CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright (© 2010 by Clifford A. Shaffer

[m] = =
CS 5114: Theory of Algorithms

Spring 2010

1/34

Graph Algorithms

Graphs are useful for representing a variety of concepts:

@ Data Structures
Relationships

Families

Communication Networks

°
°
o
@ Road Maps

CS 5114: Theory of Algorithms Spring 2010 2/34

A Tree Proof

@ Definition : A free tree is a connected, undirected graph
that has no cycles.
@ Theorem: If T is a free tree having n vertices, then T
has exactly n — 1 edges.
Proof : By induction on n.
Base Case: n = 1. T consists of 1 vertex and 0 edges.
@ Inductive Hypothesis : The theorem is true for a tree
having n — 1 vertices.
@ Inductive Step :
» If T has n vertices, then T contains a vertex of degree 1.
» Remove that vertex and its incident edge to obtain T/, a
free tree with n — 1 vertices.
» By IH, T has n — 2 edges.
» Thus, T has n — 1 edges.

CS 5114: Theory of Algorithms Spring 2010 3/34

Graph Traversals

Various problems require a way to traverse a graph — that is,
visit each vertex and edge in a systematic way.

Three common traversals:

© Eulerian tours

Traverse each edge exactly once
©@ Depth-first search

Keeps vertices on a stack

© Breadth-first search
Keeps vertices on a queue

CS 5114: Theory of Algorithms Spring 2010 4/34

Eulerian Tours

A circuit that contains every edge exactly once.

Example: f
a c
by
Tour: bafcde.
Example: f
a c
b 4

g
No Eulerian tour. How can you tell for sure?

CS 5114: Theory of Algorithms Spring 2010

5/34

Eulerian Tour Proof

@ Theorem : A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.

@ Proof : By induction on m.
@ Base Case:

@ Inductive Hypothesis

@ Inductive Step :

» Start with an arbitrary vertex and follow a path until you
return to the vertex.

» Remove this circuit. What remains are connected
components Gq, Gy, ..., G¢ each with nodes of even
degree and < m edges.

» By IH, each connected component has an Eulerian tour.

» Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2010 6/34

Depth First Search

void DFS(Graph G int v) { // Depth first search

PreVisit(G vVv); /| Take appropriate action

G set Mark(v, VI SITED);

for (Edge w = each nei ghbor of v)

if (G getMark(G v2(w)) == UNVI SI TED)
DFS(G G v2(w);

PostVisit(G vVv); /| Take appropriate action

}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: ©(|V| + |E]).
Spring 2010 7/34

Depth First Search Example

CS 5114: Theory of Algorithms Spring 2010 8/34

DFS Tree

If we number the vertices in the order that they are marked,
we get DFS numbers .

Lemma 7.2: Every edge e € E is either in the DFS tree T,
or connects two vertices of G, one of which is an ancestor of
the otherinT.

Proof : Consider the first time an edge (v,w) is examined,
with v the current vertex.
@ If w is unmarked, then (v,w)isinT.
@ If w is marked, then w has a smaller DFS number than
v AND (v,w) is an unexamined edge of w.
@ Thus, w is still on the stack. That is, w is on a path from
V.

CS 5114: Theory of Algorithms Spring 2010 9/34

DFS for Directed Graphs

@ Main problem: A connected graph may not give a single
DFS tree. ® ~(7)
@=-—®
Forward edges: (1, 3) i i
Back edges: (5, 1) ® ®

Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution : Maintain a list of unmarked vertices.

» Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2010 10/34

Directed Cycles

Lemma 7.4: Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof :
© Suppose a DFS produces a back edge (v, w).
» v and w are in the same DFS tree, w an ancestor of v.
» (v,w) and the path in the tree from w to v form a
directed cycle.
© Suppose G has a directed cycle C.
» Do aDFSonG.
» Let w be the vertex of C with smallest DFS number.
» Let (v,w) be the edge of C coming into w.
» V is a descendant of w in a DFS tree.
» Therefore, (v,w) is a back edge.

CS 5114: Theory of Algorithms Spring 2010 11/34

Breadth First Search

@ Like DFS, but replace stack with a queue.

@ Visit vertex’s neighbors before going deeper in tree.

[m] = =
CS 5114: Theory of Algorithms

Spring 2010

12/34

Breadth First Search Algorithm

void BFS(Gaph G int start) {
Queue (G n());
Q enqueue(start);
G set Mark(start, VISITED);
while (!QisEmpty()) {
int v = Qdequeue();
PreVisit(G V); /| Take appropriate action
for (Edge w = each nei ghbor of v)
if (GgetMark(G v2(w)) == UNVI SITED) {
G set Mark(G v2(w), VISITED);
Q enqueue(G v2(wW));

}
PostVisit(G v); [/ Take appropriate action

CS 5114: Theory of Algorithms Spring 2010

Breadth First Search Example

(a) (P)
Non-tree edges connect vertices at levels differing by 0 or 1.

CS 5114: Theory of Algorithms Spring 2010 14/34

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites.

CS 5114: Theory of Algorithms Spring 2010 15/34

Topological Sort Algorithm

voi d topsort(Gaph G { // Top sort: recursive
for (int i=0; i<Gn(); i++) // Initialize Mark
G setMark(i, UNVISITED);

for (i=0; i<G n(); i++) /'l Process vertices
if (G getMark(i) == UNVI SI TED)
tophel p(G, i); [l Call hel per

}
voi d tophel p(Graph G int v) { // Helper function

G set Mark(v, VI SITED);
for (Edge w = each nei ghbor of v)
if (G getMark(G v2(w)) == UNVI SI TED)
tophel p(G G v2(w);
printout(v); /'l PostVisit for Vertex v

}

CS 5114: Theory of Algorithms Spring 2010 16/34

Queue-based Topological Sort

voi d topsort(Graph G { // Top sort: Queue
Queue G n()); int Count[Gn()];
for (int v=0; v<G n(); v++) Count[v] = O;
for (v=0; v<Gn(); v++) // Process every edge
for (Edge w each nei ghbor of v)
Count[G v2(wW)]++; // Add to v2's count
for (v=0; v<G n(); v++) // Initialize Queue
if (Count[v] == 0) Q enqueue(V);
while (!QisEmpty()) { // Process the vertices
int v = Q dequeue();

printout (Vv); /[l PreVisit for v
for (Edge w = each nei ghbor of v) {
Count[G v2(W)]--; /1 One less prereq

if (Count[G v2(w)]==0) Q enqueue(G v2(w));
133;

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:
@ Find the shortest path between two specified vertices.
@ Find the shortest path from vertex S to all other vertices.
@ Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances .

CS 5114: Theory of Algorithms Spring 2010 18/34

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
@ If there is no such edge, then w(A, B) = oc.

CS 5114: Theory of Algorithms Spring 2010 19/34

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex Xx.

Problem: Shortest path to a vertex already processed might
go through x.
Solution: Process vertices in order of distance from s.

CS 5114: Theory of Algorithms Spring 2010 20/34

Dijkstra’s Algorithm Example

CS 5114: Theory of Algorithms

A|lB|C|D]|E
Initial 0|0 |00| 00| o0
ProcessA |0 (10| 3 |20 |
ProcessC |0 | 5 | 3 |20 | 18
ProcessB |0 | 5 | 3 | 10| 18
ProcessD |0 | 5 | 3 | 10| 18
Processe | O | 5 | 3 | 10| 18

Spring 2010

21/34

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G int s) { // Use array
int DIGn()];
for (int i=0; i<Gn(); i++) [l Initialize
Di] = INFINITY;
Dis] = 0;
for (i=0; i<Gn(); i++) { [/ Process vertices
int v = mnVertex(G D);
if (DJv] == INFINITY) return; // Unreachabl e
G set Mark(v, VISITED);
for (Edge w = each nei ghbor of v)
if (DGv2(w] > (Dv] + Gweight(w)))
DGv2(w] = Dv] + Gweight(w);
}
}

CS 5114: Theory of Algorithms Spring 2010

22/34

Dijkstra’s Algorithm: Array (2)

/1 Get mncost vertex
int mnVertex(Gaph G int* D) {
int v // Initialize v to an unvisited vertex;
for (int i=0; i<Gn(); i++)
if (G getMark(i) == UNVI SI TED)
{ v =i; break; }
for (i++ i<Gn(); i++) // Find smallest D val
if ((GgetMark(i)==UNVISITED) && (D[i]<Dv]))
vV =i
return v;

}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: O(|V|? + |E|) = ©(|V]?).
Spring 2010 23/34

Dijkstra’s Algorithm: Priority Queue (1)

class Elem{ public: int vertex, dist; };

int key(Elemx) { return x.dist; }

void Dijkstra(Graph G int s) { // priority queue
int v; El em t enp;
int D)Gn()]; ElemEGe()];
tenp.dist = 0; tenp.vertex = s; E[0] = tenp;

heap H(E, 1, Ge()); [/l Create the heap
for (int i=0; i<Gn(); i++) Di] = INFINITY;
Ds] = 0;

for (i=0; i<Gn(); i++) { /'l Get distances

do { tenp = Hrenovenmin(); v = tenp.vertex; }
while (G get Mark(v) == VISITED);

G set Mark(v, VI SITED);

if (Dfv] == INFINITY) return; // Unreachabl e

CS 5114: Theory of Algorithms Spring 2010 2434

Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each nei ghbor of v)
if (DGv2(w] > (Dv] + Gweight(w))) {
DGv2(w] = Dv] + Gweight(w;
tenp.dist = DG v2(w];
tenp.vertex = Gv2(w;
H insert(tenp); // Insert new di stance

133

@ Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.

@ Total cost: ©((|V| + |E[) log |V]).

CS 5114: Theory of Algorithms Spring 2010 25/34

All Pairs Shortest Paths

@ For every vertex u,v € V, calculate d(u, v).

@ Could run Dijkstra’s Algorithm |V| times.

@ Better is Floyd’s Algorithm

@ Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k.

CS 5114: Theory of Algorithms Spring 2010 26/34

Floyd's Algorithm

void Floyd(Graph G { // All-pairs shortest paths
int DDGn()][Gn()]; /! Store distances
for (int i=0; i<Gn(); i++) // Initialize D
for (int j=0; j<Gn(); j++)
Dlil[j] = Gweight(i, j);
for (int k=0; k<G n(); k++) // Conpute k paths
for (int i=0; i<Gn(); i++)
for (int j=0; j<Gn(); j++)
if (DLilli] > (Diilrkl + DIKI[i1))
Dlillj] = Dlil[k] + DKI[jI;

CS 5114: Theory of Algorithms Spring 2010 27134

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
@ Input: An undirected, connected graph G.
@ Output: The subgraph of G that

© has minimum total cost as measured by summing the
values for all of the edges in the subset, and
© keeps the vertices connected.

CS 5114: Theory of Algorithms Spring 2010

28/34

Key Theorem for MST

Let V1, V, be an arbitrary, non-trivial partition of V. Let
(V1,V2), V1 € V1,V;, € Vy, be the cheapest edge between V;
and V,. Then (vq, V) is in some MST of G.
Proof :

@ Let T be an arbitrary MST of G.

@ If (vq,V7) isin T, then we are done.

@ Otherwise, adding (v1,V;) to T creates a cycle C.

@ At least one edge (uy, u,) of C other than (vy,v;) must
be between V, and V,.
c(ug,Up) > c(vy,Va).
LetT' =T U{(v1,V2)} — {(u,uz)}.
Then, T’ is a spanning tree of G and ¢(T') < ¢(T).

@ But ¢(T) is minimum cost.
Therefore, c(T’) = ¢(T) and T’ is a MST containing (v, V2).

CS 5114: Theory of Algorithms Spring 2010 29/34

Key Theorem Figure

Marked Unmarked
Vertices v;, i < j Vertices v;, i > j
“correct” edge
el

Vy
Vp
&
Prim's edge

CS 5114: Theory of Algorithms Spring 2010

30/34

Prim's MST Algorithm (1)

void Prim(Graph G int s) { /1 Prims MST alg
int D)Gn()]; int V[Gn()]; // D stances
for (int 1=0; i<Gn(); i++) /1l Initialize
Di] = INFINITY;
Ds] = 0;

for (i=0; i<Gn(); i++) { [/ Process vertices
int v = minVertex(G D);
G set Mark(v, VI SITED);
if (v !=s) AddEdget oMST(V[V], V);
if (DQv] == INFINITY) return; //v unreachable
for (Edge w = each nei ghbor of v)
if (DJGv2(w] > Gweight(w) {
DG v2(w] G weight(w); // Update dist
V[G v2(Ww)] V; [l who canme from

11}

CS 5114: Theory of Algorithms Spring 2010 31/34

Prim's MST Algorithm (2)

int mnVertex(Gaph G int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<Gn(); i++)
if (G getMark(i) == UNVI SI TED)
{ v =i; break; }
for (i=0; i<Gn(); i++) // Find smallest value
if ((GgetMark(i)==UNVISITED) && (D[i]<Dv]))
vV =i
return v;

}

This is an example of a greedy algorithm.

Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G int s) {

int v; /] The current vertex
int DG n()]; /'l Distance array

int V[Gn()]; /1 Who's cl osest

El em t enp;

ElemE Ge()]; /1 Heap array

tenp. di stance = 0; tenp.vertex = s;

E[0] = tenp; /'l Initialize heap array

heap H(E, 1, Ge()); /Il Create the heap
for (int i=0; i<Gn(); i++) Di] = INFINITY;
Ds] =0;

CS 5114: Theory of Algorithms Spring 2010 33/34

Alternative Prim’s Implementation (2)

)

for (i=0; i<Gn(); i++) { // Now build MST

do { tenmp = H renovenmn(); v = tenp.vertex; }
while (G getMark(v) == VI SI TED);
G set Mark(v, VISITED);
if (v !'=s) AddEdget oMST(V[V], V);
if (DQv] == INFINITY) return; // Unreachabl e
for (Edge w = each nei ghbor of v)
if (DDGv2(w] > Gweight(w)) { // Update D
DGv2(w] = G weight(w;
V[G Vv2(wW)] = v; [l Who canme from
tenp. di stance = DG v2(wW];
tenp.vertex = Gv2(w;
H.insert(tenp); /1l Insert dist in heap

}

CS 5114: Theory of Algorithms Spring 2010 34/34

Kruskal's MST Algorithm (1)

Kruskel (Gaph G { // Kruskal’s MST al gorithm
CGentree A(G n()); // Equival ence class array
ElemE G e()]; /1 Array of edges for m n-heap
i nt edgecnt = O0;
for (int i=0; i<Gn(); i++) // Put edges into E

for (Edge w = Gfirst(i);

G i sEdge(w); w = G next(w)) {
E[edgecnt] . wei ght = G wei ght (w);
E[edgecnt ++] . edge = w,

}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numvST = Gn(); // Init w n equiv classes

CS 5114: Theory of Algorithms Spring 2010 35/34

Kruskal's MST Algorithm (2)

for (i=0; numvBT>1; i++) { // Conbi ne

Elemtenp = H renmovenin(); // Next cheap edge

Edge w = tenp. edge;
int v =Gvl(w,; int u=aGv2(w;
if (Adiffer(v, u)) { // If different

A UNION(v, u); Il Conbi ne
AddEdget oMST(G v1(w), Gv2(w)); // Add
nunivisT- - ; /1 Now one | ess MST

}
}
}

How do we compute function MSTof (v) ?
Solution: UNION-FIND algorithm (Section 4.3),

CS 5114: Theory of Algorithms Spring 2010

36/34

Kruskal’'s Algorithm Example
Total cost: ©(|V| + |E| log |E]

~—

® o6
®|®

Process edge (E, F)

v @
£
g
°
2
T ®
a
&
—0OE—0O O

Step 3 @

Process edge (C, F)

CS 5114: Theory of Algorithms Spring 2010 37/34

Matching

@ Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.

@ Problem : Form as many compatible non-overlapping
teams as possible.

@ Model using G, an undirected graph.

» Join vertices if the workers will work together.

@ A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

» A maximal matching has no free pairs of vertices that
can extend the matching.

» A maximum matching has the greatest possible
number of edges.

» A perfect matching includes every vertex.

CS 5114: Theory of Algorithms Spring 2010 38/34

Very Dense Graphs (1)

Theorem: Let G = (V, E) be an undirected graph with
|V | = 2n and every vertex having degree > n. Then G
contains a perfect matching.

Proof : Suppose that G does not contain a perfect matching.

@ Let M C E be a max matching. |[M| < n.

@ There must be two unmatched vertices vy, v, that are
not adjacent.

@ Every vertex adjacent to v, or to v, is matched.

@ Let M’ C M be the set of edges involved in matching the
neighbors of v; and v,.

@ There are > 2n edges from v; and v, to vertices
covered by M’, but |[M’| < n.

CS 5114: Theory of Algorithms Spring 2010 39/34

Very Dense Graphs (2)

Proof : (continued)

@ Thus, some edge of M’ is adjacent to 3 edges from v,
and vs.

@ Let (uy, uy) be such an edge.

@ Replacing (uy, uz) with (vq,uz) and (v, up) results in a
larger matching.

@ Theorem proven by contradiction.

CS 5114: Theory of Algorithms Spring 2010 40/ 34

Generalizing the Insight

(v

@ Vi, Uy, Uy, Vs, is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.

@ In one step, switch unmatched and matched edges.

® Let G = (V,E) be an undirected graphand M C E a
matching.

@ A path P that consists of alternately matched and
unmatched edges is called an alternating path . An
alternating path from one unmatched vertex to another
is called an augmenting path .

CS 5114: Theory of Algorithms Spring 2010 41/34

Matching Example
(@)

O—2—3

CS 5114: Theory of Algorithms Spring 2010 42134

The Augmenting Path Theorem (1)

Theorem : A matching is maximum iff it has no augmenting
paths.

Proof :
@ If a matching has augmenting paths, then it is not
maximum.
@ Suppose M is a non-maximum matching.
@ Let M’ be any maximum matching. Then, |M’| > |[M|.
@ Let M@M’ be the symmetric difference of M and M’.

MaM =M UM — (M N M).

@ G' = (V,M@&M’) is a subgraph of G having maximum
degree < 2.

CS 5114: Theory of Algorithms Spring 2010 43 /34

The Augmenting Path Theorem (2)

Proof : (continued)

@ Therefore, the connected components of G’ are either
even-length cycles or alternating paths.

@ Since |M’| > |[M|, there must be a component of G’ that
is an alternating path having more M’ edges than M
edges.

@ This is an augmenting path for M.

CS 5114: Theory of Algorithms Spring 2010 4434

Bipartite Matching

@ A bipartite graph G = (U, V, E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V.

@ Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.

@ Augmenting paths will work to find a maximum bipartite
matching. An augmenting path always has one end in U
and the otherin V.

@ If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an augmenting path.

CS 5114: Theory of Algorithms Spring 2010 45/34

Bipartite Matching Example

@
®
@
®

2, 8, 5, 10 is an augmenting path.

1,6,3,7,4,9and 2, 8,5, 10 are disjoint augmenting paths
that we can augment independently .

CS 5114: Theory of Algorithms Spring 2010 46 /34

Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint augmenting paths.
Augment along each path independently.

Repeat until no augmenting paths remain.

Time complexity O((|V| + |[E|)\/|V).
Spring 2010 47/34

Network Flows

Models distribution of utilities in networks such as oil
pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:
A network is a directed graph G = (V, E) having a
distinguished source vertex s and a distinguished sink vertex

t. Every edge (u,Vv) of G has a capacity c(u,v) > 0. If
(u,v) ¢ E, then c(u,v) = 0.

CS 5114: Theory of Algorithms Spring 2010 48 /34

Network Flow Graph

3

5
@ﬁ ;@10
10 A s
o?\Tz ©
2 :
~ 20 @1/0

CS 5114: Theory of Algorithms Spring 2010 49 /34

Network Flow Definitions

A flow in a network is a function f : V x V — R with the
following properties.

(i) Skew Symmetry :

YWo,w eV, f(v,w)=—f(w,v).
(i) Capacity Constraint

YWow, eV, f(v,w) <c(v,w).

If f(v,w) =c(v,w) then (v,w) is saturated .
(iif) Flow Conservation :

W e V—{st},) f(v,w)=0. Equivaently,
Woe V—{st}, > f(uv)=> f(v,w).

u w
In other words, flow into v equals flow out of v.
Spring 2010 50/34

Flow Example

20, 10 10,8
10)

+|nf|n|ty 13

Edges are labeled “capacity, flow”
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

=) f(s,w) =) f(w,t).

wev weV

CS 5114: Theory of Algorithms Spring 2010

51/34

Max Flow Problem

Problem : Find a flow of maximum value.
Cut (X, X’) is a partition of V such that s € X,t € X".

The capacity of a cut is

c(X,X)=) c(v.w).

veX,weX’

A min cut is a cut of minimum capacity.

CS 5114: Theory of Algorithms Spring 2010 52/34

Cut Flows
For any flow f, the flow across a cut is:
FXX) = Y f(v,w).

vexX,wex’

Lemma: For all flows f and all cuts (X, X’), f(X,X’) = |f|.
Proof :

fXX) = > f(v,w)

vex,wex’

= Z f(v,w) — Z f(v,w)

vex,weVv vex,weX

= Zf(s,w) -0

wev
= If].
Corollary : The value of any flow is less than or equal to the
capacity of a min cut.

CS 5114: Theory of Algorithms Spring 2010 53/34

Residual Graph

Given any flow f, the residual capacity of the edge is

res(v,w) =c(v,w)—f(v,w) > 0.

Residual graph is a network R = (V, Egr) where Er
contains edges of non-zero residual capacity.

s

10

ii

3

%
LV

CS 5114: Theory of Algorithms Spring 2010 54/34

Observations

@ Any flow in R can be added to F to obtain a larger flow
in G.

@ In fact, a max flow f’ in R plus the flow f (written f 4 ') is
a max flow in G.

© Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

» Such a path is called an augmenting path .
» For example, the path

s, 1,2t

can carry a flow of 2 units = c(1, 2).

CS 5114: Theory of Algorithms Spring 2010 55/34

Max-flow Min-cut Theorem

The following are equivalent:
(i) fis a max flow.
(i) f has no augmenting path in R.
(iii) |f| = c(X,X') for some min cut (X, X’).

Proof :

() = (ii):

@ If f has an augmenting path, then f is not a max flow.

CS 5114: Theory of Algorithms Spring 2010 56 /34

Max-flow Min-cut Theorem (2)

(i) = (iii):

@ Suppose f has no augmenting path in R.

@ Let X be the subset of V reachable from s and
X'=V - X.

@ Thens € X,t € X/, so (X, X’) is a cut.

@ Ve X,we X' res(v,w)=c(v,w)—f(v,w)=0.

° f(X7X’) = ZveX,weX’f(va) =
ZveX,weX’ C(VvW) - C(X,X’).

@ By Lemma, [f| = c(X,X’) and (X, X’) is a min cut.

CS 5114: Theory of Algorithms Spring 2010 57134

Max-flow Min-cut Theorem (3)

(i) = (i)
@ Letf be a flow such that |f| = c(X, X’) for some (min)
cut (X, X’).
@ By Lemma, all flows f’ satisfy |f'| < c¢(X,X’) = [f|.

Thus, f is a max flow.

CS 5114: Theory of Algorithms Spring 2010 58/34

Max-flow Min-cut Corollary

Corollary : The value of a max flow equals the capacity of a

min cut.

This suggests a strategy for finding a max flow.
R=G f = 0;

r epeat

find a path froms tot in R
augnent along path to get a |larger flow f;
update R for new fl ow,

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.

CS 5114: Theory of Algorithms Spring 2010 59/34

Edmonds-Karp Algorithm

For integral capacities.
Select an augmenting path in R of minimum length.

Performance: O(|V|®) where c is an upper bound on
capacities.

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

CS 5114: Theory of Algorithms Spring 2010 60/34

