
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 34

Graph Algorithms

Graphs are useful for representing a variety of concepts:

Data Structures

Relationships

Families

Communication Networks

Road Maps

CS 5114: Theory of Algorithms Spring 2010 2 / 34

A Tree Proof

Definition : A free tree is a connected, undirected graph
that has no cycles.
Theorem : If T is a free tree having n vertices, then T
has exactly n − 1 edges.
Proof : By induction on n.
Base Case : n = 1. T consists of 1 vertex and 0 edges.
Inductive Hypothesis : The theorem is true for a tree
having n − 1 vertices.
Inductive Step :

◮ If T has n vertices, then T contains a vertex of degree 1.
◮ Remove that vertex and its incident edge to obtain T ′, a

free tree with n − 1 vertices.
◮ By IH, T ′ has n − 2 edges.
◮ Thus, T has n − 1 edges.

CS 5114: Theory of Algorithms Spring 2010 3 / 34

Graph Traversals

Various problems require a way to traverse a graph – that is,
visit each vertex and edge in a systematic way.

Three common traversals:

1 Eulerian tours
Traverse each edge exactly once

2 Depth-first search
Keeps vertices on a stack

3 Breadth-first search
Keeps vertices on a queue

CS 5114: Theory of Algorithms Spring 2010 4 / 34

Eulerian Tours

A circuit that contains every edge exactly once.
Example:

e
ca

b

f

d

Tour: b a f c d e.

Example:

g

ca
b

f

e

d

No Eulerian tour. How can you tell for sure?
CS 5114: Theory of Algorithms Spring 2010 5 / 34

Eulerian Tour Proof

Theorem : A connected, undirected graph with m edges
that has no vertices of odd degree has an Eulerian tour.
Proof : By induction on m.
Base Case :
Inductive Hypothesis :
Inductive Step :

◮ Start with an arbitrary vertex and follow a path until you
return to the vertex.

◮ Remove this circuit. What remains are connected
components G1, G2, ..., Gk each with nodes of even
degree and < m edges.

◮ By IH, each connected component has an Eulerian tour.
◮ Combine the tours to get a tour of the entire graph.

CS 5114: Theory of Algorithms Spring 2010 6 / 34

Depth First Search

void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Initial call: DFS(G, r) where r is the root of the DFS.

Cost: Θ(|V| + |E|).
CS 5114: Theory of Algorithms Spring 2010 7 / 34

Depth First Search Example

E (a) (b)
A B

D F
A BCD FE

C
CS 5114: Theory of Algorithms Spring 2010 8 / 34

DFS Tree
If we number the vertices in the order that they are marked,
we get DFS numbers .

Lemma 7.2 : Every edge e ∈ E is either in the DFS tree T ,
or connects two vertices of G, one of which is an ancestor of
the other in T .

Proof : Consider the first time an edge (v , w) is examined,
with v the current vertex.

If w is unmarked, then (v , w) is in T .
If w is marked, then w has a smaller DFS number than
v AND (v , w) is an unexamined edge of w .
Thus, w is still on the stack. That is, w is on a path from
v .

CS 5114: Theory of Algorithms Spring 2010 9 / 34

DFS for Directed Graphs

Main problem: A connected graph may not give a single
DFS tree.

3

2

1

5

4

6

9

7

8
Forward edges: (1, 3)

Back edges: (5, 1)

Cross edges: (6, 1), (8, 7), (9, 5), (9, 8), (4, 2)
Solution : Maintain a list of unmarked vertices.

◮ Whenever one DFS tree is complete, choose an
arbitrary unmarked vertex as the root for a new tree.

CS 5114: Theory of Algorithms Spring 2010 10 / 34

Directed Cycles

Lemma 7.4 : Let G be a directed graph. G has a directed
cycle iff every DFS of G produces a back edge.

Proof :
1 Suppose a DFS produces a back edge (v , w).

◮ v and w are in the same DFS tree, w an ancestor of v .
◮ (v , w) and the path in the tree from w to v form a

directed cycle.
2 Suppose G has a directed cycle C.

◮ Do a DFS on G.
◮ Let w be the vertex of C with smallest DFS number.
◮ Let (v , w) be the edge of C coming into w .
◮ v is a descendant of w in a DFS tree.
◮ Therefore, (v , w) is a back edge.

CS 5114: Theory of Algorithms Spring 2010 11 / 34

Breadth First Search

Like DFS, but replace stack with a queue.

Visit vertex’s neighbors before going deeper in tree.

CS 5114: Theory of Algorithms Spring 2010 12 / 34

Breadth First Search Algorithm

void BFS(Graph G, int start) {
Queue Q(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (!Q.isEmpty()) {

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (Edge w = each neighbor of v)
if (G.getMark(G.v2(w)) == UNVISITED) {

G.setMark(G.v2(w), VISITED);
Q.enqueue(G.v2(w));

}
PostVisit(G, v); // Take appropriate action

}}

CS 5114: Theory of Algorithms Spring 2010 13 / 34

Breadth First Search Example

F(a) (b)
BC A

E C B
FDA

E D
Non-tree edges connect vertices at levels differing by 0 or 1.

CS 5114: Theory of Algorithms Spring 2010 14 / 34

Topological Sort

Problem: Given a set of jobs, courses, etc. with prerequisite
constraints, output the jobs in an order that does not violate
any of the prerequisites. J6J1 J2J3 J4 J5 J7

CS 5114: Theory of Algorithms Spring 2010 15 / 34

Topological Sort Algorithm

void topsort(Graph G) { // Top sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark

G.setMark(i, UNVISITED);
for (i=0; i<G.n(); i++) // Process vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper

}
void tophelp(Graph G, int v) { // Helper function
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}

CS 5114: Theory of Algorithms Spring 2010 16 / 34

Queue-based Topological Sort

void topsort(Graph G) { // Top sort: Queue
Queue Q(G.n()); int Count[G.n()];
for (int v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w each neighbor of v)
Count[G.v2(w)]++; // Add to v2’s count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) Q.enqueue(v);

while (!Q.isEmpty()) { // Process the vertices
int v = Q.dequeue();
printout(v); // PreVisit for v
for (Edge w = each neighbor of v) {
Count[G.v2(w)]--; // One less prereq
if (Count[G.v2(w)]==0) Q.enqueue(G.v2(w));

}}}
CS 5114: Theory of Algorithms Spring 2010 17 / 34

Shortest Paths Problems

Input: A graph with weights or costs associated with each
edge.

Output: The list of edges forming the shortest path.

Sample problems:

Find the shortest path between two specified vertices.

Find the shortest path from vertex S to all other vertices.

Find the shortest path between all pairs of vertices.

Our algorithms will actually calculate only distances .

CS 5114: Theory of Algorithms Spring 2010 18 / 34

Shortest Paths Definitions

d(A, B) is the shortest distance from vertex A to B.

w(A, B) is the weight of the edge connecting A to B.
If there is no such edge, then w(A, B) = ∞.

C 520A 3 2 11E10 15 DB
CS 5114: Theory of Algorithms Spring 2010 19 / 34

Single Source Shortest Paths

Given start vertex s, find the shortest path from s to all other
vertices.

Try 1: Visit all vertices in some order, compute shortest
paths for all vertices seen so far, then add the shortest path
to next vertex x .

Problem: Shortest path to a vertex already processed might
go through x .
Solution: Process vertices in order of distance from s.

CS 5114: Theory of Algorithms Spring 2010 20 / 34

Dijkstra’s Algorithm Example

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

C 520A 3 2 11E10 15 DB
CS 5114: Theory of Algorithms Spring 2010 21 / 34

Dijkstra’s Algorithm: Array (1)

void Dijkstra(Graph G, int s) { // Use array
int D[G.n()];
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable
G.setMark(v, VISITED);
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w)))

D[G.v2(w)] = D[v] + G.weight(w);
}

}

CS 5114: Theory of Algorithms Spring 2010 22 / 34

Dijkstra’s Algorithm: Array (2)

// Get mincost vertex
int minVertex(Graph G, int* D) {
int v; // Initialize v to an unvisited vertex;
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i++; i<G.n(); i++) // Find smallest D val
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
v = i;

return v;
}

Approach 1: Scan the table on each pass for closest vertex.
Total cost: Θ(|V|2 + |E|) = Θ(|V|2).

CS 5114: Theory of Algorithms Spring 2010 23 / 34

Dijkstra’s Algorithm: Priority Queue (1)

class Elem { public: int vertex, dist; };
int key(Elem x) { return x.dist; }
void Dijkstra(Graph G, int s) { // priority queue
int v; Elem temp;
int D[G.n()]; Elem E[G.e()];
temp.dist = 0; temp.vertex = s; E[0] = temp;
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Get distances

do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

CS 5114: Theory of Algorithms Spring 2010 24 / 34

Dijkstra’s Algorithm: Priority Queue (2)

for (Edge w = each neighbor of v)
if (D[G.v2(w)] > (D[v] + G.weight(w))) {

D[G.v2(w)] = D[v] + G.weight(w);
temp.dist = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert new distance

}}}

Approach 2: Store unprocessed vertices using a
min-heap to implement a priority queue ordered by D
value. Must update priority queue for each edge.

Total cost: Θ((|V| + |E|) log |V|).

CS 5114: Theory of Algorithms Spring 2010 25 / 34

All Pairs Shortest Paths
For every vertex u, v ∈ V, calculate d(u, v).
Could run Dijkstra’s Algorithm |V| times.
Better is Floyd’s Algorithm .
Define a k-path from u to v to be any path whose
intermediate vertices all have indices less than k .111 1 740 5 3 31122 121 1

CS 5114: Theory of Algorithms Spring 2010 26 / 34

Floyd’s Algorithm

void Floyd(Graph G) { // All-pairs shortest paths
int D[G.n()][G.n()]; // Store distances
for (int i=0; i<G.n(); i++) // Initialize D

for (int j=0; j<G.n(); j++)
D[i][j] = G.weight(i, j);

for (int k=0; k<G.n(); k++) // Compute k paths
for (int i=0; i<G.n(); i++)
for (int j=0; j<G.n(); j++)

if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}

CS 5114: Theory of Algorithms Spring 2010 27 / 34

Minimum Cost Spanning Trees

Minimum Cost Spanning Tree (MST) Problem:
Input: An undirected, connected graph G.
Output: The subgraph of G that

1 has minimum total cost as measured by summing the
values for all of the edges in the subset, and

2 keeps the vertices connected.

E
A9 7 5 BC1 2 6D 2 F1

CS 5114: Theory of Algorithms Spring 2010 28 / 34

Key Theorem for MST

Let V1, V2 be an arbitrary, non-trivial partition of V . Let
(v1, v2), v1 ∈ V1, v2 ∈ V2, be the cheapest edge between V1

and V2. Then (v1, v2) is in some MST of G.
Proof :

Let T be an arbitrary MST of G.
If (v1, v2) is in T , then we are done.
Otherwise, adding (v1, v2) to T creates a cycle C.
At least one edge (u1, u2) of C other than (v1, v2) must
be between V1 and V2.
c(u1, u2) ≥ c(v1, v2).
Let T ′ = T ∪ {(v1, v2)} − {(u1, u2)}.
Then, T ′ is a spanning tree of G and c(T ′) ≤ c(T).
But c(T) is minimum cost.

Therefore, c(T ′) = c(T) and T ′ is a MST containing (v1, v2).
CS 5114: Theory of Algorithms Spring 2010 29 / 34

Key Theorem FigureMarked UnmarkedVerties vi, i � jVerties vi, i < j \orret" edgee0
ejPrim's edge

vw
vjvp

vu
CS 5114: Theory of Algorithms Spring 2010 30 / 34

Prim’s MST Algorithm (1)

void Prim(Graph G, int s) { // Prim’s MST alg
int D[G.n()]; int V[G.n()]; // Distances
for (int i=0; i<G.n(); i++) // Initialize

D[i] = INFINITY;
D[s] = 0;
for (i=0; i<G.n(); i++) { // Process vertices

int v = minVertex(G, D);
G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; //v unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) {

D[G.v2(w)] = G.weight(w); // Update dist
V[G.v2(w)] = v; // who came from

}}}
CS 5114: Theory of Algorithms Spring 2010 31 / 34

Prim’s MST Algorithm (2)

int minVertex(Graph G, int* D) {
int v; // Initialize v to any unvisited vertex
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
{ v = i; break; }

for (i=0; i<G.n(); i++) // Find smallest value
if ((G.getMark(i)==UNVISITED) && (D[i]<D[v]))
v = i;

return v;
}

This is an example of a greedy algorithm.

CS 5114: Theory of Algorithms Spring 2010 32 / 34

Alternative Prim’s Implementation (1)

Like Dijkstra’s algorithm, can implement with priority queue.

void Prim(Graph G, int s) {
int v; // The current vertex
int D[G.n()]; // Distance array
int V[G.n()]; // Who’s closest
Elem temp;
Elem E[G.e()]; // Heap array
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap H(E, 1, G.e()); // Create the heap
for (int i=0; i<G.n(); i++) D[i] = INFINITY;
D[s] = 0;

CS 5114: Theory of Algorithms Spring 2010 33 / 34

Alternative Prim’s Implementation (2)

for (i=0; i<G.n(); i++) { // Now build MST
do { temp = H.removemin(); v = temp.vertex; }
while (G.getMark(v) == VISITED);

G.setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v);
if (D[v] == INFINITY) return; // Unreachable
for (Edge w = each neighbor of v)
if (D[G.v2(w)] > G.weight(w)) { // Update D

D[G.v2(w)] = G.weight(w);
V[G.v2(w)] = v; // Who came from
temp.distance = D[G.v2(w)];
temp.vertex = G.v2(w);
H.insert(temp); // Insert dist in heap

}
}}

CS 5114: Theory of Algorithms Spring 2010 34 / 34

Kruskal’s MST Algorithm (1)

Kruskel(Graph G) { // Kruskal’s MST algorithm
Gentree A(G.n()); // Equivalence class array
Elem E[G.e()]; // Array of edges for min-heap
int edgecnt = 0;
for (int i=0; i<G.n(); i++) // Put edges into E

for (Edge w = G.first(i);
G.isEdge(w); w = G.next(w)) {

E[edgecnt].weight = G.weight(w);
E[edgecnt++].edge = w;

}
heap H(E, edgecnt, edgecnt); // Heapify edges
int numMST = G.n(); // Init w/ n equiv classes

CS 5114: Theory of Algorithms Spring 2010 35 / 34

Kruskal’s MST Algorithm (2)

for (i=0; numMST>1; i++) { // Combine
Elem temp = H.removemin(); // Next cheap edge
Edge w = temp.edge;
int v = G.v1(w); int u = G.v2(w);
if (A.differ(v, u)) { // If different
A.UNION(v, u); // Combine
AddEdgetoMST(G.v1(w), G.v2(w)); // Add
numMST--; // Now one less MST

}
}

}

How do we compute function MSTof(v)?
Solution: UNION-FIND algorithm (Section 4.3).

CS 5114: Theory of Algorithms Spring 2010 36 / 34

Kruskal’s Algorithm Example
Total cost: Θ(|V| + |E| log |E|).

A
Initial A B C D E FStep 1 A B C1D E FStep 2Process edge (E, F)A B C1D E 1 F
Step 3Process edge (C, F) B 1 2CDE 1 F
Process edge (C. D)

CS 5114: Theory of Algorithms Spring 2010 37 / 34

Matching

Suppose there are n workers that we want to work in
teams of two. Only certain pairs of workers are willing to
work together.
Problem : Form as many compatible non-overlapping
teams as possible.
Model using G, an undirected graph.

◮ Join vertices if the workers will work together.
A matching is a set of edges in G with no vertex in
more than one edge (the edges are independent).

◮ A maximal matching has no free pairs of vertices that
can extend the matching.

◮ A maximum matching has the greatest possible
number of edges.

◮ A perfect matching includes every vertex.

CS 5114: Theory of Algorithms Spring 2010 38 / 34

Very Dense Graphs (1)

Theorem : Let G = (V , E) be an undirected graph with
|V | = 2n and every vertex having degree ≥ n. Then G
contains a perfect matching.

Proof : Suppose that G does not contain a perfect matching.
Let M ⊆ E be a max matching. |M| < n.
There must be two unmatched vertices v1, v2 that are
not adjacent.
Every vertex adjacent to v1 or to v2 is matched.
Let M ′ ⊆ M be the set of edges involved in matching the
neighbors of v1 and v2.
There are ≥ 2n edges from v1 and v2 to vertices
covered by M ′, but |M ′| < n.

CS 5114: Theory of Algorithms Spring 2010 39 / 34

Very Dense Graphs (2)

Proof : (continued)

Thus, some edge of M ′ is adjacent to 3 edges from v1

and v2.
Let (u1, u2) be such an edge.
Replacing (u1, u2) with (v1, u2) and (v2, u1) results in a
larger matching.
Theorem proven by contradiction.

CS 5114: Theory of Algorithms Spring 2010 40 / 34

Generalizing the Insight

u2u3 u2 u1

v1 v2v1 v2

v1, u2, u1, v2 is a path from an unmatched vertex to an
unmatched vertex such that alternate edges are
unmatched and matched.
In one step, switch unmatched and matched edges.
Let G = (V , E) be an undirected graph and M ⊆ E a
matching.
A path P that consists of alternately matched and
unmatched edges is called an alternating path . An
alternating path from one unmatched vertex to another
is called an augmenting path .

CS 5114: Theory of Algorithms Spring 2010 41 / 34

Matching Example

10

1 2 3

5

4

76

9

811

CS 5114: Theory of Algorithms Spring 2010 42 / 34

The Augmenting Path Theorem (1)

Theorem : A matching is maximum iff it has no augmenting
paths.

Proof :
If a matching has augmenting paths, then it is not
maximum.
Suppose M is a non-maximum matching.
Let M ′ be any maximum matching. Then, |M ′| > |M|.
Let M⊕M ′ be the symmetric difference of M and M ′.

M⊕M ′ = M ∪ M ′ − (M ∩ M ′).

G′ = (V , M⊕M ′) is a subgraph of G having maximum
degree ≤ 2.

CS 5114: Theory of Algorithms Spring 2010 43 / 34

The Augmenting Path Theorem (2)

Proof : (continued)

Therefore, the connected components of G′ are either
even-length cycles or alternating paths.
Since |M ′| > |M|, there must be a component of G′ that
is an alternating path having more M ′ edges than M
edges.
This is an augmenting path for M.

CS 5114: Theory of Algorithms Spring 2010 44 / 34

Bipartite Matching

A bipartite graph G = (U, V , E) consists of two disjoint
sets of vertices U and V together with edges E such
that every edge has an endpoint in U and an endpoint in
V .
Bipartite matching naturally models a number of
assignment problems, such as assignment of workers to
jobs.
Augmenting paths will work to find a maximum bipartite
matching. An augmenting path always has one end in U
and the other in V .
If we direct unmatched edges from U to V and matched
edges from V to U, then a directed path from an
unmatched vertex in U to an unmatched vertex in V is
an augmenting path.

CS 5114: Theory of Algorithms Spring 2010 45 / 34

Bipartite Matching Example

3

4

5 10

9

8

72

1 6

2, 8, 5, 10 is an augmenting path.

1, 6, 3, 7, 4, 9 and 2, 8, 5, 10 are disjoint augmenting paths
that we can augment independently .

CS 5114: Theory of Algorithms Spring 2010 46 / 34

Algorithm for Maximum Bipartite
Matching

Construct BFS subgraph from the set of unmatched vertices
in U until a level with unmatched vertices in V is found.

Greedily select a maximal set of disjoint augmenting paths.

Augment along each path independently.

Repeat until no augmenting paths remain.

Time complexity O((|V | + |E |)
√

|V |).

CS 5114: Theory of Algorithms Spring 2010 47 / 34

Network Flows

Models distribution of utilities in networks such as oil
pipelines, waters systems, etc. Also, highway traffic flow.

Simplest version:

A network is a directed graph G = (V , E) having a
distinguished source vertex s and a distinguished sink vertex
t . Every edge (u, v) of G has a capacity c(u, v) ≥ 0. If
(u, v) /∈ E , then c(u, v) = 0.

CS 5114: Theory of Algorithms Spring 2010 48 / 34

Network Flow Graph

0

3 4

s t

1 2

20

10

5

3

10

10

2
3

20

0

CS 5114: Theory of Algorithms Spring 2010 49 / 34

Network Flow Definitions
A flow in a network is a function f : V × V → R with the
following properties.

(i) Skew Symmetry :

∀v , w ∈ V , f (v , w) = −f (w , v).

(ii) Capacity Constraint :

∀v , w ,∈ V , f (v , w) ≤ c(v , w).

If f (v , w) = c(v , w) then (v , w) is saturated .
(iii) Flow Conservation :

∀v ∈ V − {s, t},
∑

f (v , w) = 0. Equivalently,

∀v ∈ V − {s, t},
∑

u

f (u, v) =
∑

w

f (v , w).

In other words, flow into v equals flow out of v .
CS 5114: Theory of Algorithms Spring 2010 50 / 34

Flow Example

+infinity, 13

3 4

s t

1 2 10, 5

10, 8

2, 2

20, 10

3, -3

5, 3

3, 0

20, 10

10, 3

0, -10

Edges are labeled “capacity, flow”.
Can omit edges w/o capacity and non-negative flow.
The value of a flow is

|f | =
∑

w∈V

f (s, w) =
∑

w∈V

f (w , t).

CS 5114: Theory of Algorithms Spring 2010 51 / 34

Max Flow Problem

Problem : Find a flow of maximum value.

Cut (X , X ′) is a partition of V such that s ∈ X , t ∈ X ′.

The capacity of a cut is

c(X , X ′) =
∑

v∈X ,w∈X ′

c(v , w).

A min cut is a cut of minimum capacity.

CS 5114: Theory of Algorithms Spring 2010 52 / 34

Cut Flows
For any flow f , the flow across a cut is:

f (X , X ′) =
∑

v∈X ,w∈X ′

f (v , w).

Lemma : For all flows f and all cuts (X , X ′), f (X , X ′) = |f |.
Proof :

f (X , X ′) =
∑

v∈X ,w∈X ′

f (v , w)

=
∑

v∈X ,w∈V

f (v , w) −
∑

v∈X ,w∈X

f (v , w)

=
∑

w∈V

f (s, w) − 0

= |f |.

Corollary : The value of any flow is less than or equal to the
capacity of a min cut.

CS 5114: Theory of Algorithms Spring 2010 53 / 34

Residual Graph

Given any flow f , the residual capacity of the edge is

res(v , w) = c(v , w) − f (v , w) ≥ 0.

Residual graph is a network R = (V , ER) where ER

contains edges of non-zero residual capacity.

3 4

s t

1 2
6

2
5

5

2
2

8

10

10

10

10

3

7

3

CS 5114: Theory of Algorithms Spring 2010 54 / 34

Observations

1 Any flow in R can be added to F to obtain a larger flow
in G.

2 In fact, a max flow f ′ in R plus the flow f (written f + f ′) is
a max flow in G.

3 Any path from s to t in R can carry a flow equal to the
smallest capacity of any edge on it.

◮ Such a path is called an augmenting path .
◮ For example, the path

s, 1, 2, t

can carry a flow of 2 units = c(1, 2).

CS 5114: Theory of Algorithms Spring 2010 55 / 34

Max-flow Min-cut Theorem

The following are equivalent:

(i) f is a max flow.

(ii) f has no augmenting path in R.

(iii) |f | = c(X , X ′) for some min cut (X , X ′).

Proof :
(i) ⇒ (ii):

If f has an augmenting path, then f is not a max flow.

CS 5114: Theory of Algorithms Spring 2010 56 / 34

Max-flow Min-cut Theorem (2)

(ii) ⇒ (iii):

Suppose f has no augmenting path in R.

Let X be the subset of V reachable from s and
X ′ = V − X .

Then s ∈ X , t ∈ X ′, so (X , X ′) is a cut.

∀v ∈ X , w ∈ X ′, res(v , w) = c(v , w) − f (v , w) = 0.

f (X , X ′) =
∑

v∈X ,w∈X ′ f (v , w) =
∑

v∈X ,w∈X ′ c(v , w) = c(X , X ′).

By Lemma, |f | = c(X , X ′) and (X , X ′) is a min cut.

CS 5114: Theory of Algorithms Spring 2010 57 / 34

Max-flow Min-cut Theorem (3)

(iii) ⇒ (i)

Let f be a flow such that |f | = c(X , X ′) for some (min)
cut (X , X ′).

By Lemma, all flows f ′ satisfy |f ′| ≤ c(X , X ′) = |f |.

Thus, f is a max flow.

CS 5114: Theory of Algorithms Spring 2010 58 / 34

Max-flow Min-cut Corollary

Corollary : The value of a max flow equals the capacity of a
min cut.
This suggests a strategy for finding a max flow.

R = G; f = 0;
repeat
find a path from s to t in R;
augment along path to get a larger flow f;
update R for new flow;

until R has no path s to t.

This is the Ford-Fulkerson algorithm.

If capacities are all rational, then it always terminates with f
equal to max flow.

CS 5114: Theory of Algorithms Spring 2010 59 / 34

Edmonds-Karp Algorithm

For integral capacities.

Select an augmenting path in R of minimum length.

Performance: O(|V |3) where c is an upper bound on
capacities.

There are numerous other approaches to finding
augmenting paths, giving a variety of different algorithms.

Network flow remains an active research area.

CS 5114: Theory of Algorithms Spring 2010 60 / 34

