
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 38

String Matching

Let A = a1a2 · · ·an and B = b1b2 · · ·bm, m ≤ n, be two
strings of characters.

Problem : Given two strings A and B, find the first
occurrence (if any) of B in A.

Find the smallest k such that, for all i , 1 ≤ i ≤ m,
ak+i = bi .

CS 5114: Theory of Algorithms Spring 2010 2 / 38

String Matching Example

A = xyxxyxyxyyxyxyxyyxyxyxx B = xyxyyxyxyxx

x y x x y x y x y y x y x y x y y x y x y x x
1: x y x y
2: x
3: x y . . .
4: x y x y y
5: x
6: x y x y y x y x y x x
7: x
8: x y x
9: x
10: x
11: x y x y y
12: x
13: x y x y y x y x y x x

O(mn) comparisons.
CS 5114: Theory of Algorithms Spring 2010 3 / 38

String Matching Worst Case

Brute force isn’t too bad for small patterns and large
alphabets.
However, try finding: yyyyyx

in: yyyyyyyyyyyyyyyx

Alternatively, consider searching for: xyyyyy

CS 5114: Theory of Algorithms Spring 2010 4 / 38

Finding a Better Algorithm

Find B = xyxyyxyxyxx in

A = xyxxyxyxyyxyxyxyyxyxyxx
When things go wrong, focus on what the prefix might be.

xyxxyxyxyyxyxyxyyxyxyxx
xyxy -- no chance for prefix til last x

xyxyy -- xyx could be prefix
xyxyyxyxyxx -- last xyxy could be prefix

xyxyyxyxyxx -- success!

CS 5114: Theory of Algorithms Spring 2010 5 / 38

Knuth-Morris-Pratt Algorithm

Key to success:
◮ Preprocess B to create a table of information on how far

to slide B when a mismatch is encountered.

Notation: B(i) is the first i characters of B.
For each character:

◮ We need the maximum suffix of B(i) that is equal to a
prefix of B.

next(i) = the maximum j (0 < j < i − 1) such that
bi−jbi−j+1 · · ·bi−1 = B(j), and 0 if no such j exists.

We define next(1) = −1 to distinguish it.

next(2) = 0. Why?

CS 5114: Theory of Algorithms Spring 2010 6 / 38

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

CS 5114: Theory of Algorithms Spring 2010 7 / 38

Computing the table

B =

1 2 3 4 5 6 7 8 9 10 11
x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

The third line is the “next” table.

At each position ask “If I fail here, how many letters
before me are good?”

CS 5114: Theory of Algorithms Spring 2010 7 / 38

How to Compute Table?

By induction.

Base cases : next(1) and next(2) already determined.

Induction Hypothesis : Values have been computed up
to next(i − 1).
Induction Step : For next(i): at most next(i − 1) + 1.

◮ When? bi−1 = bnext(i−1)+1.
◮ That is, largest suffix can be extended by bi−1.

If bi−1 6= bnext(i−1)+1, then need new suffix.

But, this is just a mismatch, so use next table to
compute where to check.

CS 5114: Theory of Algorithms Spring 2010 8 / 38

Complexity of KMP Algorithm

A character of A may be compared against many
characters of B.

◮ For every mismatch, we have to look at another position
in the table.

How many backtracks are possible?

If mismatch at bk , then only k mismatches are possible.

But, for each mismatch, we had to go forward a
character to get to bk .

Since there are always n forward moves, the total cost is
O(n).

CS 5114: Theory of Algorithms Spring 2010 9 / 38

Example Using Table

i 1 2 3 4 5 6 7 8 9 10 11
B x y x y y x y x y x x

-1 0 0 1 2 0 1 2 3 4 3

A x y x x y x y x y y x y x y x y y x y x y x x

x y x y next(4) = 1, compare B(2) to this
-x y next(2) = 0, compare B(1) to this

x y x y y next(5) = 2, compare to B(3)
-x-y x y y x y x y x x next(11) = 3

-x-y-x y y x y x y x x

Note: -x means don’t actually compute on that character.
CS 5114: Theory of Algorithms Spring 2010 10 / 38

Boyer-Moore String Match Algorithm

Similar to KMP algorithm
Start scanning B from end of B.
When we get a mismatch, we can shift the pattern to the
right until that character is seen again.
Ex: If “Z” is not in B, can move m steps to right when
encountering “Z”.
If “Z” in B at position i , move m − i steps to the right.
This algorithm might make less than n comparisons.
Example: Find abc in

xbycabc
abc

abc
abc

CS 5114: Theory of Algorithms Spring 2010 11 / 38

Order Statistics

Definition : Given a sequence S = x1, x2, · · · , xn of elements,
xi has rank k in S if xi is the k th smallest element in S.

Easy to find for a sorted list.

What if list is not sorted?

Problem : Find the maximum element.

Solution :

Problem : Find the minimum AND the maximum
elements.
Solution : Do independently.

◮ Requires 2n − 3 comparisons.
◮ Is this best?

CS 5114: Theory of Algorithms Spring 2010 12 / 38

Min and Max

Problem : Find the minimum AND the maximum values.

Solution : By induction.

Base cases :
1 element: It is both min and max.
2 elements: One comparison decides.

Induction Hypothesis :
Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.
CS 5114: Theory of Algorithms Spring 2010 13 / 38

Min and Max

Induction Hypothesis :

Assume that we can solve for n − 2 elements.

Try to add 2 elements to the list.

Find min and max of elements n − 1 and n (1 compare).

Combine these two with n − 2 elements (2 compares).

Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

CS 5114: Theory of Algorithms Spring 2010 14 / 38

K th Smallest Element

Problem : Find the k th smallest element from sequence S.

(Also called selection .)

Solution : Find min value and discard (k times).

If k is large, find n − k max values.

Cost : O(min(k , n − k)n) – only better than sorting if k is
O(log n) or O(n − log n).

CS 5114: Theory of Algorithms Spring 2010 15 / 38

Better K th Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

f (n) = n − 1 +
1
n

n∑

i=1

(f (i − 1))

Average case cost: O(n) time.

CS 5114: Theory of Algorithms Spring 2010 16 / 38

Two Largest Elements in a Set

Problem : Given a set S of n numbers, find the two
largest.
Want to minimize comparisons.
Assume n is a power of 2.
Solution: Divide and Conquer
Induction Hypothesis : We can find the two largest
elements of n/2 elements (lists P and Q).
Using two more comparisons, we can find the two
largest of q1, q2, p1, p2.

T (2n) = 2T (n) + 2; T (2) = 1.

T (n) = 3n/2 − 2.

Much like finding the max and min of a set. Is this best?
CS 5114: Theory of Algorithms Spring 2010 17 / 38

A Closer Examination

Again consider comparisons.
If p1 > q1 then

compare p2 and q1 [ignore q2]
Else

compare p1 and q2 [ignore p2]
We need only ONE of p2, q2.
Which one? It depends on p1 and q1.
Approach : Delay computation of the second largest
element.
Induction Hypothesis : Given a set of size < n, we
know how to find the maximum element and a “small”
set of candidates for the second maximum element.

CS 5114: Theory of Algorithms Spring 2010 18 / 38

Algorithm

Given set S of size n, divide into P and Q of size n/2.

By induction hypothesis, we know p1 and q1, plus a set
of candidates for each second element, CP and CQ.

If p1 > q1 then
new1 = p1; Cnew = CP ∪ q1.

Else
new1 = q1; Cnew = CQ ∪ p1.

At end, look through set of candidates that remains.

What is size of C?

Total cost:

CS 5114: Theory of Algorithms Spring 2010 19 / 38

Lower Bound for Second Best

At least n − 1 values must lose at least once.

At least n − 1 compares.

In addition, at least k − 1 values must lose to the second
best.

I.e., k direct losers to the winner must be compared.

There must be at least n + k − 2 comparisons.

How low can we make k?

CS 5114: Theory of Algorithms Spring 2010 20 / 38

Adversarial Lower Bound

Call the strength of element L[i] the number of elements L[i]
is (known to be) bigger than.

If L[i] has strength a, and L[j] has strength b, then the winner
has strength a + b + 1.

What should the adversary do?

Minimize the rate at which any element improves.

Do this by making the stronger element always win.

Is this legal?

CS 5114: Theory of Algorithms Spring 2010 21 / 38

Lower Bound (Cont.)

What should the algorithm do?

If a ≥ b, then 2a ≥ a + b.

From the algorithm’s point of view, the best outcome is
that an element doubles in strength.

This happens when a = b.

All strengths begin at zero, so the winner must make at
least k comparisons for 2k−1 < n ≤ 2k .

Thus, there must be at least n + ⌈log n⌉ − 2 comparisons.

CS 5114: Theory of Algorithms Spring 2010 22 / 38

Probabilistic Algorithms

All algorithms discussed so far are deterministic .

Probabilistic algorithms include steps that are affected by
random events.

Example: Pick one number in the upper half of the values in
a set.

1 Pick maximum: n − 1 comparisons.
2 Pick maximum from just over 1/2 of the elements: n/2

comparisons.

Can we do better? Not if we want a guarantee .
CS 5114: Theory of Algorithms Spring 2010 23 / 38

Probabilistic Algorithm

Pick 2 numbers and choose the greater.

This will be in the upper half with probability 3/4.

Not good enough? Pick more numbers!

For k numbers, greatest is in upper half with probability
1 − 2−k .

Monte Carlo Algorithm: Good running time, result not
guaranteed.

Las Vegas Algorithm: Result guaranteed, but not the
running time.

CS 5114: Theory of Algorithms Spring 2010 24 / 38

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.

Solution : Randomize input order.

Chance of worst case is then 2/n!.

CS 5114: Theory of Algorithms Spring 2010 25 / 38

Coloring Problem

Let S be a set with n elements, let S1, S2, · · · , Sk be a
collection of distinct subsets of S, each containing
exactly r elements, k ≤ 2r−2.
Problem : Color each element of S with one of two
colors, red or blue, such that each subset Si contains at
least one red and at least one blue.
Probabilistic solution :

◮ Take every element of S and color it either red or blue at
random.

This may not lead to a valid coloring, with probability

k
2r−1

≤
1
2
.

If it doesn’t work, try again!
CS 5114: Theory of Algorithms Spring 2010 26 / 38

Transforming to Deterministic Alg

First, generalize the problem:
◮ Let S1, S2, · · · , Sk be distinct subsets of S.
◮ Let si = |Si |.
◮ Assume ∀i , si ≥ 2, |S| = n.
◮ Color each element of S red or blue such that every Si

contains a red and blue element.
The probability of failure is at most:

F (n) =
k∑

i=1

2/2Si

If F (n) < 1, then there exists a coloring that solves the
problem.
Strategy : Color one element of S at a time, always
choosing color that gives lower probability of failure.

CS 5114: Theory of Algorithms Spring 2010 27 / 38

Deterministic Algorithm

Let S = {x1, x2, · · · , xn}.
Suppose we have colored xj+1, xj+2, · · · , xn and we want
to color xj . Further, suppose F (j) is an upper bound on
the probability of failure.
How could coloring xj red affect the probability of failing
to color a particular set Si?
Let PR(i , j) be this probability of failure.
Let P(i , j) be the probability of failure if the remaining
colors are randomly assigned.
PR(i , j) depends on these factors:

1 whether xj is a member of Si .
2 whether Si contains a blue element.
3 whether Si contains a red element.
4 the number of elements in Si yet to be colored.

CS 5114: Theory of Algorithms Spring 2010 28 / 38

Deterministic Algorithm (cont)

Result:
1 If xj is not a member of Si , probability is unchanged.

PR(i , j) = P(i , j).

2 If Si contains a blue element, then PR(i , j) = 0.
3 If Si contains no blue element and some red elements,

then
PR(i , j) = 2P(i , j).

4 If Si contains no colored elements, then probability of
failure is unchanged.

PR(i , j) = P(i , j)

CS 5114: Theory of Algorithms Spring 2010 29 / 38

Deterministic Algorithm (cont)

Similarly analyze PB(i , j), the probability of failure for set
Si if xj is colored blue.
Sum the failure probabilities as follows:

FR(j) =
k∑

i=1

PR(i , j)

FB(j) =
k∑

i=1

PB(i , j)

Claim: FR(n − 1) + FB(n − 1) ≤ 2F (n).

PR(i , j) + PB(i , j) ≤ 2P(i , j).

CS 5114: Theory of Algorithms Spring 2010 30 / 38

Deterministic Algorithm (cont)

Suffices to show that ∀i ,

PR(i , j) + PB(i , j) ≤ 2P(i , j).

This is clear except in case (3) when PR(i , j) = 2P(i , j).

But, then case (2) applies on the blue side, so
PB(i , j) = 0.

CS 5114: Theory of Algorithms Spring 2010 31 / 38

Final Algorithm

For j = n downto 1 do
calculate FR(j) and FB(j);
If FR(j) < FB(j) then

color xj red
Else

color xj blue.

By the claim, 1 ≥ F (n) ≥ F (n − 1) ≥ · · · ≥ F (1).

This implies that the sets are successfully colored, i.e.,
F (1) = 0.

Key to transformation: We can calculate FR(j) and FB(j)
efficiently, combined with the claim.

CS 5114: Theory of Algorithms Spring 2010 32 / 38

Random Number Generators

Reference: CACM, October 1998.

Most computers systems use a deterministic algorithm
to select pseudorandom numbers.

Linear congruential method :
◮ Pick a seed r(1). Then,

r(i) = (r(i − 1) × b) mod t .

Must pick good values for b and t .

Resulting numbers must be in the range:

What happens if r(i) = r(j)?

t should be prime.

CS 5114: Theory of Algorithms Spring 2010 33 / 38

Random Number Generators (cont)

Some examples:
r(i) = 6r(i − 1) mod 13 =

· · · 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1 · · ·

r(i) = 7r(i − 1) mod 13 =

· · · 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 · · ·

r(i) = 5r(i − 1) mod 13 =

· · · 1, 5, 12, 8, 1 · · ·

· · · 2, 10, 11, 3, 2 · · ·

· · · 4, 7, 9, 6, 4 · · ·

· · · 0, 0 · · ·

The last one depends on the start value of the seed.
Suggested generator: r(i) = 16807r(i − 1) mod 231 − 1

CS 5114: Theory of Algorithms Spring 2010 34 / 38

Mode of a Multiset

Multiset: not (necessarily) distinct elements.

A mode of a multiset is an element that occurs most
frequently (there may be more than one).

The number of times that a mode occurs is its multiplicity

Problem : Find the mode of a given multiset S.

Solution : Sort, and then scan in sequential order counting
multiplicities.

O(n log n + n). Is this best?
CS 5114: Theory of Algorithms Spring 2010 35 / 38

Mode Induction

Induction Hypothesis : We know the mode of a
multiset of n − 1 elements.
Problem : The nth element may break a tie, creating a
new mode.
Stronger IH : Assume that we know ALL modes of a
multiset with n − 1 elements.
Problem : We may create a new mode with the nth
element.
What if the nth element is chosen to be special?

◮ Example: nth element is the maximum element
◮ Better: Remove ALL occurrences of the maximal

element.

Still too slow – particularly if elements are distinct.

CS 5114: Theory of Algorithms Spring 2010 36 / 38

New Approach

Use divide and conquer:
◮ Divide the multiset into two approximately equal, disjoint

parts.
Note that we can find the median (position n/2) in O(n)
time.
This makes 3 multilists: less than, equal to, and greater
than the median.
Solve for each part.

T (n) ≤ 2T (n/2) + O(n), T (2) = 1.

Result: O(n log n). No improvement.
Observation: Don’t look at lists smaller than size M
where M is the multiplicity of the mode.

CS 5114: Theory of Algorithms Spring 2010 37 / 38

Implementation

Look at each submultilist.

If all contain more than one element, subdivide them all.

T (n) ≤ 2T (n/2) + O(n), T (M) = O(M).

T (n) = O(n log(n/M)).

This may be superior to sorting, but only if M is “large” and
comparisons are expensive.

CS 5114: Theory of Algorithms Spring 2010 38 / 38

