Title page

## Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2010

Copyright (c) 2010 by Clifford A. Shaffer

## String Matching

Let $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}, m \leq n$, be two strings of characters.

Problem: Given two strings $A$ and $B$, find the first occurrence (if any) of $B$ in $A$.

- Find the smallest $k$ such that, for all $i, 1 \leq i \leq m$, $a_{k+i}=b_{i}$.


## String Matching Example

```
\(A=\) xyxxyxyxyyxyxyxyyxyxyxx \(\quad B=\) xyxyyxyxyxx
```



```
    \(x y x y\)
        x
            x y . . .
                \(x y x y y\)
                x
                    \(x y x y y x y x y x x\)
                    x
                    \(x \underset{x}{y}\)
                        x
                        \(x y x y y\)
                        x
                            \(x y x y y x y x y x y\)
    \(O(m n)\) comparisons.
```


## String Matching Worst Case

Brute force isn't too bad for small patterns and large alphabets.
However, try finding: yyyyyx
in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xууууу

no notes

$O(m n)$ comparisons in worst case.


Our example was a little pessimistic... but it wasn't worst case!

In the second example, we can quickly reject a position - no backtracking.

## Finding a Better Algorithm

Find $B=$ xyxyyxyxyxx in
$A=$ xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

```
xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix til last x
    xyxyy -- xyx could be prefix
        xyxyyxyxyxx -- last xyxy could be prefix
            xyxyyxyxyxx -- success!
```


## Knuth-Morris-Pratt Algorithm

- Key to success:
- Preprocess $B$ to create a table of information on how far to slide $B$ when a mismatch is encountered.
- Notation: $B(i)$ is the first $i$ characters of $B$.
- For each character:
- We need the maximum suffix of $B(i)$ that is equal to a prefix of $B$.
- next $(i)=$ the maximum $j(0<j<i-1)$ such that $b_{i-j} b_{i-j+1} \cdots b_{i-1}=B(j)$, and 0 if no such $j$ exists.
- We define $\operatorname{next}(1)=-1$ to distinguish it.
- $\operatorname{next}(2)=0$. Why?


## Computing the table

$B=$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| x | y | x | y | y | x | y | x | y | x | x |
| -1 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 4 | 3 |

- The third line is the "next" table.
- At each position ask "If I fail here, how many letters before me are good?"


## How to Compute Table?

- By induction.
- Base cases: $n e x t(1)$ and next(2) already determined.
- Induction Hypothesis: Values have been computed up to $\operatorname{next}(i-1)$.
- Induction Step: For next( $i$ ): at most $\operatorname{next}(i-1)+1$.
- When? $b_{i-1}=b_{\text {next }(i-1)+1}$.
- That is, largest suffix can be extended by $b_{i-1}$.
- If $b_{i-1} \neq b_{\text {next }(i-1)+1}$, then need new suffix.
- But, this is just a mismatch, so use next table to compute where to check.


In all cases other than $B[1]$ we compare current $A$ value to appropriate $B$ value. The test told us there was no match at that position. If $B[1]$ does not match a character of $A$, that character is completely rejected. We must slide $B$ over it.

Why? All that we know is that the 2nd letter failed to match. There is no value $j$ such that $0<j<i-1$. Conceptually, compare beginning of $B$ to current character.
Not only can we skip down several letters if we track the potential prefix, we don't need even to repeat the check of the prefix letters - just start that many characters down.

```
    LFinding a Better Algorithm

\section*{Complexity of KMP Algorithm}
- A character of \(A\) may be compared against many characters of \(B\).
- For every mismatch, we have to look at another position in the table.
- How many backtracks are possible?
- If mismatch at \(b_{k}\), then only \(k\) mismatches are possible.
- But, for each mismatch, we had to go forward a character to get to \(b_{k}\).
- Since there are always \(n\) forward moves, the total cost is \(\mathrm{O}(n)\).

\section*{Example Using Table}
\begin{tabular}{rrrrrrrrrrrr} 
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
B & x & y & x & y & y & x & y & x & y & x & x \\
& -1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{tabular}

A \(x\) y x \(x\) y \(x\) y \(x\) y \(y\) x \(y\) x \(y x y y x y x y x x\)
\(x y x y \quad\) next (4) \(=1\), compare \(B(2)\) to this
\(-x y\) next (2) \(=0\), compare \(B(1)\) to this \(x y x y y\) next (5) \(=2\), compare to \(B(3)\)

\(-x-y-x\) y y x y x y x x

Note: -x means don't actually compute on that character.

\section*{Boyer-Moore String Match Algorithm}
- Similar to KMP algorithm
- Start scanning \(B\) from end of \(B\).
- When we get a mismatch, we can shift the pattern to the right until that character is seen again.
- Ex: If " \(Z\) " is not in \(B\), can move \(m\) steps to right when encountering " \(Z\) ".
- If " \(Z\) " in \(B\) at position \(i\), move \(m\) - \(i\) steps to the right.
- This algorithm might make less than \(n\) comparisons.
- Example: Find abc in
xbycabc
abc
abc
abc

\section*{Order Statistics}

Definition: Given a sequence \(S=x_{1}, x_{2}, \cdots, x_{n}\) of elements, \(x_{i}\) has rank \(k\) in \(S\) if \(x_{i}\) is the \(k\) th smallest element in \(S\).
- Easy to find for a sorted list.
- What if list is not sorted?
- Problem: Find the maximum element.
- Solution:
- Problem: Find the minimum AND the maximum elements.
- Solution: Do independently.
- Requires \(2 n-3\) comparisons.
- Is this best?
no note



Better for larger alphabets.


Finding max: Compare element \(n\) to the maximum of the previous \(n-1\) elements. Cost: \(n-1\) comparisons. This is optimal since you must look at every element to be sure that it is not the maximum.

We can drop the max when looking for the min. Might be more efficient to do both at once.

\section*{Min and Max}

Problem: Find the minimum AND the maximum values.

Solution: By induction.

\section*{Base cases:}
- 1 element: It is both min and max.
- 2 elements: One comparison decides.

\section*{Induction Hypothesis:}
- Assume that we can solve for \(n-2\) elements.

Try to add 2 elements to the list.

\section*{CS 514 : Theory of Aloorthms}

\section*{Min and Max}

\section*{Induction Hypothesis:}
- Assume that we can solve for \(n-2\) elements.

Try to add 2 elements to the list.
- Find min and max of elements \(n-1\) and \(n\) (1 compare).
- Combine these two with \(n-2\) elements (2 compares).
- Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

\section*{Two Largest Elements in a Set}
- Problem: Given a set \(S\) of \(n\) numbers, find the two largest.
- Want to minimize comparisons.
- Assume \(n\) is a power of 2 .
- Solution: Divide and Conquer
- Induction Hypothesis: We can find the two largest elements of \(n / 2\) elements (lists \(P\) and \(Q\) ).
- Using two more comparisons, we can find the two largest of \(q_{1}, q_{2}, p_{1}, p_{2}\).
\[
\begin{aligned}
T(2 n) & =2 T(n)+2 ; T(2)=1 . \\
T(n) & =3 n / 2-2 .
\end{aligned}
\]
- Much like finding the max and min of a set. Is this best?

\section*{A Closer Examination}
- Again consider comparisons.
- If \(p_{1}>q_{1}\) then
compare \(p_{2}\) and \(q_{1} \quad\) [ignore \(q_{2}\) ]
Else
compare \(p_{1}\) and \(q_{2} \quad\) [ignore \(p_{2}\) ]
- We need only ONE of \(p_{2}, q_{2}\).
- Which one? It depends on \(p_{1}\) and \(q_{1}\).
- Approach: Delay computation of the second largest element.
- Induction Hypothesis: Given a set of size \(<n\), we know how to find the maximum element and a "small" set of candidates for the second maximum element.

We are adding items \(n\) and \(n-1\).
Conceptually: ? compares for \(n-2\) elements, plus one compare for last two items, plus cost to join the partial solutions.
```

% CS 5114
\squareMin and Max

```

Min and Max


Total work is about \(3 n / 2\) comparisons.

It doesn't get any better if we split the sequence into two halves.

no notes
 no notes

\section*{Algorithm}
- Given set \(S\) of size \(n\), divide into \(P\) and \(Q\) of size \(n / 2\).
- By induction hypothesis, we know \(p_{1}\) and \(q_{1}\), plus a set of candidates for each second element, \(C_{P}\) and \(C_{Q}\).
- If \(p_{1}>q_{1}\) then
new \(_{1}=p_{1} ; C_{\text {new }}=C_{P} \cup q_{1}\).
Else new \(_{1}=q_{1} ; C_{\text {new }}=C_{Q} \cup p_{1}\).
- At end, look through set of candidates that remains.
- What is size of \(C\) ?
- Total cost:

\section*{Lower Bound for Second Best}

At least \(n-1\) values must lose at least once.
- At least \(n-1\) compares.

In addition, at least \(k-1\) values must lose to the second best.
- I.e., \(k\) direct losers to the winner must be compared.

There must be at least \(n+k-2\) comparisons.
How low can we make \(k\) ?

\section*{Adversarial Lower Bound}

Call the strength of element \(L[i]\) the number of elements \(L[i]\) is (known to be) bigger than.

If \(L[i]\) has strength \(a\), and \(L[j]\) has strength \(b\), then the winner has strength \(a+b+1\).

What should the adversary do?
- Minimize the rate at which any element improves.
- Do this by making the stronger element always win.
- Is this legal?

\section*{Lower Bound (Cont.)}

What should the algorithm do?

If \(a \geq b\), then \(2 a \geq a+b\).
- From the algorithm's point of view, the best outcome is that an element doubles in strength.
- This happens when \(a=b\).
- All strengths begin at zero, so the winner must make at least \(k\) comparisons for \(2^{k-1}<n \leq 2^{k}\).

Thus, there must be at least \(n+\lceil\log n\rceil-2\) comparisons.

\section*{Size of \(C: \log n\)}

Total cost: \(n-1+\log n-1\)

no notes

no notes

no notes

\section*{Kth Smallest Element}

Problem: Find the \(k\) th smallest element from sequence \(S\).

\section*{(Also called selection.)}

Solution: Find min value and discard ( \(k\) times).
- If \(k\) is large, find \(n-k\) max values.

Cost: \(O(\min (k, n-k) n)\) - only better than sorting if \(k\) is \(\mathrm{O}(\log n)\) or \(O(n-\log n)\).

\section*{Better Kth Smallest Algorithm}

Use quicksort, but take only one branch each time.

Average case analysis:
\[
f(n)=n-1+\frac{1}{n} \sum_{i=1}^{n}(f(i-1))
\]

Average case cost: \(\mathrm{O}(n)\) time.

\section*{Probabilistic Algorithms}

All algorithms discussed so far are deterministic.

no notes

Probabilistic algorithms include steps that are affected by random events.

Example: Pick one number in the upper half of the values in a set.
(1) Pick maximum: \(n-1\) comparisons.
(2) Pick maximum from just over \(1 / 2\) of the elements: \(n / 2\) comparisons.

Can we do better? Not if we want a guarantee.

\section*{Probabilistic Algorithm}
- Pick 2 numbers and choose the greater.
- This will be in the upper half with probability \(3 / 4\).
- Not good enough? Pick more numbers!
- For \(k\) numbers, greatest is in upper half with probability \(1-2^{-k}\).
- Monte Carlo Algorithm: Good running time, result not guaranteed.
- Las Vegas Algorithm: Result guaranteed, but not the running time.


Like Quicksort, it is possible for this to take \(O\left(n^{2}\right)\) time!! It is possible to guarentee average case \(O(n)\) time.


Pick \(k\) big enough and the chance for failure becomes less than the chance that the machine will crash (i.e., probability of getting an answer of a deterministic algorithm).

Rather have no answer than a wrong answer? If \(k\) is big enough, the probability of a wrong answer is less than any calamity with finite probability - with this probability independent of \(n\).

Quicksort runs into trouble on highly structured input.
Solution: Randomize input order.
- Chance of worst case is then \(2 / n!\).

This principle is why, for example, the Skip List data structure has much more reliable performance than a BST. The BST's performance depends on the input data. The Skip List's performance depends entirely on chance. For random data, the two are essentially identical. But you can't trust data to be random.

\section*{Coloring Problem}
- Let \(S\) be a set with \(n\) elements, let \(S_{1}, S_{2}, \cdots, S_{k}\) be a collection of distinct subsets of \(S\), each containing exactly \(r\) elements, \(k \leq 2^{r-2}\).
- Problem: Color each element of \(S\) with one of two colors, red or blue, such that each subset \(S_{i}\) contains at least one red and at least one blue.
- Probabilistic solution:
- Take every element of \(S\) and color it either red or blue at random.
- This may not lead to a valid coloring, with probability
\[
\frac{k}{2^{r-1}} \leq \frac{1}{2} .
\]
- If it doesn't work, try again!

\section*{Transforming to Deterministic Alg}
- First, generalize the problem:
- Let \(S_{1}, S_{2}, \cdots, S_{k}\) be distinct subsets of \(S\).
- Let \(s_{i}=\left|S_{i}\right|\).
- Assume \(\forall i, s_{i} \geq 2,|S|=n\).
- Color each element of \(S\) red or blue such that every \(S_{i}\) contains a red and blue element.
- The probability of failure is at most:
\[
F(n)=\sum_{i=1}^{k} 2 / 2^{s_{i}}
\]
- If \(F(n)<1\), then there exists a coloring that solves the problem.
- Strategy: Color one element of \(S\) at a time, always choosing color that gives lower probability of failure.

\section*{Deterministic Algorithm}
- Let \(S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\).
- Suppose we have colored \(x_{j+1}, x_{j+2}, \cdots, x_{n}\) and we want to color \(x_{j}\). Further, suppose \(F(j)\) is an upper bound on the probability of failure.
- How could coloring \(x_{j}\) red affect the probability of failing to color a particular set \(S_{i}\) ?
- Let \(P_{R}(i, j)\) be this probability of failure.
- Let \(P(i, j)\) be the probability of failure if the remaining colors are randomly assigned.
- \(P_{R}(i, j)\) depends on these factors:
(1) whether \(x_{j}\) is a member of \(S_{i}\).
(2) whether \(S_{i}\) contains a blue element.
(3) whether \(S_{i}\) contains a red element.
(9) the number of elements in \(S_{i}\) yet to be colored.


For example, \(S_{i}=3.1 / 8\) all red. \(1 / 8\) all blue. \(1 / 4\) failure.

We selected \(r\) and \(k\) so that this must be true.
\(k, r\) picked to make calculation easy.
Note the sets are distinct, not disjoint.
So just make sure that \(r\) is "big enough" compared with \(k\).
There is a/ways a valid coloring, since \(r\) is chosen "big enough."

Probability \(1 / 2^{r}\) that a subset is all red, \(1 / 2^{r}\) that a subset is all blue, so probability \(1 / 2^{r-1}\) that the subset is all one color. There are \(k\) chances for this to happen.

\[
\text { There are } k \text { chances for this to happen. }
\]

\section*{Deterministic Algorithm (cont)}

Result:
(1) If \(x_{j}\) is not a member of \(S_{i}\), probability is unchanged.
\[
P_{R}(i, j)=P(i, j) .
\]
(2) If \(S_{i}\) contains a blue element, then \(P_{R}(i, j)=0\).
(3) If \(S_{i}\) contains no blue element and some red elements, then
\[
P_{R}(i, j)=2 P(i, j) .
\]
(9) If \(S_{i}\) contains no colored elements, then probability of failure is unchanged.
\[
P_{R}(i, j)=P(i, j)
\]

\section*{Deterministic Algorithm (cont)}
- Similarly analyze \(P_{B}(i, j)\), the probability of failure for set \(S_{i}\) if \(X_{j}\) is colored blue.
- Sum the failure probabilities as follows:
\[
\begin{aligned}
& F_{R}(j)=\sum_{i=1}^{k} P_{R}(i, j) \\
& F_{B}(j)=\sum_{i=1}^{k} P_{B}(i, j)
\end{aligned}
\]
- Claim: \(F_{R}(n-1)+F_{B}(n-1) \leq 2 F(n)\).
\[
P_{R}(i, j)+P_{B}(i, j) \leq 2 P(i, j) .
\]

\section*{Deterministic Algorithm (cont)}
- Suffices to show that \(\forall i\),
\[
P_{R}(i, j)+P_{B}(i, j) \leq 2 P(i, j) .
\]
- This is clear except in case (3) when \(P_{R}(i, j)=2 P(i, j)\).
- But, then case (2) applies on the blue side, so \(P_{B}(i, j)=0\).

\section*{Final Algorithm}

> For \(j=n\) downto 1 do
> calculate \(F_{R}(j)\) and \(F_{B}(j)\);
> If \(F_{R}(j)<F_{B}(j)\) then color \(x_{j}\) red
> Else
> \(\quad\) color \(x_{j}\) blue.

By the claim, \(1 \geq F(n) \geq F(n-1) \geq \cdots \geq F(1)\).
This implies that the sets are successfully colored, i.e., \(F(1)=0\).

Key to transformation: We can calculate \(F_{R}(j)\) and \(F_{B}(j)\) efficiently, combined with the claim.
\begin{tabular}{|c|c|}
\hline m CS 5114 & Doteminstict Algorthm (coml) \\
\hline ¢' &  \\
\hline ¢ L Deterministic Algorithm (cont) &  \\
\hline \(\stackrel{\square}{\circ}\) & \(\operatorname{sen}-\operatorname{cosen}^{\sin }\) \\
\hline &  \\
\hline
\end{tabular}

This means that if you pick the correct color, then the probability of failure will not increase (and hopefully decrease) since it must be less than \(F(n)\).

no notes

no notes

\section*{Random Number Generators}
- Reference: CACM, October 1998.
- Most computers systems use a deterministic algorithm to select pseudorandom numbers.
- Linear congruential method:
- Pick a seed \(r(1)\). Then,
\[
r(i)=(r(i-1) \times b) \bmod t
\]
- Must pick good values for \(b\) and \(t\).
- Resulting numbers must be in the range:
- What happens if \(r(i)=r(j)\) ?
- \(t\) should be prime.

\section*{Random Number Generators (cont)}

\section*{Some examples:}
\[
\begin{aligned}
r(i)= & 6 r(i-1) \bmod 13= \\
& \cdots 1,6,10,8,9,2,12,7,3,5,4,11,1 \cdots \\
r(i)= & 7 r(i-1) \bmod 13= \\
& \cdots 1,7,10,5,9,11,12,6,3,8,4,2,1 \cdots \\
r(i)= & 5 r(i-1) \bmod 13= \\
& \cdots 1,5,12,8,1 \cdots \\
& \cdots 2,10,11,3,2 \cdots \\
& \cdots 4,7,9,6,4 \cdots \\
& \cdots 0,0 \cdots
\end{aligned}
\]

The last one depends on the start value of the seed.
Suggested generator: \(r(i)=16807 r(i-1) \bmod 2^{31}-1\)


\section*{Random Number Generators


}

Lots of "commercial" random number generators have poor performance because the don't get the numbers right.
Must be in range 0 to \(t-1\).

They generate the same number, which leads to a cycle of length \(|j-i|\).```

