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Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures
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Communication Networks

Road Maps
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Graph Algorithms

• A graph G = (V, E) consists of a set of vertices V, and a set
of edges E, such that each edge in E is a connection
between a pair of vertices in V.

• Directed vs. Undirected

• Labeled graph, weighted graph

• Labels for edges vs. weights for edges

• Multiple edges, loops

• Cycle, Circuit, path, simple path, tours

• Bipartite, acyclic, connected

• Rooted tree, unrooted tree, free tree

A Tree Proof

Definition : A free tree is a connected, undirected graph
that has no cycles.
Theorem : If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof : By induction on n.
Base Case : n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis : The theorem is true for a tree
having n − 1 vertices.
Inductive Step :

◮ If T has n vertices, then T contains a vertex of degree 1.
◮ Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
◮ By IH, T ′ has n − 2 edges.
◮ Thus, T has n − 1 edges.
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A Tree Proof

This is close to a satisfactory definition for free tree. There are
several equivalent definitions for free trees, with similar proofs
to relate them.

Why do we know that some vertex has degree 1? Because the
definition says that the Free Tree has no cycles.

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:

1 Eulerian tours
Traverse each edge exactly once

2 Depth-first search
Keeps vertices on a stack

3 Breadth-first search
Keeps vertices on a queue
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Graph Traversals

a vertex may be visited multiple times



Eulerian Tours

A circuit that contains every edge exactly once.
Example:

e
ca

b

f

d

Tour: b a f c d e.

Example:

g

ca
b

f

e

d

No Eulerian tour. How can you tell for sure?
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Eulerian Tours

Why no tour? Because some vertices have odd degree.

All even nodes is a necessary condition. Is it sufficient?

Eulerian Tour Proof

Theorem : A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof : By induction on m.
Base Case :
Inductive Hypothesis :
Inductive Step :

◮ Start with an arbitrary vertex and follow a path until you
return to the vertex.

◮ Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

◮ By IH, each connected component has an Eulerian tour.
◮ Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2010 6 / 226

Eulerian Tour Proof

Theorem : A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof : By induction on m.
Base Case :
Inductive Hypothesis :
Inductive Step :

◮ Start with an arbitrary vertex and follow a path until you
return to the vertex.

◮ Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

◮ By IH, each connected component has an Eulerian tour.
◮ Combine the tours to get a tour of the entire graph.

20
10

-0
3-

17

CS 5114

Eulerian Tour Proof

Base case : 0 edges and 1 vertex fits the theorem.
IH: The theorem is true for < m edges.
Always possible to find a circuit starting at any arbitrary vertex,
since each vertex has even degree.

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V| + |E|).
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Depth First Search

no notes

Depth First Search Example

E (a) (b)
A B

D F
A BCD FE

C
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Depth First Search Example

The directions are imposed by the traversal. This is the Depth
First Search Tree.



DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers .

Lemma 7.2 : Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof : Consider the first time an edge (v , w) is examined,
with v the current vertex.

If w is unmarked, then (v , w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v , w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .
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DFS Tree

Results: No “cross edges.” That is, no edges connecting
vertices sideways in the tree.

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

3

2

1

5

4

6

9

7

8
Forward edges: (1, 3)

Back edges: (5, 1)

Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution : Maintain a list of unmarked vertices.

◮ Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.
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DFS for Directed Graphs

no notes

Directed Cycles

Lemma 7.4 : Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof :
1 Suppose a DFS produces a back edge (v , w).

◮ v and w are in the same DFS tree, w an ancestor of v .
◮ (v , w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

◮ Do a DFS on G.
◮ Let w be the vertex of C with smallest DFS number.
◮ Let (v , w) be the edge of C coming into w .
◮ v is a descendant of w in a DFS tree.
◮ Therefore, (v , w) is a back edge.
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Directed Cycles

See earlier lemma.

Breadth First Search

Like DFS, but replace stack with a queue.

Visit vertex’s neighbors before going deeper in tree.
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Breadth First Search

no notes



Breadth First Search Algorithm

void BFS(Graph G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = each neighbor of v)
if (G.getMark(G.v2(w)) == UNVISITED) {

G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}
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Breadth First Search Algorithm

no notes

Breadth First Search Example

F(a) (b)
BC A

E C B
FDA

E D
Non-tree edges connect vertices at levels differing by 0 or 1.
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Breadth First Search Example

no notes

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites. J6J1 J2J3 J4 J5 J7
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Topological Sort

no notes

Topological Sort Algorithm

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper

}
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}
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Topological Sort Algorithm

Prints in reverse order.



Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2’s count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for v
for (Edge w = each neighbor of v) {
Count[G.v2(w)]--; // One less prereq
if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));

}}}
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Queue-based Topological Sort

no notes

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:

Find the shortest path between two specified vertices.

Find the shortest path from vertex S to all other vertices.

Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances .
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Shortest Paths Problems

no notes

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
If there is no such edge, then w(A, B) = ∞.
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Shortest Paths Definitions

w(A, D) = 20; d(A, D) = 10 (through ACBD).

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.
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Single Source Shortest Paths

no notes



Dijkstra’s Algorithm Example

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18
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Dijkstra’s Algorithm Example

no notes

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w)))

D[G.v2(w)] = D[v] + G.weight(w);
}

}
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Dijkstra’s Algorithm: Array (1)

no notes

Dijkstra’s Algorithm: Array (2)

// Get mincost vertex
int minVertex(Graph G, int* D) {
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
v = i;

return v;
}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: Θ(|V|2 + |E|) = Θ(|V|2).
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Dijkstra’s Algorithm: Array (2)

no notes

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

CS 5114: Theory of Algorithms Spring 2010 24 / 226

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue

int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances
do { temp = H.removemin(); v = temp.vertex; }

while (G.getMark(v) == VISITED);
G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

20
10

-0
3-

17

CS 5114

Dijkstra’s Algorithm: Priority Queue (1)

no notes



Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.

Total cost: Θ((|V| + |E|) log |V|).
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Dijkstra’s Algorithm: Priority Queue (2)

no notes

All Pairs Shortest Paths
For every vertex u, v ∈ V, calculate d(u, v ).
Could run Dijkstra’s Algorithm |V| times.
Better is Floyd’s Algorithm .
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .111 1 740 5 3 31122 121 1
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All Pairs Shortest Paths

Multiple runs of Dijkstra’s algorithm Cost:
|V ||E | log |V | = |V |3 log |V | for dense graph.

The issue driving the concept of “k paths” is how to efficiently
check all the paths without computing any path more than once.

0,3 is a 0-path. 2,0,3 is a 1-path. 0,2,3 is a 3-path, but not a 2
or 1 path. Everything is a 4 path.

Floyd’s Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}
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Floyd’s Algorithm

no notes

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.

E
A9 7 5 BC1 2 6D 2 F1

CS 5114: Theory of Algorithms Spring 2010 28 / 226

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.

E
A9 7 5 BC1 2 6D 2 F120

10
-0

3-
17

CS 5114

Minimum Cost Spanning Trees

no notes



Key Theorem for MST

Let V1, V2 be an arbitrary, non-trivial partition of V . Let
(v1, v2), v1 ∈ V1, v2 ∈ V2, be the cheapest edge between V1

and V2. Then (v1, v2) is in some MST of G.
Proof :

Let T be an arbitrary MST of G.
If (v1, v2) is in T , then we are done.
Otherwise, adding (v1, v2) to T creates a cycle C.
At least one edge (u1, u2) of C other than (v1, v2) must
be between V1 and V2.
c(u1, u2) ≥ c(v1, v2).
Let T ′ = T ∪ {(v1, v2)} − {(u1, u2)}.
Then, T ′ is a spanning tree of G and c(T ′) ≤ c(T ).
But c(T ) is minimum cost.

Therefore, c(T ′) = c(T ) and T ′ is a MST containing (v1, v2).
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Key Theorem for MST

There can only be multiple MSTs when there are edges with
equal cost.

Key Theorem FigureMarked UnmarkedVerti
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no notes

Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; int V[G.n()]; // Distances
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) {

D[G.v2(w)] = G.weight(w); // Update dist
V[G.v2(w)] = v; // who came from

}}}
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Prim’s MST Algorithm (1)

no notes

Prim’s MST Algorithm (2)

int minVertex(Graph G, int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
v = i;

return v;
}

This is an example of a greedy algorithm.
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Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
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Alternative Prim’s Implementation (1)

no notes

Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) { // Update D

D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert dist in heap

}
}}
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Alternative Prim’s Implementation (2)
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Kruskal’s MST Algorithm (1)

Kruskel(Graph G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges into E

for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) {

E[edgecnt].weight = G.weight(w);
E[edgecnt++].edge = w;

}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numMST = G.n(); // Init w/ n equiv classes
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Kruskal’s MST Algorithm (1)

no notes

Kruskal’s MST Algorithm (2)

for (i=0; numMST>1; i++) { // Combine
Elem temp = H.removemin(); // Next cheap edge
Edge w = temp.edge;
int v = G.v1(w); int u = G.v2(w);
if (A.differ(v, u)) { // If different
A.UNION(v, u); // Combine
AddEdgetoMST(G.v1(w), G.v2(w)); // Add
numMST--; // Now one less MST

}
}

}

How do we compute function MSTof(v)?
Solution: UNION-FIND algorithm (Section 4.3).
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Kruskal’s Algorithm Example
Total cost: Θ(|V| + |E| log |E|).

A
Initial A B C D E FStep 1 A B C1D E FStep 2Process edge (E, F)A B C1D E 1 F
Step 3Process edge (C, F) B 1 2CDE 1 F
Process edge (C. D)
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Kruskal’s Algorithm Example

Cost is dominated by the edge sort.
Alternative: Use a min heap, quit when only one set left.
“Kth-smallest” implementation.

Matching

Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.
Problem : Form as many compatible non-overlapping
teams as possible.
Model using G, an undirected graph.

◮ Join vertices if the workers will work together.
A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

◮ A maximal matching has no free pairs of vertices that
can extend the matching.

◮ A maximum matching has the greatest possible
number of edges.

◮ A perfect matching includes every vertex.
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Matching

An example:
(1-3) is a matching.
(1-3) (5, 4) is both maximal and maximum.
Take away the edge (5-4). Then (3, 2) would be maximal but
not a maximum matching.

2

43

1

5

Very Dense Graphs (1)

Theorem : Let G = (V , E) be an undirected graph with
|V | = 2n and every vertex having degree ≥ n. Then G
contains a perfect matching.

Proof : Suppose that G does not contain a perfect matching.
Let M ⊆ E be a max matching. |M| < n.
There must be two unmatched vertices v1, v2 that are
not adjacent.
Every vertex adjacent to v1 or to v2 is matched.
Let M ′ ⊆ M be the set of edges involved in matching the
neighbors of v1 and v2.
There are ≥ 2n edges from v1 and v2 to vertices
covered by M ′, but |M ′| < n.
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Very Dense Graphs (1)

There must be two unmatched vertices not adjacent:
Otherwise it would either be perfect (if there are no 2 free
vertices) or we could just match v1 and v2 (because they are
adjacent).

Every adjacent vertex is matched, otherwise the matching
would not be maximal.

See Manber Figure 3.76.

Very Dense Graphs (2)

Proof : (continued)

Thus, some edge of M ′ is adjacent to 3 edges from v1

and v2.
Let (u1, u2) be such an edge.
Replacing (u1, u2) with (v1, u2) and (v2, u1) results in a
larger matching.
Theorem proven by contradiction.
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Very Dense Graphs (2)

Pigeonhole Principle



Generalizing the Insight

u1 u2 u1

v1 v2v1 v2

u2

v1, u2, u1, v2 is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.
In one step, switch unmatched and matched edges.
Let G = (V , E) be an undirected graph and M ⊆ E a
matching.
An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.

CS 5114: Theory of Algorithms Spring 2010 41 / 226

Generalizing the Insight

u1 u2 u1

v1 v2v1 v2

u2

v1, u2, u1, v2 is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.
In one step, switch unmatched and matched edges.
Let G = (V , E) be an undirected graph and M ⊆ E a
matching.
An alternating path P goes from v to u, consists of
alternately matched and unmatched edges, and both v
and u are not in the match.

20
10

-0
3-

17

CS 5114

Generalizing the Insight
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Matching Example
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Matching Example

1, 2, 3, 5 is NOT an alternating path (it does not start with an
unmatch vertex).

7, 6, 11, 10, 9, 8 is an alternating path with respect to the given
matching.

Observation: If a matching has an alternating path, then the
size of the matching can be increased by one by switching
matched and unmatched edges along the alternating path.

The Alternating Path Theorem (1)

Theorem : A matching is maximum iff it has no alternating
paths.

Proof :
Clearly, if a matching has alternating paths, then it is not
maximum.
Suppose M is a non-maximum matching.
Let M ′ be any maximum matching. Then, |M ′| > |M|.
Let M⊕M ′ be the symmetric difference of M and M ′.

M⊕M ′ = M ∪ M ′ − (M ∩ M ′).

G′ = (V , M⊕M ′) is a subgraph of G having maximum
degree ≤ 2.
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The Alternating Path Theorem (1)

The first point is the obvious part of the iff. If there is an
alternating path, simply switch the match and umatched edges
to augment the match.

Symmetric difference: Those in either, but not both.

A vertex matches one different vertex in M and M ′.

The Alternating Path Theorem (2)

Proof : (continued)

Therefore, the connected components of G′ are either
even-length cycles or a path with alternating edges.
Since |M ′| > |M|, there must be a component of G′ that
is an alternating path having more M ′ edges than M
edges.
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The Alternating Path Theorem (2)
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Bipartite Matching

A bipartite graph G = (U, V , E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V .
Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.
Alternating paths will work to find a maximum bipartite
matching. An alternating path always has one end in U
and the other in V .
If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an alternating path.
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Bipartite Matching
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Bipartite Matching Example

3

4

5 10

9

8

72

1 6

2, 8, 5, 10 is an alternating path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint alternating paths
that we can augment independently .
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Bipartite Matching Example

Naive algorithm: Find a maximal matching (greedy algorithm).

For each vertex:
Do a DFS or other search until an alternating path is found.
Use the alternating path to improve the match.

|V |(|V | + |E |)

Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint alternating paths.

Augment along each path independently.

Repeat until no alternating paths remain.

Time complexity O((|V | + |E |)
√

|V |).
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Algorithm for Maximum Bipartite Matching

Order doesn’t matter. Find a path, remove its vertices, then
repeat.Augment along the paths independently since they are
disjoint.

Network Flows

Models distribution of utilities in networks such as oil
pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph G = (V , E) having a
distinguished source vertex s and a distinguished sink vertex
t . Every edge (u, v) of G has a capacity c(u, v) ≥ 0. If
(u, v) /∈ E , then c(u, v) = 0.
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Network Flow Graph

no notes

Network Flow Definitions
A flow in a network is a function f : V × V → R with the
following properties.

(i) Skew Symmetry :

∀v , w ∈ V , f (v , w) = −f (w , v).

(ii) Capacity Constraint :

∀v , w ,∈ V , f (v , w) ≤ c(v , w).

If f (v , w) = c(v , w) then (v , w) is saturated .
(iii) Flow Conservation :

∀v ∈ V − {s, t},
∑

f (v , w) = 0. Equivalently,

∀v ∈ V − {s, t},
∑

u

f (u, v) =
∑

w

f (v , w).

In other words, flow into v equals flow out of v .
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Network Flow Definitions
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Flow Example

+infinity, 13

3 4

s t

1 2 10, 5

10, 8

2, 2

20, 10

3, -3

5, 3

3, 0

20, 10

10, 3

0, -10

Edges are labeled “capacity, flow”.
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

|f | =
∑

w∈V

f (s, w) =
∑

w∈V

f (w , t).
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Flow Example

3, -3 is an illustration of “negative flow” returning. Every node
can be thought of as having negative flow. We will make use of
this later – augmenting paths.

Max Flow Problem

Problem : Find a flow of maximum value.

Cut (X , X ′) is a partition of V such that s ∈ X , t ∈ X ′.

The capacity of a cut is

c(X , X ′) =
∑

v∈X ,w∈X ′

c(v , w).

A min cut is a cut of minimum capacity.
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Max Flow Problem
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Cut Flows

For any flow f , the flow across a cut is:

f (X , X ′) =
∑

v∈X ,w∈X ′

f (v , w).

Lemma : For all flows f and all cuts (X , X ′), f (X , X ′) = |f |.

Clearly, the flow out of s = |f | = the flow into t .

It can be proved that the flow across every other cut is
also |f |.

Corollary : The value of any flow is less than or equal to the
capacity of a min cut.
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Cut Flows
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Residual Graph

Given any flow f , the residual capacity of the edge is

res(v , w) = c(v , w) − f (v , w) ≥ 0.

Residual graph is a network R = (V , ER) where ER

contains edges of non-zero residual capacity.
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s t
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Residual Graph

R is the network after f has been subtracted.
Saturated edges do not appear.
Some edges have larger capacity than in G.

Observations

1 Any flow in R can be added to F to obtain a larger flow
in G.

2 In fact, a max flow f ′ in R plus the flow f (written f + f ′) is
a max flow in G.

3 Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

◮ Such a path is called an augmenting path .
◮ For example, the path

s, 1, 2, t

can carry a flow of 2 units = c(1, 2).
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Observations
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Max-flow Min-cut Theorem

The following are equivalent:

(i) f is a max flow.

(ii) f has no augmenting path in R.

(iii) |f | = c(X , X ′) for some min cut (X , X ′).

Proof :
(i) ⇒ (ii):

If f has an augmenting path, then f is not a max flow.
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Max-flow Min-cut Theorem (2)

(ii) ⇒ (iii):

Suppose f has no augmenting path in R.

Let X be the subset of V reachable from s and
X ′ = V − X .

Then s ∈ X , t ∈ X ′, so (X , X ′) is a cut.

∀v ∈ X , w ∈ X ′, res(v , w) = c(v , w) − f (v , w) = 0.

f (X , X ′) =
∑

v∈X ,w∈X ′ f (v , w) =
∑

v∈X ,w∈X ′ c(v , w) = c(X , X ′).

By Lemma, |f | = c(X , X ′) and (X , X ′) is a min cut.
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Max-flow Min-cut Theorem (2)

Line 4: Because no augmenting path.
Line 5: Because we know the residuals are all 0.

In other words, look at the capacity of G at the cut separating s
from t in the residual graph. This must be a min cut (for G) with
capacity |f |.

Max-flow Min-cut Theorem (3)

(iii) ⇒ (i)

Let f be a flow such that |f | = c(X , X ′) for some (min)
cut (X , X ′).

By Lemma, all flows f ′ satisfy |f ′| ≤ c(X , X ′) = |f |.

Thus, f is a max flow.
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no notes

Max-flow Min-cut Corollary

Corollary : The value of a max flow equals the capacity of a
min cut.
This suggests a strategy for finding a max flow.

R = G; f = 0;
repeat
find a path from s to t in R;
augment along path to get a larger flow f;
update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.
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Max-flow Min-cut Corollary

Problem with Ford-Fulkerson:
Draw graph with nodes nodes s, t, a, and b. Flow from S to a
and b is M, flow from a and b to t is M, flow from a to b is 1.

Now, pick s-a-b-t.
Then s-b-a-t. (reverse 1 unit of flow).
Repeat M times.
M is unrelated to the size of V, E, so this is potentially
exponential.

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R with minimum number of
edges.

Performance: O(|V |3).

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.
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Edmonds-Karp Algorithm
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