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String Matching

Let A = a1a2 · · ·an and B = b1b2 · · ·bm, m ≤ n, be two
strings of characters.

Problem : Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i , 1 ≤ i ≤ m,
ak+i = bi .
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String Matching

no notes

String Matching Example

A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y . . .
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.
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String Matching Example

O(mn) comparisons in worst case.

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy
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String Matching Worst Case

Our example was a little pessimistic... but it wasn’t worst case!

In the second example, we can quickly reject a position - no
backtracking.



Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix til last x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!
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Finding a Better Algorithm

Not only can we skip down several letters if we track the
potential prefix, we don’t need even to repeat the check of the
prefix letters – just start that many characters down.

Knuth-Morris-Pratt Algorithm

Key to success:
◮ Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

◮ We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · ·bi−1 = B(j), and 0 if no such j exists.

We define next(1) = −1 to distinguish it.

next(2) = 0. Why?
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Knuth-Morris-Pratt Algorithm

In all cases other than B[1] we compare current A value to
appropriate B value. The test told us there was no match at
that position. If B[1] does not match a character of A, that
character is completely rejected. We must slide B over it.

Why? All that we know is that the 2nd letter failed to match.
There is no value j such that 0 < j < i − 1. Conceptually,
compare beginning of B to current character.

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.

At each position ask “If I fail here, how many letters
before me are good?”
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Computing the table

no notes

How to Compute Table?

By induction.

Base cases : next(1) and next(2) already determined.

Induction Hypothesis : Values have been computed up
to next(i − 1).
Induction Step : For next(i): at most next(i − 1) + 1.

◮ When? bi−1 = bnext(i−1)+1.
◮ That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.

But, this is just a mismatch, so use next table to
compute where to check.
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How to Compute Table?

Induction step: Each step can only improve by 1.

While this is complex to understand, it is efficient to implement.



Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

◮ For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?

If mismatch at bk , then only k mismatches are possible.

But, for each mismatch, we had to go forward a
character to get to bk .

Since there are always n forward moves, the total cost is
O(n).
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Complexity of KMP Algorithm

no note

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.
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Example Using Table

no note

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in

xbycabc
abc

abc
abc
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Boyer-Moore String Match Algorithm

Better for larger alphabets.

Order Statistics

Definition : Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.

What if list is not sorted?

Problem : Find the maximum element.

Solution :

Problem : Find the minimum AND the maximum
elements.
Solution : Do independently.

◮ Requires 2n − 3 comparisons.
◮ Is this best?
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Order Statistics

Finding max: Compare element n to the maximum of the
previous n − 1 elements. Cost: n − 1 comparisons. This is
optimal since you must look at every element to be sure that it
is not the maximum.

We can drop the max when looking for the min.
Might be more efficient to do both at once.



Min and Max

Problem : Find the minimum AND the maximum values.

Solution : By induction.

Base cases :
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis :
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
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Min and Max

We are adding items n and n − 1.

Conceptually: ? compares for n − 2 elements, plus one
compare for last two items, plus cost to join the partial solutions.

Min and Max

Induction Hypothesis :

Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.

Find min and max of elements n − 1 and n (1 compare).

Combine these two with n − 2 elements (2 compares).

Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?
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Min and Max

Total work is about 3n/2 comparisons.

It doesn’t get any better if we split the sequence into two halves.

Two Largest Elements in a Set

Problem : Given a set S of n numbers, find the two
largest.
Want to minimize comparisons.
Assume n is a power of 2.
Solution: Divide and Conquer
Induction Hypothesis : We can find the two largest
elements of n/2 elements (lists P and Q).
Using two more comparisons, we can find the two
largest of q1, q2, p1, p2.

T (2n) = 2T (n) + 2; T (2) = 1.

T (n) = 3n/2 − 2.

Much like finding the max and min of a set. Is this best?
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Two Largest Elements in a Set

no notes

A Closer Examination

Again consider comparisons.
If p1 > q1 then

compare p2 and q1 [ignore q2]
Else

compare p1 and q2 [ignore p2]
We need only ONE of p2, q2.
Which one? It depends on p1 and q1.
Approach : Delay computation of the second largest
element.
Induction Hypothesis : Given a set of size < n, we
know how to find the maximum element and a “small”
set of candidates for the second maximum element.
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A Closer Examination

no notes



Algorithm

Given set S of size n, divide into P and Q of size n/2.

By induction hypothesis, we know p1 and q1, plus a set
of candidates for each second element, CP and CQ.

If p1 > q1 then
new1 = p1; Cnew = CP ∪ q1.

Else
new1 = q1; Cnew = CQ ∪ p1.

At end, look through set of candidates that remains.

What is size of C?

Total cost:
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Algorithm

Size of C: log n

Total cost: n − 1 + log n − 1

Lower Bound for Second Best

At least n − 1 values must lose at least once.

At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?
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Lower Bound for Second Best

no notes

Adversarial Lower Bound

Call the strength of element L[i ] the number of elements L[i ]
is (known to be) bigger than.

If L[i ] has strength a, and L[j ] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?

Minimize the rate at which any element improves.

Do this by making the stronger element always win.

Is this legal?
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Adversarial Lower Bound

no notes

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

This happens when a = b.

All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + ⌈log n⌉ − 2 comparisons.
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Lower Bound (Cont.)

no notes



K th Smallest Element

Problem : Find the k th smallest element from sequence S.

(Also called selection .)

Solution : Find min value and discard (k times).

If k is large, find n − k max values.

Cost : O(min(k , n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).
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K th Smallest Element

no notes

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑

i=1

(f (i − 1))

Average case cost: O(n) time.
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Better K th Smallest Algorithm

Like Quicksort, it is possible for this to take O(n2) time!!
It is possible to guarentee average case O(n) time.

Probabilistic Algorithms

All algorithms discussed so far are deterministic .

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee .
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Probabilistic Algorithms

no notes

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability
1 − 2−k .

Monte Carlo Algorithm: Good running time, result not
guaranteed.

Las Vegas Algorithm: Result guaranteed, but not the
running time.
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Probabilistic Algorithm

Pick k big enough and the chance for failure becomes less than
the chance that the machine will crash (i.e., probability of
getting an answer of a deterministic algorithm).

Rather have no answer than a wrong answer? If k is big
enough, the probability of a wrong answer is less than any
calamity with finite probability – with this probability
independent of n.



Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution : Randomize input order.

Chance of worst case is then 2/n!.

CS 5114: Theory of Algorithms Spring 2010 25 / 60

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution : Randomize input order.

Chance of worst case is then 2/n!.

20
10

-0
3-

03

CS 5114

Probabilistic Quicksort

This principle is why, for example, the Skip List data structure
has much more reliable performance than a BST. The BST’s
performance depends on the input data. The Skip List’s
performance depends entirely on chance. For random data, the
two are essentially identical. But you can’t trust data to be
random.

Coloring Problem

Let S be a set with n elements, let S1, S2, · · · , Sk be a
collection of distinct subsets of S, each containing
exactly r elements, k ≤ 2r−2.
Problem : Color each element of S with one of two
colors, red or blue, such that each subset Si contains at
least one red and at least one blue.
Probabilistic solution :

◮ Take every element of S and color it either red or blue at
random.

This may not lead to a valid coloring, with probability

k
2r−1

≤
1
2
.

If it doesn’t work, try again!
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Coloring Problem

k , r picked to make calculation easy.
Note the sets are distinct, not disjoint.
So just make sure that r is “big enough” compared with k .
There is always a valid coloring, since r is chosen “big enough.”

Probability 1/2r that a subset is all red, 1/2r that a subset is all
blue, so probability 1/2r−1 that the subset is all one color.
There are k chances for this to happen.

Transforming to Deterministic Alg

First, generalize the problem:
◮ Let S1, S2, · · · , Sk be distinct subsets of S.
◮ Let si = |Si |.
◮ Assume ∀i , si ≥ 2, |S| = n.
◮ Color each element of S red or blue such that every Si

contains a red and blue element.
The probability of failure is at most:

F (n) =
k∑

i=1

2/2Si

If F (n) < 1, then there exists a coloring that solves the
problem.
Strategy : Color one element of S at a time, always
choosing color that gives lower probability of failure.
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Transforming to Deterministic Alg

For example, Si = 3. 1/8 all red. 1/8 all blue. 1/4 failure.

We selected r and k so that this must be true.

Deterministic Algorithm

Let S = {x1, x2, · · · , xn}.
Suppose we have colored xj+1, xj+2, · · · , xn and we want
to color xj . Further, suppose F (j) is an upper bound on
the probability of failure.
How could coloring xj red affect the probability of failing
to color a particular set Si?
Let PR(i , j) be this probability of failure.
Let P(i , j) be the probability of failure if the remaining
colors are randomly assigned.
PR(i , j) depends on these factors:

1 whether xj is a member of Si .
2 whether Si contains a blue element.
3 whether Si contains a red element.
4 the number of elements in Si yet to be colored.
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Deterministic Algorithm (cont)

Result:
1 If xj is not a member of Si , probability is unchanged.

PR(i , j) = P(i , j).

2 If Si contains a blue element, then PR(i , j) = 0.
3 If Si contains no blue element and some red elements,

then
PR(i , j) = 2P(i , j).

4 If Si contains no colored elements, then probability of
failure is unchanged.

PR(i , j) = P(i , j)
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Deterministic Algorithm (cont)

Similarly analyze PB(i , j), the probability of failure for set
Si if xj is colored blue.
Sum the failure probabilities as follows:

FR(j) =
k∑

i=1

PR(i , j)

FB(j) =
k∑

i=1

PB(i , j)

Claim: FR(n − 1) + FB(n − 1) ≤ 2F (n).

PR(i , j) + PB(i , j) ≤ 2P(i , j).
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Deterministic Algorithm (cont)

This means that if you pick the correct color, then the
probability of failure will not increase (and hopefully decrease)
since it must be less than F (n).

Deterministic Algorithm (cont)

Suffices to show that ∀i ,

PR(i , j) + PB(i , j) ≤ 2P(i , j).

This is clear except in case (3) when PR(i , j) = 2P(i , j).

But, then case (2) applies on the blue side, so
PB(i , j) = 0.
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Final Algorithm

For j = n downto 1 do
calculate FR(j) and FB(j);
If FR(j) < FB(j) then

color xj red
Else

color xj blue.

By the claim, 1 ≥ F (n) ≥ F (n − 1) ≥ · · · ≥ F (1).

This implies that the sets are successfully colored, i.e.,
F (1) = 0.

Key to transformation: We can calculate FR(j) and FB(j)
efficiently, combined with the claim.
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Random Number Generators

Reference: CACM, October 1998.

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.

Linear congruential method :
◮ Pick a seed r(1). Then,

r(i) = (r(i − 1) × b) mod t .

Must pick good values for b and t .

Resulting numbers must be in the range:

What happens if r(i) = r(j)?

t should be prime.
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Random Number Generators

Lots of “commercial” random number generators have poor
performance because the don’t get the numbers right.
Must be in range 0 to t − 1.

They generate the same number, which leads to a cycle of
length |j − i |.

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 · · ·

r(i) = 7r(i − 1) mod 13 =

· · · 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 · · ·

r(i) = 5r(i − 1) mod 13 =

· · · 1, 5, 12, 8, 1 · · ·

· · · 2, 10, 11, 3, 2 · · ·

· · · 4, 7, 9, 6, 4 · · ·

· · · 0, 0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1
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