CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright (C) 2010 by Clifford A. Shaffer

String Matching

Let $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}, m \leq n$, be two strings of characters.

Problem: Given two strings A and B, find the first occurrence (if any) of B in A.

- Find the smallest k such that, for all $i, 1 \leq i \leq m$,

$$
a_{k+i}=b_{i} .
$$

String Matching Example

```
\(A=x y x x y x y x y y x y x y x y y x y x y x x \quad B=x y x y y x y x y x x\)
    \(x y x x y x y x y y x y x y x y y x y x y x x\)
    1: \(x\) y x y
    2: \(x\)
    \(3:\)
    4: \(\quad x\) y x y y
    5 :
    \(6:\)
    7 :
    8 :
    9 :
10:
11:
12:
\(13:\)
\(x y x y y y y y y y\)
\(x\)
\(x y x\)
x
x
                    \(\begin{array}{ll}x & y \\ x & x\end{array}\)
                        \(x y x y y x y ~ x y ~ x ~ x ~\)
\(O(m n)\) comparisons.
```


String Matching Worst Case

Brute force isn't too bad for small patterns and large alphabets.
However, try finding: ууууух

in: yyyyyyyyyyyyyyx

Alternatively, consider searching for: хууууy

Finding a Better Algorithm

Find $B=$ xyxyyxyxyxx in
$A=x y x x y x y x y y x y x y x y y x y x y x x$ When things go wrong, focus on what the prefix might be.

```
xyxxyxyxyYxyxyxyyxyxyxx
xyxy -- no chance for prefix til last x
    xyxyy -- xyx could be prefix
        xyxyyxyxyxx -- last xyxy could be prefix
        xyxyyxyxyxx -- success!
```


Knuth-Morris-Pratt Algorithm

- Key to success:
- Preprocess B to create a table of information on how far to slide B when a mismatch is encountered.
- Notation: $B(i)$ is the first i characters of B.
- For each character:
- We need the maximum suffix of $B(i)$ that is equal to a prefix of B.
- next $(i)=$ the maximum $j(0<j<i-1)$ such that $b_{i-j} b_{i-j+1} \cdots b_{i-1}=B(j)$, and 0 if no such j exists.
- We define $\operatorname{next}(1)=-1$ to distinguish it.
- $\operatorname{next}(2)=0$. Why?

Computing the table

$$
\begin{aligned}
& B= \\
& \\
& 1
\end{aligned} \quad 2 \begin{array}{llllllllrr}
\\
\mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{x} \\
\mathrm{x}
\end{array}
$$

Computing the table

$$
\begin{aligned}
& B= \\
& \begin{array}{lllllllllrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{y} & \mathrm{x} & \mathrm{x}
\end{array} \\
& \begin{array}{lllllllllll}
-1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{array}
\end{aligned}
$$

- The third line is the "next" table.
- At each position ask "If I fail here, how many letters before me are good?"

How to Compute Table?

- By induction.
- Base cases: next(1) and next(2) already determined.
- Induction Hypothesis: Values have been computed up to $\operatorname{next}(i-1)$.
- Induction Step: For next(i): at most next $(i-1)+1$.
- When? $b_{i-1}=b_{\text {next }(i-1)+1}$.
- That is, largest suffix can be extended by b_{i-1}.
- If $b_{i-1} \neq b_{\text {next(}(i-1)+1}$, then need new suffix.
- But, this is just a mismatch, so use next table to compute where to check.

Complexity of KMP Algorithm

- A character of A may be compared against many characters of B.
- For every mismatch, we have to look at another position in the table.
- How many backtracks are possible?
- If mismatch at b_{k}, then only k mismatches are possible.
- But, for each mismatch, we had to go forward a character to get to b_{k}.
- Since there are always n forward moves, the total cost is $\mathrm{O}(n)$.

Example Using Table

$$
\begin{array}{cccccccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
B & x & y & x & y & y & x & y & x & y & x & x \\
& -1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{array}
$$

Note: -x means don't actually compute on that character.

Boyer-Moore String Match Algorithm

- Similar to KMP algorithm
- Start scanning B from end of B.
- When we get a mismatch, we can shift the pattern to the right until that character is seen again.
- Ex: If " Z " is not in B, can move m steps to right when encountering " Z ".
- If " Z " in B at position i, move $m-i$ steps to the right.
- This algorithm might make less than n comparisons.
- Example: Find abc in
xbycabc
abc

$$
\begin{aligned}
& \mathrm{abc} \\
& \mathrm{abc}
\end{aligned}
$$

Order Statistics

Definition: Given a sequence $S=x_{1}, x_{2}, \cdots, x_{n}$ of elements, x_{i} has rank k in S if x_{i} is the k th smallest element in S.

- Easy to find for a sorted list.
- What if list is not sorted?
- Problem: Find the maximum element.
- Solution:
- Problem: Find the minimum AND the maximum elements.
- Solution: Do independently.
- Requires $2 n-3$ comparisons.
- Is this best?

Min and Max

Problem: Find the minimum AND the maximum values.

Solution: By induction.

Base cases:

- 1 element: It is both min and max.
- 2 elements: One comparison decides.

Induction Hypothesis:

- Assume that we can solve for $n-2$ elements.

Try to add 2 elements to the list.

Min and Max

Induction Hypothesis:

- Assume that we can solve for $n-2$ elements.

Try to add 2 elements to the list.

- Find min and max of elements $n-1$ and n (1 compare).
- Combine these two with $n-2$ elements (2 compares).
- Total incremental work was 3 compares for 2 elements.

Total Work:

What happens if we extend this to its logical conclusion?

Kth Smallest Element

Problem: Find the k th smallest element from sequence S.
(Also called selection.)

Solution: Find min value and discard (k times).

- If k is large, find $n-k$ max values.

Cost: $O(\min (k, n-k) n)$ - only better than sorting if k is $\mathrm{O}(\log n)$ or $O(n-\log n)$.

Better Kth Smallest Algorithm

Use quicksort, but take only one branch each time.

Average case analysis:

$$
f(n)=n-1+\frac{1}{n} \sum_{i=1}^{n}(f(i-1))
$$

Average case cost: $\mathrm{O}(n)$ time.

Two Largest Elements in a Set

- Problem: Given a set S of n numbers, find the two largest.
- Want to minimize comparisons.
- Assume n is a power of 2 .
- Solution: Divide and Conquer
- Induction Hypothesis: We can find the two largest elements of $n / 2$ elements (lists P and Q).
- Using two more comparisons, we can find the two largest of $q_{1}, q_{2}, p_{1}, p_{2}$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 ; T(2)=1 \\
T(n) & =3 n / 2-2
\end{aligned}
$$

- Much like finding the max and min of a set. Is this best?

A Closer Examination

- Again consider comparisons.
- If $p_{1}>q_{1}$ then compare p_{2} and $q_{1} \quad$ [ignore q_{2}] Else
compare p_{1} and $q_{2} \quad$ [ignore p_{2}]
- We need only ONE of p_{2}, q_{2}.
- Which one? It depends on p_{1} and q_{1}.
- Approach: Delay computation of the second largest element.
- Induction Hypothesis: Given a set of size $<n$, we know how to find the maximum element and a "small" set of candidates for the second maximum element.

Algorithm

- Given set S of size n, divide into P and Q of size $n / 2$.
- By induction hypothesis, we know p_{1} and q_{1}, plus a set of candidates for each second element, C_{P} and C_{Q}.
- If $p_{1}>q_{1}$ then

$$
\text { new }_{1}=p_{1} ; C_{\text {new }}=C_{P} \cup q_{1} .
$$

Else

$$
\text { new }_{1}=q_{1} ; C_{\text {new }}=C_{Q} \cup p_{1} .
$$

- At end, look through set of candidates that remains.
- What is size of C ?
- Total cost:

Lower Bound for Second Best

At least $n-1$ values must lose at least once.

- At least $n-1$ compares.

In addition, at least $k-1$ values must lose to the second best.

- I.e., k direct losers to the winner must be compared.

There must be at least $n+k-2$ comparisons.
How low can we make k ?

Adversarial Lower Bound

Call the strength of element $L[i]$ the number of elements $L[i]$ is (known to be) bigger than.

If $L[i]$ has strength a, and $L[j]$ has strength b, then the winner has strength $a+b+1$.

What should the adversary do?

- Minimize the rate at which any element improves.
- Do this by making the stronger element always win.
- Is this legal?

Lower Bound (Cont.)

What should the algorithm do?

If $a \geq b$, then $2 a \geq a+b$.

- From the algorithm's point of view, the best outcome is that an element doubles in strength.
- This happens when $a=b$.
- All strengths begin at zero, so the winner must make at least k comparisons for $2^{k-1}<n \leq 2^{k}$.

Thus, there must be at least $n+\lceil\log n\rceil-2$ comparisons.

Probabilistic Algorithms

All algorithms discussed so far are deterministic.

Probabilistic algorithms include steps that are affected by random events.

Example: Pick one number in the upper half of the values in a set.
(1) Pick maximum: $n-1$ comparisons.
(2) Pick maximum from just over $1 / 2$ of the elements: $n / 2$ comparisons.

Can we do better? Not if we want a guarantee.

Probabilistic Algorithm

- Pick 2 numbers and choose the greater.
- This will be in the upper half with probability $3 / 4$.
- Not good enough? Pick more numbers!
- For k numbers, greatest is in upper half with probability $1-2^{-k}$.
- Monte Carlo Algorithm: Good running time, result not guaranteed.
- Las Vegas Algorithm: Result guaranteed, but not the running time.

Probabilistic Quicksort

Quicksort runs into trouble on highly structured input.
Solution: Randomize input order.

- Chance of worst case is then $2 / n!$.

Coloring Problem

- Let S be a set with n elements, let $S_{1}, S_{2}, \cdots, S_{k}$ be a collection of distinct subsets of S, each containing exactly r elements, $k \leq 2^{r-2}$.
- Problem: Color each element of S with one of two colors, red or blue, such that each subset S_{i} contains at least one red and at least one blue.
- Probabilistic solution:
- Take every element of S and color it either red or blue at random.
- This may not lead to a valid coloring, with probability

$$
\frac{k}{2^{r-1}} \leq \frac{1}{2} .
$$

- If it doesn't work, try again!

Transforming to Deterministic Alg

- First, generalize the problem:
- Let $S_{1}, S_{2}, \cdots, S_{k}$ be distinct subsets of S.
- Let $s_{i}=\left|S_{i}\right|$.
- Assume $\forall i, s_{i} \geq 2,|S|=n$.
- Color each element of S red or blue such that every S_{i} contains a red and blue element.
- The probability of failure is at most:

$$
F(n)=\sum_{i=1}^{k} 2 / 2^{S_{i}}
$$

- If $F(n)<1$, then there exists a coloring that solves the problem.
- Strategy: Color one element of S at a time, always choosing color that gives lower probability of failure.

Deterministic Algorithm

- Let $S=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$.
- Suppose we have colored $x_{j+1}, x_{j+2}, \cdots, x_{n}$ and we want to color x_{j}. Further, suppose $F(j)$ is an upper bound on the probability of failure.
- How could coloring x_{j} red affect the probability of failing to color a particular set S_{i} ?
- Let $P_{R}(i, j)$ be this probability of failure.
- Let $P(i, j)$ be the probability of failure if the remaining colors are randomly assigned.
- $P_{R}(i, j)$ depends on these factors:
(1) whether x_{j} is a member of S_{i}.
(2) whether S_{i} contains a blue element.
(3) whether S_{i} contains a red element.

44 the number of elements in S_{i} yet to be colored.

Deterministic Algorithm (cont)

Result:
(1) If x_{j} is not a member of S_{i}, probability is unchanged.

$$
P_{R}(i, j)=P(i, j) .
$$

(2) If S_{i} contains a blue element, then $P_{R}(i, j)=0$.
(3) If S_{i} contains no blue element and some red elements, then

$$
P_{R}(i, j)=2 P(i, j)
$$

(a) If S_{i} contains no colored elements, then probability of failure is unchanged.

$$
P_{R}(i, j)=P(i, j)
$$

Deterministic Algorithm (cont)

- Similarly analyze $P_{B}(i, j)$, the probability of failure for set S_{i} if x_{j} is colored blue.
- Sum the failure probabilities as follows:

$$
\begin{aligned}
& F_{R}(j)=\sum_{i=1}^{k} P_{R}(i, j) \\
& F_{B}(j)=\sum_{i=1}^{k} P_{B}(i, j)
\end{aligned}
$$

- Claim: $F_{R}(n-1)+F_{B}(n-1) \leq 2 F(n)$.

$$
P_{R}(i, j)+P_{B}(i, j) \leq 2 P(i, j)
$$

Deterministic Algorithm (cont)

- Suffices to show that $\forall i$,

$$
P_{R}(i, j)+P_{B}(i, j) \leq 2 P(i, j) .
$$

- This is clear except in case (3) when $P_{R}(i, j)=2 P(i, j)$.
- But, then case (2) applies on the blue side, so $P_{B}(i, j)=0$.

Final Algorithm

For $j=n$ downto 1 do
calculate $F_{R}(j)$ and $F_{B}(j)$;
If $F_{R}(j)<F_{B}(j)$ then color x_{j} red
Else color x_{j} blue.

By the claim, $1 \geq F(n) \geq F(n-1) \geq \cdots \geq F(1)$.
This implies that the sets are successfully colored, i.e., $F(1)=0$.

Key to transformation: We can calculate $F_{R}(j)$ and $F_{B}(j)$ efficiently, combined with the claim.

Random Number Generators

- Reference: CACM, October 1998.
- Most computers systems use a deterministic algorithm to select pseudorandom numbers.
- Linear congruential method:
- Pick a seed $r(1)$. Then,

$$
r(i)=(r(i-1) \times b) \bmod t .
$$

- Must pick good values for b and t.
- Resulting numbers must be in the range:
- What happens if $r(i)=r(j)$?
- t should be prime.

Random Number Generators (cont)

Some examples:

$$
\begin{aligned}
r(i)= & 6 r(i-1) \bmod 13= \\
& \cdots 1,6,10,8,9,2,12,7,3,5,4,11,1 \cdots \\
r(i)= & 7 r(i-1) \bmod 13= \\
& \cdots 1,7,10,5,9,11,12,6,3,8,4,2,1 \cdots \\
r(i)= & 5 r(i-1) \bmod 13= \\
& \cdots 1,5,12,8,1 \cdots \\
& \cdots 2,10,11,3,2 \cdots \\
& \cdots 4,7,9,6,4 \cdots \\
& \cdots 0,0 \cdots
\end{aligned}
$$

The last one depends on the start value of the seed. Suggested generator: $r(i)=16807 r(i-1) \bmod 2^{31}-1$

Mode of a Multiset

Multiset: not (necessarily) distinct elements.
A mode of a multiset is an element that occurs most frequently (there may be more than one).

The number of times that a mode occurs is its multiplicity
Problem: Find the mode of a given multiset S.
Solution: Sort, and then scan in sequential order counting multiplicities.
$O(n \log n+n)$. Is this best?

Mode Induction

- Induction Hypothesis: We know the mode of a multiset of $n-1$ elements.
- Problem: The nth element may break a tie, creating a new mode.
- Stronger IH: Assume that we know ALL modes of a multiset with $n-1$ elements.
- Problem: We may create a new mode with the nth element.
- What if the nth element is chosen to be special?
- Example: nth element is the maximum element
- Better: Remove ALL occurrences of the maximal element.
- Still too slow - particularly if elements are distinct.

New Approach

- Use divide and conquer:
- Divide the multiset into two approximately equal, disjoint parts.
- Note that we can find the median (position $n / 2$) in $\mathrm{O}(n)$ time.
- This makes 3 multilists: less than, equal to, and greater than the median.
- Solve for each part.

$$
T(n) \leq 2 T(n / 2)+O(n), T(2)=1 .
$$

- Result: $\mathrm{O}(n \log n)$. No improvement.
- Observation: Don't look at lists smaller than size M where M is the multiplicity of the mode.

Implementation

Look at each submultilist.

If all contain more than one element, subdivide them all.

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+O(n), T(M)=O(M) \\
& T(n)=O(n \log (n / M))
\end{aligned}
$$

This may be superior to sorting, but only if M is "large" and comparisons are expensive.

