{res}(v, w)=c(v, w)-f(v, w) \geq 0
$$

Residual graph is a network $R=\left(V, E_{R}\right)$ where E_{R} contains edges of non-zero residual capacity.

Observations

(1) Any flow in R can be added to F to obtain a larger flow in G.
(2) In fact, a max flow f^{\prime} in R plus the flow f (written $f+f^{\prime}$) is a max flow in G.
(3) Any path from s to t in R can carry a flow equal to the smallest capacity of any edge on it.

- Such a path is called an augmenting path.
- For example, the path

$$
s, 1,2, t
$$

can carry a flow of 2 units $=c(1,2)$.

Max-flow Min-cut Theorem

The following are equivalent:
(i) f is a max flow.
(ii) f has no augmenting path in R.
(iii) $|f|=c\left(X, X^{\prime}\right)$ for some min cut $\left(X, X^{\prime}\right)$.

Proof:

(i) \Rightarrow (ii):

- If f has an augmenting path, then f is not a max flow.

no notes

LMax-flow Min-cut Theorem

Max-llow Min-cut Theorem
 (i)

(ii) \Rightarrow (iii):

- Suppose f has no augmenting path in R.
- Let X be the subset of V reachable from s and $X^{\prime}=V-X$.
- Then $s \in X, t \in X^{\prime}$, so $\left(X, X^{\prime}\right)$ is a cut.
- $\forall v \in X, w \in X^{\prime}, r e s(v, w)=c(v, w)-f(v, w)=0$.
- $f\left(X, X^{\prime}\right)=\sum_{v \in X, w \in X^{\prime}} f(v, w)=$ $\sum_{v \in X, w \in X^{\prime}} c(v, w)=c\left(X, X^{\prime}\right)$.
- By Lemma, $|f|=c\left(X, X^{\prime}\right)$ and $\left(X, X^{\prime}\right)$ is a min cut.

Max-flow Min-cut Theorem (3)

(iii) \Rightarrow (i)

- Let f be a flow such that $|f|=c\left(X, X^{\prime}\right)$ for some (min) cut (X, X^{\prime}).
- By Lemma, all flows f^{\prime} satisfy $\left|f^{\prime}\right| \leq c\left(X, X^{\prime}\right)=|f|$.

Thus, f is a max flow.

Max-flow Min-cut Corollary

Corollary: The value of a max flow equals the capacity of a min cut.
This suggests a strategy for finding a max flow.
$R=G ; f=0 ;$
repeat
find a path from s to t in R;
augment along path to get a larger flow f;
update R for new flow;
until R has no path s to t.
This is the Ford-Fulkerson algorithm.
If capacities are all rational, then it always terminates with f equal to max flow.

Edmonds-Karp Algorithm

For integral capacities.
Select an augmenting path in R with minimum number of edges.

Performance: $O\left(|V|^{3}\right)$.
There are numerous other approaches to finding augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

Line 4: Because no augmenting path.
Line 5: Because we know the residuals are all 0 .

In other words, look at the capacity of G at the cut separating s from t in the residual graph. This must be a min cut (for G) with capacity $|f|$.

no notes

Problem with Ford-Fulkerson:
Draw graph with nodes nodes $\mathrm{s}, \mathrm{t}, \mathrm{a}$, and b . Flow from S to a and b is M , flow from a and b to t is M , flow from a to b is 1 .

Now, pick s-a-b-t.
Then s-b-a-t. (reverse 1 unit of flow).
Repeat M times.
M is unrelated to the size of V, E, so this is potentially exponential.

no notes

