CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright © 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1/134

CS5114: Theory of Algorithms

@ Emphasis: Creation of Algorithms
@ Less important:
» Analysis of algorithms
> Problem statement
» Programming
@ Central Paradigm: Mathematical Induction

» Find a way to solve a problem by solving one or more
smaller problems
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Review of Mathematical Induction

@ The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.
@ Purpose : To prove a parameterized theorem of the
form:
Theorem: Vn > c,P(n).
» Use only positive integers > ¢ for n.
@ Sample P(n):
n+1<n?
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Principle of Mathematical Induction

@ |F the following two statements are true:
© P(c)is true.
© Forn >c,P(n—1)istrue — P(n) is true.
... THEN we may conclude: Vn > c, P(n).
@ The assumption “P(n — 1) is true” is the
induction hypothesis
@ Typical induction proof form:

© Base case
@ State induction Hypothesis
© Prove the implication (induction step)

@ What does this remind you of?
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Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).

We will use Analysis of Algorithms as a tool.

Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.

Divide and conquer is a way of solving a problem by solving
one more more smaller problems.

Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.
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LReview of Mathematical Induction

P(n) is a statement containing n as a variable.

This sample P(n) is true for n > 2, but false for n = 1.
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Principle of Mathematical Induction

LPrincipIe of Mathematical Induction

Important: The goal is to prove the implication , not the
theorem! That is, prove that P(n — 1) — P(n). NOT to prove
P(n). This is much easier, because we can assume that P(n) is
true.

Consider the truth table for implication to see this. Since A — B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.

This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.



Induction Example 1

Theorem: Let

n
S(nN)=)Y i=1+2+--+n.
i=1

Then, Vn > 1,S(n) = "0,
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Induction Example 2

Theorem: Vn > 1,V real x such that 1 +x > 0,
(T4+x)">1+nx.
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Induction Example 3

Theorem : 2¢ and 5¢ stamps can be used to form any
denomination (for denominations > 4).
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Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

@ 4: Certainly

9 3.7

@ 2:7

@ 1: No!

Let's try it for 2...
Spring 2010 8/134
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Induction Example 1
Theorem: Lot

Llnduction Example 1

Then > 1(0) - 252

Base Case: P(n)is true since S(1) =1 =1(1+1)/2.
. . . . i(i+1 .

Induction Hypothesis : S(i) = W forj < n.

Induction Step :

S(n) S(n—1)4+n=(n—-1)n/2+n
n(n+1)

2

Therefore, P(n — 1) — P(n).

By the principle of Mathematical Induction,
vn>1,S(n) = w

Ml is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.
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Induction Example 2

Theorem ¥ > 1, el such hat 1+ 0,
(1,

Llnducxion Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n): (1+x)" > 1+nx.

Base Case: (1 +x)'=1+x >1+1x
Induction Hypothesis : Assume (1 +x)""1 > 1+ (n — 1)x
Induction Step :

(1+x)"

(1+x)1+x)"1
(T+x)(1+(n—1)x)

= 14nX—X+X+nx?—x?
= 1+4nx+(n—1)x?

1+ nx.

%

%
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Induction Example 3

Theorem  2c and o sianps can e used o fomany
denominaton (o denominatns = 4)

Llnduction Example 3

Basecase: 4 =2+2.
Induction Hypothesis : Assume P(k) for 4 <k < n.

Induction Step :
Case 1: n — 1 is made up of all 2¢ stamps. Then, replace 2 of
these with a 5¢ stamp.

Case 2: n — 1includes a 5¢ stamp. Then, replace this with 3 2¢
stamps.

CSs 5114 Colorings
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Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.



Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.

Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.
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Strong Induction

IF the following two statements are true:
O P(c)

Q P(i),i=12--- n—1—P(n),

... THEN we may conclude: Vn > ¢, P(n).

Advantage: We can use statements other than P(n — 1) in
proving P(n).
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Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem: Let G = (V,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).
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Graph Problem (cont)

Theorem: Let G = (V,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Base Case: Easy if n < 3 because there can be no path of
length > 2.

Induction Hypothesis : The theorem is true if [V | < n.
Induction Step (n > 3):

Pick any v € V.

Define: N(v) = {v}U{w e V|(v,w) € E}.

H=G — N(v).

Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.
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Two-coloring Problem
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Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can't, so try
induction on lines.

Base Case: n = 1. Any line divides the plane into two regions.
Induction Hypothesis : It is possible to two-color the regions
formed by n — 1 lines.

Induction Step : Introduce the n'th line.

This line cuts some colored regions in two.

Reverse the region colors on one side of the n’th line.

A valid two-coloring results.

e Any boundary surviving the addition still has opposite colors.

e Any new boundary also has opposite colors after the switch.
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LStrong Induction

Adariage: We can se satements oher than P(n 1)
prowng P(n).

The previous examples were all very straightforward — simply
add in the n’th item and justify that the IH is maintained.

Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

e go backwards from n.

e prove a stronger IH.

to make the most of the IH.
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Graph Problem
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It should be obvious that the theorem is true for an undirected
graph.

Naive approach: Assume the theorem is true for any graph of
n — 1 vertices. Now add the nth vertex and its edges. But this
won't work for the graph 1 < 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.

Going forward is good for proving existance.

Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.
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Graph Problem (cont)

Theorem: Lot = (V. £) be a ected graph. Then, .
Contans some dpendant s S1G) ch it ey verex
5(6)bya pan o fngihat-
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N(v) is all vertices reachable (directly) from v. That is, the
Neighbors of v.
H is the graph induced by V — N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is

1 — 2 — 3, and we remove 1, then the independent set for H
must be vertex 2. We can't just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...



Graph Proof (cont)

There are two cases:
© S(H)u{v} isindependent.
Then S(G) = S(H)U{v}.
© S(H) U {v} is not independent.
Letw € S(H) such that (w,v) € E.

Every vertex in N(v) can be reached by w with path of

length < 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.
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Fibonacci Numbers

Define Fibonacci numbers inductively as:

F(1) = F(2)=1

F(n) = F(n—-1)+F(n—-2),n>2.

Theorem: Vn > 1,F(n)? + F(n +1)> = F(2n + 1).
Induction Hypothesis:
F(n—1)2+F(n)>=F(2n - 1).
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Fibonacci Numbers (cont)

With a stronger theorem comes a stronger |H!

Theorem :
F(n)?+F(n+1)2=F(2n+1) and
F(n)?+ 2F(n)F(n — 1) = F(2n).

Induction Hypothesis:
F(n—1)2+F(n)>=F(2n—1) and
F(n—1)2+2F(n—1)F(n—2)=F(2n-2).
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Another Example

Theorem : All horses are the same color.

Proof: P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case: n = 1is easy.
Induction Hypothesis : Assume P(i),i < n.
Induction Step :
@ Let S be a set of horses, |S| = n.
9 Let S’ be S — {h} for some horse h.
@ By IH, all horses in S’ have the same color.
@ Let h’ be some horse in S'.
IH implies {h, h’} have all the same color.
Therefore, P(n) holds.
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Graph Proof (cont)

LGraph Proof (cont)

“S(H) U {v} is not independent” means that there is an edge
from something in S(H) to v.

IMPORTANT: There cannot be an edge from v to S(H)
because whatever we can reach from v is in N(v) and would
have been removed in H.

We need strong induction for this proof because we don’t know
how many vertices are in N(v).
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L Fibonacci Numbers

Expand both sides of the theorem, then cancel like terms:

F(2n+1)=F(2n)+F(2n—1) and,

F(N)>+F(n+1)” = F(n)*+(F(n)+F(n—1))>
= F(n)?+F(n)2+2F(N)F(n—1)+F(n—-1)2
= F(n)?+F(n—1)2+F(n)?+2F(n)F(n—1)
= F(2n—1)+F(n)? +2F(n)F(n —1).

Want: F(n)? + F(n+1)2 =
Steps above gave:
F(2n)+F(2n—1) =F(2n — 1) + F(n)? + 2F(n)F(n — 1)

So we need to show that: F(n)? + 2F (n)F(n — 1) = F(2n)

To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our IH!

F(2n+1) =F(2n) + F(2n - 1)
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Fibonacci Numbers (cont)

LFibonacci Numbers (cont)

F(n)? +2F(n)F(n — 1)

= F(n)?+2(F(n—1)+F(n-2)F(n-1)

= F(P2+FM-1%+2F(n—1)F(n—2) +F(n—1)?
= F@2n-1)+F(2n-2)
= F(2n).

F(N?+F(n+1)?2 = F(n)?+[F(n)+F(n-1)?
= F(n)?+F(n)?+2F(n)F(n—1)+F(n—-1)2
= F(n)?2+F(2n)+F(n—1)>?
= F(

F(

2n—1)+F(2n)
2n+1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.
CS 5114 Avoer Example

LAnother Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.



Algorithm Analysis

@ We want to “measure” algorithms.
@ What do we measure?

@ What factors affect measurement?

@ Objective: Measures that are independent of all factors
except input.

CS 5114: Theory of Algorithms Spring 2010 171134

Time Complexity

@ Time and space are the most important computer
resources.
@ Function of input: T(input)
@ Growth of time with size of input:
» Establish an (integer) size n for inputs
» n numbers in a list
» n edges in a graph
@ Consider time for all inputs of size n:
» Time varies widely with specific input
» Best case
» Average case
» Worst case

@ Time complexity T(n) counts steps in an algorithm.
Spring2010 181134

Asymptotic Analysis

@ It is undesirable/impossible to count the exact number of
steps in most algorithms.

» Instead, concentrate on main characteristics.

@ Solution: Asymptotic analysis
» Ignore small cases:
* Consider behavior approaching infinity
» Ignore constant factors, low order terms:
* 2n? looks the same as 5n? + n to us.
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O Notation

O notation is a measure for “upper bound” of a growth rate.
@ pronounced “Big-oh”

Definition : For T(n) a non-negatively valued function, T(n)
is in the set O(f(n)) if there exist two positive constants ¢
and ng such that T(n) < cf(n) for all n > ng.

Examples:
® 5n+8 € O(n)
@ 2n? +nlogn € O(n?) € O(n® + 5n?)
@ 2n? +nlogn € O(n?) € O(n® + n?)
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 Objctve: essures that e independent o afactors
exceptinput.

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?

Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.

Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

CS 5114 Time Complexity

LTime Complexity
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Sometimes analyze in terms of more than one variable.

Best case usually not of interest.

Average case is usually what we want, but can be hard to
measure.

Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.

Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” — not
dependent on n.
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Asymptotic Analysis
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Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.
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LO Notation
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Remember: The time equation is for some particular set of
inputs — best, worst, or average case.



O Notation (cont)

We seek the “simplest” and “strongest” f.

Big-O is somewhat like “<™:
n2 € O(n®) and n?logn € O(n®), but
@ n? #n?%logn
@ n2 € O(n?) while n?logn ¢ O(n?)
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Growth Rate Graph
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Speedups
What happens when we buy a computer 10 times faster?

Tn) | n | n | Change | n’/n
10n 1,000 | 10,000 | n" = 10n 10
20n 500 | 5,000 | n"=10n 10
5nlogn 250 | 1,842 |+10n<n'<10n | 7.37
2n? 70 223 |n"=+10n 3.16
2" 13 16 |n"=n+3 ——

n: Size of input that can be processed in one hour (10,000
steps).

n’: Size of input that can be processed in one hour on the
new machine (100,000 steps).
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Some Rules for Use

Definition : f is monotonically growing  if ny > n, implies
f(nl) > f(nz).

We typically assume our time complexity function is
monotonically growing.

Theorem 3.1 : Suppose f is monotonically growing.

¥c > 0and Va > 1, (f(n))¢ € O(a'™)

In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f(n) € O(s(n)) and g(n) € O(r(n)) then
@ f(n)+g(n) € O(s(n) + r(n)) = O(max(s(n),r(n)))
@ f(n)g(n) € O(s(n)r(n)).

@ If s(n) € O(h(n)) then f(n) € O(h(n))
@ For any constant k, f(n) € O(ks(n))
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O Notation (cont)
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LO Notation (cont)

A common misunderstanding:

e “The best case for my algorithm is n = 1 because that is the
fastest” WRONG!

e Big-oh refers to a growth rate as n grows to co.

e Best case is defined for the input of size n that is cheapest
among all inputs of size n.
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Growth Rate Graph

LGrowth Rate Graph

2" is an exponential algorithm. 10n and 20n differ only by a
constant.
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Speedups

LSpeedups
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How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.

For n?, if n = 1000, then n’ would be 1003.

Compare T(n) = n? to T(n) = nlogn. For n > 58, it is faster to
have the ©(nlog n) algorithm than to have a computer that is
10 times faster.

CSs 5114 ‘Some Rules for Use

LSome Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.

Is O(2f(M) € 0(31(M)? Yes, but not vice versa.

3" =1.5" x 2" so no constant could ever make 2" bigger than
3" for all n.functional composition



Other Asymptotic Notation

Q(f(n)) — lower bound (>)

Definition : For T(n) a non-negatively valued function, T(n)
is in the set Q(g(n)) if there exist two positive constants ¢
and ng such that T(n) > cg(n) for all n > no.

Ex: n?logn € Q(n?).

©(f(n)) — Exact bound (=)

Definition : g(n) = ©(f(n)) if g(n) € O(f(n)) and
g(n) € Q(f(n)).

Important! : Itis © if it is both in big-Oh and in Q.
Ex: 5n% +4n% +9n + 7 = ©(n®)
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Other Asymptotic Notation (cont)

o(f(n)) — little o (<)
Definition : g(n) € o(f(n)) if limy_ % =0
Ex: n? € o(n3)

w(f(n)) — little omega (>)
Definition : g(n) € w(f(n)) if f(n) € o(g(n)).
Ex: n® € w(n?)

oo(f(n))
Definition : T(n) = oo(f(n)) if T(n) = O(f(n)) but the
constant in the O is so large that the algorithm is impractical.
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Aim of Algorithm Analysis

Typically want to find “simple” f(n) such that T (n) = ©(f(n)).
@ Sometimes we settle for O(f(n)).
Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”
@ Appropriate step depends on the problem.
@ Ex: measure key comparisons for sorting

Summation : Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations : Used for counting steps in
recursion.
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Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.
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Other Asymptoic Notation
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LOther Asymptotic Notation

Q is most userful to discuss cost of problems, not algorithms.
Once you have an equation, the bounds have met. So this is
more interesting when discussing your level of uncertainty
about the difference between the upper and lower bound.

You have © when you have the upper and the lower bounds
meeting. So © means that you know a lot more than just
Big-oh, and so is perferred when possible.

A common misunderstanding:
e Confusing worst case with upper bound.
e Upper bound refers to a growth rate.

e Worst case refers to the worst input from among the choices
for possible inputs of a given size.
CS 5114

Other Asymptotic Notation (cont)

LOther Asymptotic Notation (cont)

) = (1) T () = 1) b

s 50larg tha e agort s Impractea.

We won't use these too much.
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LAim of Algorithm Analysis

We prefer © over Big-oh because © means that we understand
our bounds and they met. But if we just can't find that the

bottom meets the top, then we are stuck with just Big-oh. Lower
bounds can be hard. For problems we are often interested in Q

— but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

For the sorting example, key comparisons must be
constant-time to be used as a cost measure.

CSs 5114

Summation: Guess and Test

Techviqe 1 Guess hesolton and use nducton o st
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LSummation: Guess and Test

no notes



: CS 5114 Summation Example
. N
Summat'on Exam ple g LSummation Example
2
n
S(n) = Z i2 This is Manber Problem 2.5.
i=0
Guess that S(n) is a polynomial < n®. We need to prove by induction since we don’t know that the
Equivalently, guess that it has the form guessed form is correct. All that we know without doing the
S(n) = an®+ bn? +cn +d. proof is that the form we guessed models some low-order
points on the equation properly.
Forn =0 we have S(n) =0sod = 0.
Forn=1wehavea+b+c+0=1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.
7 7 7 _ 1 _ 1 _ 1
Solving these equations yields a = 3,b = 5,¢c = ¢
Now, prove the solution with induction.
: CS 5114 Technique 2: Shifted Sums
. . 8
. o Technique 2: Shifted Sums
Technique 2: Shifted Sums S -
o
N
Given a sum of many terms, shift and subtract to eliminate
intermediate terms. We often solve summations in this way — by multiplying by
n , something or subtracting something. The big problem is that it
G(n) = Z ar'=a4ar+ar®+...+ar" can be a bit like finding a needle in a haystack to decide what
i=0 “move” to make. We need to do something that gives us a new
Shift by multiplying by r. sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
rG(n) = ar + ar2 4 - +ar" 4+ ar"tt an easier summation.
Subtract. . L . R
Shift by multiplying by r is a reasonable guess in this example
G(n) —rG(n) = G(n)(L —r) = a — ar"** since the terms differ by a factor of r.
a—armt!
GnN)=———— r#1
il =
~ CS5114 Example 3.3
—
Example 33 ‘C_'>' LExample &g
8
no no notes
Gn) =) 12 =1x2+2x22+3x2%4---4nx2"
i=1
Multiply by 2.
2G(N) =1x22+2x234+3x2% ... 4 nx 2"t
Subtract (Note: S, 2" = 21 — 2)
2G(n) —G(n) = n2"t_2"...22 2
G(n) = n2"t_2n1 42
(n—1)2"t 42
~ CS5114 Recurrence Relations
—
N
. < L )
Recurrence Relations s Recunience Refatons
@ A (math) function defined in terms of itself. We won't spend a lot of time on techniques... just enough to be
@ Example: Fibonacci numbers: able to use them.
F(n) =F(n—1)+F(n—2) general case
F(1)=F(2)=1 base cases

@ There are always one or more general cases and one or
more base cases.

@ We will use recurrences for time complexity of recursive
(computer) functions.

@ General formatis T(n) = E(T,n) where E(T,n) is an
expression in T and n.

» T(n)=2T(n/2)+n
@ Alternately, an upper bound: T (n) < E(T,n).
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~ CS5114
il
S
Solving Recurrences = Solving Recuriences
N
We would like to find a closed form solution for T (n) such Note that “finding a closed form” means that we have f(n) that
that: doesn'tinclude T.

T(n) =©(f(n))
Can't find lower bound for the inequality because you do not
Alternatively, find lower bound know enough... you don’t know how much bigger E(T,n) is
@ Not possible for inequalities of form T (n) < E(T, n). than T (n), so the result might not be (T (n)).
Guessing is useful for finding an asymptotic solution. Use
Methods: induction to prove the guess correct.
@ Guess (and test) a solution

@ Expand recurrence

@ Theorems
Sing 2010 33/134
~ CS5114
G
N
. T L '
Guessing = Guessing
N

T(n)=2T(n/2)+5n* n>2
T()=7 For Big-oh, not many choices in what to guess.
Note that T is defined only for powers of 2.
7x13=7
Guess a solution: T(n) < ¢;n® = f(n)
T(1) = 7 implies thatc; > 7 Because 23n° +5n2 = 2n3 when n = 1, and as n grows, the
right side grows even faster.
Inductively, assume T (n/2) < f(n/2).

T(n) = 2T(n/2)+5n?
< 2c¢1(n/2)% 4 5n?
< ¢y(n®/4) + 5n?
< cndifcy > 20/3.

CSs 5114

LGuessing (cont)

2010-02-17

Guessing (cont)

No - try something tighter.
Therefore, if c; = 7, a proof by induction yields:
T(n) < 7n®
T(n) € O(n®)

Is this the best possible solution?

Sping2010 351134
~ CS5114
—
- g
Guessing (cont) 2 L Guessing (cont)
8
Guess again.
T(n) < con® =g(n) Because 32n? + 5n2 = 10n? for n = 1, and the right hand side
T(1) =7 implies ¢, > 7. grows faster.
Inductively, assume T (n/2) < g(n/2). Yes this is best, since T(n) can be as bad as 5n?.
T(n) = 2T(n/2)+ 5n?
< 2cy(n/2)? 4 5n?

cz(n?/2) + 5n?
con?if c, > 10

INA

Therefore, if c, = 10, T(n) < 10n2. T(n) = O(n?).

Is this the best possible upper bound?
Spring 2010 36/134



CS 5114 Guessing (cont)

N, eshape e recurtence 5o that T s defined o all

vty
T <2n(nz) st nz2

Guessing (cont)

LGuessing (cont)

2010-02-17

< aor
Hence,T(n) = O{) forallvalves ol

Now, reshape the recurrence so that T is defined for all S i R
values of n. no notes
T(n) <2T(|n/2])+5n*> n>2

For arbitrary n, let 21 < n < 2%,
We have already shown that T (2K) < 10(2%)2.
T(n) < T(2)<10(2)?

10(2%/n)?n? < 10(2)%n?
< 40n?

Hence, T (n) = O(n?) for all values of n.

Typically, the bound for powers of two generalizes to all n.

CS 5114: Theory of Algorithms Spring 2010 371134

CS 5114 Expanding Recurrences.

[ ——
’ - 2o s
LExpandlng Recurrences T

Expanding Recurrences

Aosumenis a paner o1 2:n =2

2010-02-17

no notes
Usually, start with equality version of recurrence.

T(n) = 2T(n/2)+ 5n?
TA) = 7

Assume n is a power of 2; n = 2
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CSs 5114 Expanding Recurrences (cont)

LExpanding Recurrences (cont)

Expanding Recurrences (cont)

2010-02-17

T(n) = 2T(n/2)+5n?
2(2T (n/4) +5(n/2)?) + 5n?
2(2(2T (n/8) + 5(n/4)?) + 5(n/2)?) + 5n?
= 2*T(1)+ 2t .5(n/2" 12 4 2472 . 5(n/2v"2)?
+---+2-5(n/2)? + 5n?
K—1 K—1
= 7Tn+5) n?/2'=7n+5n*) 1/2
i=0 i=0
= 7n+5n%(2 —1/21)
= 7n+5n%(2 - 2/n).

no notes

This it the exact solution for powers of 2. T (n) = ©(n?).
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CSs 5114 Divide and Conguer Recurrences

Thesehavete o
T = aTio®) cent
W - e

DIVIde and Conquer Recurl’ences LDivide and Conquer Recurrences T —

2010-02-17

no notes
These have the form:

T(n) = aT(n/b)+cn®
T(1) = c

... Where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.
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CS 5114

LDivide and Conquer Recurrences (cont)

Divide and Conquer Recurrences
(cont)

2010-02-17

n=b" = m = logyn.
Expand the sum; n = b™. 9

T(n) = a(aT(n/bz) n C(n/b)k) 1 enk Set a = b'°% 2, Switch order of logs, giving
K K K (blogh n)logb a _ plog,a
amT (1) +a™ tc(n/b™ 1)K + ... + ac(n/b)* +cn '
m
= ca™) (b*/a)
i=0

am — a.Iogbn — nlogy @
The summation is a geometric series whose sum depends

on the ratio
r=b"/a
There are 3 cases.
Spring 2010 41/134
: CS 5114 D & C Recurrences (cont)
D & C Recurrences (cont) = D & C Recurrences (con)
o
N )~ ol iogn - (o)
@)r <1 )
Whenr =1, since r = bX/a = 1, we get a = b¥.
no Recall that k = logpa.
Y r'<1/(1-r),  aconstant. o
i=0
T(n) = 6(aM) = ©(n'°%3).
2)r=1.
i N
d rt=m+1=log,n+1
i=0
T(n) = ©(n°%»2logn) = ©(n* log n)
Spring 2010 42/134
~ CS5114
ol
S
- L
D & C Recurrences (Case 3) g Pl S
3)r>1. no notes
(1) : pm+l g "
D r=——g =M
i=0
So, from T(n) = ca™ >_r',
T(n) = ©@"M)
= ©(a"(b*/a)")
= ©(b™)
— @(nk)
Spring 2010 43/134
~ CS5114
ol
o
a L
Summary g summary
Theorem 3.4: We simplify by approximating summations.

O(n'°%?3) if a> bk
T(n) =< O©(nklogn) ifa= Db
o(n¥) if a< b

Apply the theorem:

T(n) = 3T(n/5) + 8n2.
a=3b=5c=8k=2.
bX/a = 25/3.

Case (3) holds: T (n) = ©(n?).
Spring 2010 447134



Examples

@ Mergesort: T(n) = 2T (n/2) + n.
21/2=1,s0T(n)=©(nlogn).

@ Binary search: T(n) = T(n/2) + 2.
2°/1 =1,s0T(n) = O(logn).

@ Insertion sort: T(n) =T (n — 1) +n.
Can't apply the theorem. Sorry!

@ Standard Matrix Multiply (recursively):
T(n) =8T(n/2) + n?.
22/8 =1/2 s0 T(n) = O(n'%8) = O(n®).
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Useful log Notation

@ If you want to take the log of (log n), it is written log log n.
@ (logn)? can be written log? n.
@ Don't get these confused!

@ log”n means “the number of times that the log of n must
be taken before n < 1.
» For example, 65536 = 216 so log* 65536 = 4 since
log 65536 = 16, log16 = 4, log4 = 2,log2 = 1.
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Amortized Analysis

Consider this variation on STACK:

void init(STACK S);

el ement exam neTop( STACK S);
voi d push(el ement x, STACK S);
voi d pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m; calls to push, m; calls to pop:
Naive worst case: m; +m, - N = my +m, - my.
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Alternate Analysis
Use amortized analysis on multiple calls to push, pop:
Cannot pop more elements than get pushed onto the stack.
After many pushes, a single pop has high potential .

Once that potential has been expended, it is not available for
future pop operations.

The cost for m; pushes and m, pops:
m; + (M2 + my) = O(my + my)
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CS 5114 Bt

[ Examples

{ Ci1 Ci12 } _ { a;; ap } { b1y b }
Co1 C22 ax axp bo1 b2
In the straightforward implementation, 2 x 2 case is:

C11 = aybyg +agaby
C12 = a11biz + aobz
Co1 = A1b11 + @b
Cop = Ap1b1z + azbz

So the recursion is 8 calls of half size, and the additions take
©(n?) work.

CS 5114 Useful log Notation

LUsefuI log Notation

no notes

CSs 5114

LAmortized Analysis

no notes

CSs 5114

LAIternate Analysis

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this — we won't go into this much,
but we use Amortized Analysis implicitly sometimes.
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Creative Design of AIgorith ms by g ' Creaive Design of Algritims by Inducton -m::wi:mm
i o e
Induction S N
Now that we have completed the tool review, we will do two
Analogy: Induction « Algorithms things:

1. Survey algorithms in application areas
Begin with a problem:

@ “Find a solution to problem Q" 2. Try to understand how to create efficient algorithms
This chapter is about the second. The remaining chapters do

Think of Q as a set containing an infinite number of the second in the context of the first.

problem instances | — A is reasonably obvious — we often use induction to prove

) that an algorithm is correct. The intellectual claim of Manber is
Example: Sorting that | — A gives insight into problem solving.
@ Q contains all finite sequences of integers.
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Soiving @

Fiststep:
« Parametrize roiem by sze: Q)

LSoIving Q

2010-02-17

Solving Q

Qs now an e sequence o roiens:
~ 0(1).0(2)....Q(n)

tim : Soe for an nsiance i Q) by soing
AT Q1) 1 - 1 %0 combing o5 neceseary.

First step: This is a “meta” algorithm — An algorithm for finding algorithms!
@ Parameterize problem by size: Q(n)

Example: Sorting
@ Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:

® Q(1),Q(2), -, Q(n)

Algorithm : Solve for an instance in Q(n) by solving
instances in Q(i),i < n and combining as necessary.
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CSs 5114

Induction

Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i),i < n.

Llnduction

2010-02-17

The goal is using Strong Induction.

Don'’t forget the base cases! Correctness is proved by induction.
Example: Sorting

Theorem: Vn > 1, we can solve instances in Q(n).
@ This theorem embodies the correctness of the
algorithm.

e Sortn — 1 items, add nth item (insertion sort)
e Sort 2 sets of n/2, merge together (mergesort)
e Sort values < x and > x (quicksort)

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
@ Different inductive proofs are possible.
@ We want the most efficient algorithm!
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Interval Containment

Sttt a et f o ey nterals wih g encpons

L Interval Containment BT pauasmrapsua

Interval Containment

2010-02-17

no notes
Start with a list of non-empty intervals with integer endpoints.

Example:
[6,9],[5,7],10,3],[4,8],[6,10],[7,8],[0,5],[1, 3], [6, 8]

S Iy I
—rTrr 11T T 1T 1T
012 3456 78 910
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Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:
@ Mark [6, 9] since [6,9] C [6, 10]

CS 5114: Theory of Algorithms Spring 2010 531134

Interval Containment (cont)

@ Q(n): Instances of n intervals
@ Base case: Q(1) is easy.
@ Inductive Hypothesis : For n > 1, we know how to
solve an instance in Q(n — 1).
@ Induction step : Solve for Q(n).
» Solve for first n — 1 intervals, applying inductive
hypothesis.
» Check the nth interval against intervalsi = 1,2, - --
» If interval i contains interval n, mark interval n. (stop)
» If interval n contains interval i, mark interval i.
@ Analysis :
T(n)=T(n—1)+cn
T(n) = ©(n?)
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“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.

(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n — 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.
Spring 2010 55/134

“Creative” Solution Induction

Induction Hypothesis : Can solve for Q(n — 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n — 1 segments.

Induction Step : (to solve Q(n))

@ Solve for first n — 1 intervals recursively, and remember
R.

@ If the rightmost endpoint of nth interval is < R, then
mark the nth interval.

@ Else R < right endpoint of nth interval.

Analysis : ©(nlogn) + ©(n).

Lesson : Preprocessing, often sorting, can help sometimes.
Spring 2010 56/134
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CS 5114

leerval Containment (cont)

[5.7] € [4,8]
[0.3] € [0,5]
[7.8] C [6,10]
[1.3] € [0,5]
[6.8] C [6,10]
[6,9] C [6,10]

CS 5114 Interval Containment (cont)

leerval Containment (cont)

Base case: Nothing is contained

CSs 5114

L“Creative" Algorithm

In the example, the nth interval is [7, 8].

Every other interval has left endpoint to left, or right endpoint to
right.

We must keep track of the current right-most endpont.

CSs 5114

L“Creative" Solution Induction

g, can e sometes

We strengthened the induction hypothesis. In algorithms, this
does cost something.

We must sort.

Analysis: Time for sort + constant time per interval.



Maximal Induced Subgraph

Problem : Given a graph G = (V, E) and an integer k, find a

maximal induced subgraph H = (U, F) such that all vertices
in H have degree > k.

Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

Solution:

CS 5114: Theory of Algorithms

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.
Theorem: Vs, k > 0, we can solve an instance in Q(s, k).

Analysis : Should be able to implement algorithm in time
(V| + [E|).

CS 5114: Theory of Algorithms

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem : If we can ask questions of the form “does person
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?

CS 5114: Theory of Algorithms

Celebrity Problem (cont)

Formulate as an n x n boolean matrix M.
M; = 1 iff i knows j.

10010
11111
Example: (1 0 1 1 1
00010
11111

A celebrity has all 0’s in his row and all 1's in his column.
There can be at most one celebrity.

Clearly, O(n?) questions suffice. Can we do better?

CS 5114: Theory of Algorithms

Spring 2010
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Maximal Induced Subgraph

Probe Gven  gagh G = (V. ) andan intger K, nd
meximal induced s06raph H - (U,F) s ha e
degree

LMaximaI Induced Subgraph

Induced subgraph: U is a subset of V, F is a subset of E such
that both ends of e € E are members of U.
Solution is: U = {1,3,4,5}

CS 5114

Max Induced Subgraph Solution

Qs K nsiances where V| s and s a b neger.

L Max Induced Subgraph Solution S ————
P ———

Base Case: s = 1 H is the empty graph.

Induction Hypothesis : Assume s > 1. we can solve instances
of Q(s — 1,k).

Induction Step : Show that we can solve an instance of
G(V,E) in Q(s, k). Two cases:

(1) Every vertex in G has degree > k. H = G is the only solution.

(2) Otherwise, letv € V have degree < k. G — v is an instance
of Q(s — 1, k) which we know how to solve.

By induction, the theorem follows.

Visit all edges to generate degree counts for the vertices. Any
vertex with degree below k goes on a queue. Pull the vertices
off the queue one by one, and reduce the degree of their

neinhhors  Add the neinhhor to the auetie if it drons helow k
CS 5114

Celebrity Problem

1na group o n popie  coltry s somabidy whom
verybody knows, but who Rroms o o s,

L Celebrity Problem R
T
no notes
CS 5114 Celebrity Problem (cont)

LCelebrity Problem (cont) H ]

The celebrity in this example is 4.



Efficient Celebrity Algorithm

Appeal to induction:

@ If we have an n x n matrix, how can we reduce it to an
(n—1) x (n — 1) matrix?

What are ways to select the n’th person?
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Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.
@ Strike one row and one column.

10010
11111
10111
00010
11111

Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

Celebrity Algorithm
Algorithm :

@ Ask n — 1 questions to eliminate n — 1 non-celebrities.
This leaves one candidate who might be a celebrity.
© Ask 2(n — 1) questions to check candidate.

Analysis :
@ O(n) questions are asked.
Example:
1 1
@ Does 1 know 2? No. Eliminate 2 1 2 (1) 1 (1)
® Does 1 know 3? No. Eliminate 3
_ 10111
@ Does 1 know 4? Yes. Eliminate 1 00010
@ Does 4 know 5? No. Eliminate 5 111 1 1
4 remains as candidate.

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.

@ It follows that the maximum subsequence of a sequence
of all negative numbers is the empty subsequence.

Example:
2,11,-9,3,4,-6,-7,7,-3,5, 6, -2

Maximum subsequence:
7,-3,5,6 Sum: 15

CS 5114

Efficient Celebrity Algorithm

L Efficient Celebrity Algorithm

2010-02-17

This induction implies that we go backwards. Natural thing to
try: pick arbitrary n’th person.

Assume that we can solve for n — 1. What happens when we
add nth person?

e Celebrity candidate in n — 1 — just ask two questions.
e Celebrity is n — must check 2(n — 1) positions. O(n?).
o No celebrity. Again, O(n?).

So we will have to look for something special. Who can we
eliminate? There are only two choices: A celebrity or a
non-celebrity. It doesn’'t make sense to eliminate a celebrity. Is
there an easy way to guarentee that we eliminate a
non-celeberity?

CS 5114

Effcient Celebrity Algorithm (cont)

Exminate one person e s non-coobry.

LEﬁicient Celebrity Algorithm (cont)

2010-02-17

no notes

CSs 5114 Celebrity Algorithm

LCeIebrity Algorithm

2010-02-17

no notes

CSs 5114

Maximum Consecutive Subsequence

LMaximum Consecutive Subsequence
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no notes



Finding an Algorithm

Induction Hypothesis : We can find the maximum
subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.
@ First, figure out how to compute the sum.

@ Then, figure out how to get the subsequence that
computes that sum.

CS 5114: Theory of Algorithms Spring 2010

Finding an Algorithm (cont)

Induction Hypothesis : We can find the maximum
subsequence sum for a sequence of < n numbers.
Let S = x3,Xp, -+ , X, be the sequence.
Basecase: n=1

Either x; <0 =sum=0

Or sum = X;.
Induction Step :

@ We know the maximum subsequence SUM(n-1) for

X1, X2, -+, Xn—1.
@ Where does x, fit in?
» Either it is not in the maximum subsequence or it ends
the maximum subsequence.

65/134

@ If x, ends the maximum subsequence, it is appended to

trailing maximum subsequence of Xg, -+, Xn_1.
Spring 2010

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a
subsequence that ends Xy, - - - , Xp_1-

To get this, we need a stronger induction hypothesis.

CS 5114: Theory of Algorithms Spring 2010

Maximum Subsequence Solution
New Induction Hypothesis : We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n — 1 integers.

Base case :
SUM(1) = TRAILINGSUM(1) = Max(0, Xy).

Induction step :
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xy).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +Xp).

CS 5114: Theory of Algorithms Spring 2010

66 /134

67/134

68/134

2010-02-17

2010-02-17

2010-02-17

2010-02-17

CS 5114

LFinding an Algorithm

no notes

CS 5114

LFinding an Algorithm (cont)

That is, of the numbers seen so far .

CSs 5114

LFinding an Algorithm (cont)

no notes

CSs 5114

LMaximum Subsequence Solution

no notes

Finding an Algorithm

Inducion Hypenesis : We can fnd the maimum.
Sibsequence s o a sequence of < 1 umbers.

Finding an Algorithm (cont)
e

Finding an Algorithm (cont)

Maximum Subsequence Solution
New nducton ypothess e can o SUN(D1)
TRALINGSUMTT) fr ay sequence ol -1 igers.

ssecase
UML) = TRALNGSUMG) = a0, ).

UM~ WUV 1), TRAINGSUN(-1) )
TRALINGSUIMA) = Moo TRALINGSUM1) )



Maximum Subsequence Solution
(cont)

Analysis :

Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?
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The Knapsack Problem

Problem :

@ Given an integer capacity K and n items such that item i
has an integer size k;, find a subset of the n items
whose sizes exactly sum to K, if possible.

@ Thatis, find S C {1,2,--- ,n} such that

> k=K.

ieS

Example:
Knapsack capacity K = 163.
10 items with sizes

4,9,15,19,27,44,54,68,73,101

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K.

P(n,K) is the problem with n items and capacity K.

First consider the decision problem: Is there a subset S?
Induction Hypothesis

We know how to solve P(n — 1,K).

CS 5114: Theory of Algorithms Spring 2010 71/134

Knapsack Induction

Induction Hypothesis
We know how to solve P(n — 1,K).

Solving P(n, K):
o If P(n — 1,K) has a solution, then it is also a solution for
P(n,K).
@ Otherwise, P(n,K) has a solution iff P(n — 1, K — k)
has a solution.

So what should the induction hypothesis really be?
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CS 5114

Maximum Subsequence Solution

aysis
ImportantLesson f w cacula and remember some

LMaximum Subsequence Solution (cont) e cthoen s
s corespond o sergario o o pess
o o

How o e sequence asopposed o sum?

O(n). T(n)=T(n—1)+2.
Remember position information as well.

CS 5114 The Knapsack Problem

LThe Knapsack Problem

49.15,19.27.44.54.68.73,101

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

S = {9,27,54,73}

Now, try solving for K = 164. An answer is:

S = {19,44,101}.

There is no relationship between these solutions!

CSs 5114

Knapsack Algorithm Approach

P ——

T ey

= Knapsack Algorithm Approach e e
Frsconscr i cion s v 57

Inducion Hypeinesis
e knou a1 50 (0 1)

Is there a subset S such that }~ S; = K?

CSs 5114

Knapsack Induction
nducion Hyponesis
Vi know how o Sohe (1K),

Sowing (0. K):
 IP(n— 1.K) has asouon then 5 o  souon or
PnK)

L Knapsack Induction

) has a shation 1 P(n 1K k)

But... | don’t know how to solve P(n — 1,K — k) since it is not
in my induction hypothesis! So, we must strengthen the
induction hypothesis.

New Induction Hypothesis
We know how to solve P(n — 1,k),0 < k <K.



Knapsack: New Induction

@ New Induction Hypothesis
We know how to solve P(n — 1,k),0 <k <K.
@ To solve P(n,K):
If P(n — 1,K) has a solution,
Then P(n,K) has a solution.
Else If P(n — 1,K — k,) has a solution,
Then P(n,K) has a solution.
Else P(n,K) has no solution.
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Algorithm Complexity

@ Resulting algorithm complexity:
T(nN)=2T(n—1)+c n>2
T(n) =©(2") by expanding sum.
@ Alternate: change variable from n to m = 2".
2T (m/2) + c4n°.
From Theorem 3.4, we get ©(m'°%2) = ©(2").
@ But, there are only n(K + 1) problems defined.
» It must be that problems are being re-solved many times
by this algorithm. Don'’t do that.
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Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation :
@ Store an n x (K + 1) matrix to contain solutions for all
the P(i, k).
@ Fill in the table row by row.
@ Alternately, fill in table using logic above.

Analysis :
T(n) = ©(nK).
Space needed is also ©(nK).
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Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.

0|1/2|3/4|5/6| 7 (8| 9 |10
ki=9(O0|—|—|—=|—=|—=|—-| = |—-| I |-
kr=2[O0|—-|Il|—-|—-|=-|=-] = |=] O |-
ks=7|O0|-]o[-=|=[=] 1 [=]1/0] =
ky=4|0|—-|O|—-| I |—=|1] O |—-| O |-
ks=1/O0 |1 |[O|I |O|I |[O]|I/O|I | O |
Key:

— No solution for P (i, k)

O Solution(s) for P(i, k) with i omitted.

| Solution(s) for P(i, k) with i included.

1/O Solutions for P(i, k) both with i included and with i
omitted.
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CS 5114 Knapsack: New Induction

LKnapsaCk: New Induction

Need to solve two subproblems: P(n — 1,k) and
P(n—1,k —kp).

CS 5114 Algorithm Complexity
« Resutin ot complesty:

LAIgorithm Complexity

Problem: Can'’t use Theorem 3.4 in this form.
This form uses n° because we also need an exponent of n to fit
the form of the theorem.

CSs 5114 Efficient Algorithm Implementation

LEﬁicient Algorithm Implementation

To solve P(i, k) look at entry in the table.
If it is marked, then OK.

Otherwise solve recursively.

Initially, fill in all P(i, 0).

CSs 5114

L Example

Example: M(3, 9) contains O because P(2,9) has a solution.
It contains | because P(2,2) = P(2,9 — 7) has a solution.
How can we find a solution to P (5, 10) from M?

How can we find all solutions for P(5,10)?



~ CS5114 Solution Graph
— Find a soions for P(5,10).
gj‘ wa
Solution Graph S - Solution Graph e
Q A
Find all solutions for P (5, 10). —
Alternative approach:
M(Z, 0) M(1, 9) Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
M(2, 2) M(2, 9) To qud storing the large ar.ray, use hashing for storing (and
retrieving) subproblem solutions.
M(3, 9)
M(4, 9)
M(5, 10)
The result is an n-level DAG.
|:1 CS 5114 Dynamic Programming
& R T
. . < L ' ' o
Dynamic Programming g OB AIEIS S
This approach of storing solutions to subproblems in a table no notes
is called dynamic programming
It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.
Implementation: Nested f or loops with logic to fill in a single
entry.
Most useful for optimization problems
~ CS5114 S
—
I
. . F L )
Fibonacci Sequence g Fibonacel Sequence
Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
int Fibr(int n) { two function calls of size n — 1 each.
if (n<=1) return 1; /| Base case
return Fibr(n-1) + Fibr(n-2); // Recursion
}
@ Cost is Exponential. Why?
@ If we could eliminate redundancy, cost would be greatly
reduced.
~ CS5114 Fibonacei Sequence (cont)
—
: : 8
FIbOI’]aCCI Sequence (Cont) ‘C_I>' LFibonacci Sequence (cont)
o
N

@ Keep a table
no notes
int Fibrt(int n, intx Values) {
/'l Assune Val ues has at least n slots, and
/1l all slots are initialized to O
if (n<=1) return 1; // Base case
if (Values[n] == 0) /] Conpute and store
Val ues[n] = Fibrt(n-1, Values) +
Fi brt(n-2, Val ues);
return Val ues[n];
}
@ Cost?
@ We don’t need table, only last 2 values.
» Key is working bottom up.
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~ CS5114 Chained Matrix Multiplication
-
g e .
Chained Matrix Multiplication - Chaned MarbMulipleaton
Problem : Compute the product of n matrices A x B:
rst
M=M; XMy x---xM, rxt

as efficiently as possible.
rst 4 (r x t)(t x u) = rst + rtu.
IfAist xsand B iss x t, then (r > s)I(s x t)(t > u)] = (r x s)(s x u).
COST(A % B) _ rsu + stu.
SIZE(A x B) =

If Cist x uthen
COST((AxB) xC)=
COST((Ax (B xC))) =
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CS 5114 Order aters

LOrder Matters

Order Matters

2010-02-17

2.-8-5+2-5-20=280.
Example: 8-5-20+2-8-20=1120.

A=2x8B=8x5C=5x%x20

Tree for (A xB) x C) =: - - ABC

Tree for (A x (B x C) =: -A-BC
COST((Ax B) x C) = ree for (A x (B > C)

COST(Ax (BxC)) =
( ( ) We would like to find the optimal order for computation before

. . actually doing the matrix multiplications.
View as binary trees: y g .
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CSs 5114

LChained Matrix Induction

Chained Matrix Induction

2010-02-17

Induction Hypothesis : We can find the optimal evaluation

tree for the multiplication of < n — 1 matrices. Problem: There is no reason to believe that either of these

. . yields the optimal ordering.
Induction Step : Suppose that we start with the tree for:
M1>< MgX”' X Mn,l

and try to add M,.

Two obvious choices:
© Multiply M, _; x M, and replace M,_; in the tree with a
subtree.
© Multiply M, by the result of P(n — 1): make a new root.

Visually, adding M,, may radically order the (optimal) tree.
Spring 2010 83/134

CSs 5114 Alternate Induction

mutipicaton as e rot, hen

Alternate Induction

Induction Step : Pick some multiplication as the root, then
recursively process each subtree.

@ Which one? Try them all!

@ Choose the cheapest one as the answer.

@ How many choices?
Observation: If we know the ith multiplication is the root,
then the left subtree is the optimal tree for the firsti — 1
multiplications and the right subtree is the optimal tree for
the last n — i — 1 multiplications.

LAIternate Induction

2010-02-17

n — 1 choices for root.

Notation: for1 <i <j <n,
c[i,j] = minimum cost to multiply M; x M1 X - -+ x M;.

So.c[l,n] = l<fi‘ﬂ<irfl_1fofifn +c[l,i] +cli+1,n].
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~ CS5114 Analysis.
rli : K-
: S
Analysis = L Analysis
=)
N
Base Cases: For1l <k <n, clk,k] =0. G s
More generally: 2 callls for each root choice, with (j — i) choices for root. But,
cli,j] = 1<nk1<in . fioarelj + cfi, k] +clk + 1,j] these don't all have equal cost.
SKS)—
SOM”Q cli,j] requires 2(j — i) recursive calls. Actually, since j > i, only about half that needs to be done.
Analysis :
n—1 n—-1
Tn) = Y (TK) +T(h—k)=2> T(k)
k=1 k=1
TA) = 1
T(n+1) = T(n)+2T(n)=3T(n)
T(n) = ©(3") Ugh!
But there are only ©(n?) values c[i, j] to be calculated!
Spring 2010 85/134
~ CS5114 Dynamic Programming
rli o
. . S
Dynamic Programming = L bynamic Programming
N
Make an n x n table with entry (i, ) = ci, ]].
c[1,1] | c[1,2 c[l,n The array is processed starting with the middle diagonal (all
c[2,2]|--- | c[2,n zeros), diagonal by diagonal toward the upper left corner.
c[n,n]
Only upper triangle is used.
Fill in table diagonal by diagonal.
cli,ij=0
Forl<i<j<n,
cli,j] = ig@jn_l ri_arehy +cfi, k] +c[k + 1,j].
Spring 2010 85/134
~ CS5114
il
S
Dynamic Programming Analysis 2 Bynamic Programming Analysis
N

For middle diagonal of size n/2, each costs n/2.

@ The time to calculate cfi,j] is proportional to j —i. For each c[i,j], remember the k (the root of the tree) that
@ There are ©(n?) entries to fill. minimizes the expression.
o T(n)=O(nd). So, store in the table the next place to go.

@ Also, T(n) = Q(n®).
@ How do we actually find the best evaluation order?

Spring 2010 87/134
~ CS5114
il
o
a L
Summary g Summary

N

@ Dynamic programming can often be added to an no notes

inductive proof to make the resulting algorithm as
efficient as possible.
@ Can be useful when divide and conquer fails to be
efficient.
@ Usually applies to optimization problems.
@ Requirements for dynamic programming:
© Small number of subproblems, small amount of
information to store for each subproblem.
© Base case easy to solve.
© Easy to solve one subproblem given solutions to smaller
subproblems.
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Sorting

Each record contains a field called the key .
Linear order: comparison.

The Sorting Problem

Given a sequence of records Ry, Ry, ..., R, with key values
ki, ko, ..., kn, respectively, arrange the records into any order
s such that records R, Rs,, ..., Rs, have keys obeying the
property ks, < ks, < ... <Ks,.

Measures of cost:

@ Comparisons
@ Swaps
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Insertion Sort

void inssort(Elem A int n) { // Insertion Sort

for (int i=1; i<n; i++) /1l Insert i'th record

for (int j=i; (j>0) && (A[j].key<A[j-1].key);
i--)

swap(A, j, j-1);

2 3

i=1
} 42] 20 17 13 13 13 13 13
20- 42 20 17 17 14 14 14
17— 42 | 20 20 17 17 15
13 13 13 gj 2% | 20 20 | 17
28 28 28 28 42 28 23 20
14 14 14 14 14 42
23 23 23 23 23 23
15 15 15 15 15 15 15— 42
Best Case:
Worst Case:

Average Case:

Exchange Sorting

@ Theorem : Any sort restricted to swapping adjacent
records must be Q(n?) in the worst and average cases.

@ Proof:

» For any permutation P, and any pair of positions i and j,
the relative order of i and j must be wrong in either P or
the inverse of P.

» Thus, the total number of swaps required by P and the
inverse of P MUST be

(=il

— P n(n—1)

LT 2

i=1
Quicksort

Divide and Conquer: divide list into values less than pivot
and values greater than pivot.

void gsort(Elem A int i, int j) { // Quicksort
int pivotindex = findpivot(A i, j);
swap(A, pivotindex, j); /1 Swap to end
/1 k will be first position in right subarray
int k = partition(A i-1, j, Aj].key;

swap(A, k, j); [/ Put pivot in place
if ((k-i) > 1) gsort(A, i, k-1); // Sort |eft
if ((j-k) > 1) gsort(A, k+1, j); // Sort right
}
int findpivot(Elem A int i, int j)

{ return (i+j)/2; }

CS 5114 Sorting

Each rocord contins el caed o ey
Ui order comprson.

The Soring Protem

LSorting vensenceo et R, .. R ey vt

Ko b arangs e records o any order
ave by obeying he

2010-02-17

Linear order means: a<bandb <c=a<c.

More simply, sorting means to put keys in ascending order.

CS 5114 Insertion Sort
w o

Llnsertion Sort

2010-02-17

Best case is 0 swaps, n — 1 comparisons.
Worst case is n?/2 swaps and compares.
Average case is n?/4 swaps and compares.

Insertion sort has great best-case performance.

CSs 5114

Exchange Sorting

L Exchange Sorting

2010-02-17

n?/4 is the average distance from a record to its position in the
sorted output.

CSs 5114 Quicksort

Divide and Congquer: dide it o vales e han pivot
and vaivs greatr than pot.

Do
L
it San

LQuicksort

2010-02-17

ipivor (Bl em i
Creturn (14012 1

Initial call: gsort (array, 0, n-1);



CS 5114
':1, Quicksort Partition
o~ 2
e L
H 1+1 o Quicksort Partition
Quicksort Partition =
N ‘The cost for Partition s 6(n).
int partition(El em A int I int r, !nt pi vot) { no notes
do { /1 Move bounds inward until they neet
while (Al ++l].key < pivot); // Move right
while (r & (Al--r].key > pivot));// Left
swap(A, |, r); /'l Swap out-of -place val s
} while (I <r); /'l Stop when they cross
swap(A, |, r); /'l Reverse wasted swap
return |; /'l Return first position in right
}
The cost for Partition is ©(n).
~ CS5114
I
N
e L
H™H o Partition Example
Partition Example s
Initial 72 6 57 88 85 42 83 73 48 60
| r
Pass 1 72 6 57 8 85 42 83 73 48 60 no notes
| r
Swap 1 48 6 57 88 85 42 83 73 72 60
| r
Pass 2 48 6 57 88 85 42 83 73 72 60
| r
Swap 2 48 6 57 42 85 88 83 73 72 60
| r
Pass 3 48 6 57 42 85 88 83 73 72 60
ro |
Swap3 48 6 57 85 42 88 83 73 72 60
ro |
Reverse Swap 48 6 57 42|85 88 83 73 72 60
ro |
: CS 5114 Quicksort Example.
N
e L
1 o Quicksort Example -
Quicksort Example g
N
[72 6 57 83 60 42 83 73 48 85] no notes
Pivot = 60
[48 6 57 42]60[88 83 73 72 85]
Pivot = 6 Pivot = 73
[6]42 57 48 [72] 73] 85 88 83]
Pivot = 57 Pivot = 88
Pivot = 42 85 83] 88]Pivot = 85
3] 8s]
[6 42 48 57 60 72 73 83 85 88
Final Sorted Array
: CS 5114 Costfor Quicksort
- g
COSt fOf QUICkSOI’t ‘C_I>' L Cost for Quicksort
o
N

Best Case: Always partition in half.

Think about when the partition is bad. Note the FindPivot
function that we used is pretty good, especially compared to
taking the first (or last) value.

Also, think about the distribution of costs: Line up all the

Worst Case: Bad partition.

Average Case:

m=2 permuations from most expensive to cheapest. How many can
f(n)=n-1+ = Z(f(') +f(n—i-1)) be expensive? The area under this curve must be low, since
i=0 the average cost is ©(nlogn), but some of the values cost
Optimizations for Quicksort: O(n?). So there can be VERY few of the expensive ones.
@ Better pivot.
@ Use better algorithm for small sublists. This optimization means, for list threshold T, that no element is
@ Eliminate recursion. more than T positions from its destination. Thus, insertion sort’s
@ Best: Don't sort small lists and just use insertion sort at best case is nearly realized. Cost is at worst nT.
the end.
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ry CS5li4 TR
Quicksort Average Cost 2 L quicksort Average Cost Rt
& e
0 n<1 . . .
f(n) = . . = This is a “recurrence with full history”.
" {n—1+%zi”;ol<f<n>+f(n—u—1)) n>1
Think about what the pieces correspond to.
Since the two halves of the summation are identical, To do Quicksort on an array of size n, we must:
0 n<1 e Partation: Cost n
fM=1n_1s 25 2f(i) n>1
n £-i=0 e Findpivot: Cost c
Multiplying both sides by n yields e Do the recursion: Cost dependent on the pivot’s final position.
n—1 These parts are modeled by the equation, including the
nf(n)=n(n — 1)+ 2 Z f(i). average over all the cases for position of the pivot.
i=0
: CS 5114 Average Cost (cont)
& ety iron
Average Cost (Cont) ‘C_I>' L Average Cost (cont.)
g ’
N
Get rid of the full history by subtracting nf(n) from
(n+1)f(n+1) no notes
n-1
nf(n) = n(n—1)+2) (i)
i=1
n
(n+Df(n+1) = (n+n+2) (i)
i=1
(n+1)f(n+1) —nf(n) = 2n+ 2f(n)
(n+1)f(n+1) = 2n+(n+2)f(n)
2n n+2
fln+1) = n+1+n+1f(n)'
r CS 514 RiEEEmE)
g
Average Cost (cont.) S Average Cost com)
o
N
Note that nz—fl <2forn> 1.
Expand the recurrence to get: no notes
n+2
<
fln+1) < 2+ n+1f(n)
n+2 n =1t
= 72 2 f(n—1
- n-+1 ( n (n ))
n+2 n+1 n
2+ (2+ . (2+ n_lf(n72)>>
n+2 4 3
= 2+ ——1 <2+~~-+§(2+§f(1))>
5 Cs5114 Average Cost (cort)
I
a L
Average Cost (cont.) g verage Cost (cont)

Hns1 = ©(logn)

f(n+1)

IN

n+1+n+1 n
n+2n+1 3)

2<1+n+2 n+2n+1

thiin 2

= 2(1+(n+2)(n—il+%+-..+%>>
= 2+42(N+2)(Hnp1 — 1)

= ©O(nlogn).
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CS 5114

L Mergesort

Mergesort

2010-02-17

Li st mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;; no notes
List 11 = half of the itens frominlist;
List 12 = other half of the itenms frominlist;
return nerge(nergesort(l1l), nmergesort(l2));

}

36 20 17 13 28 14 23 15

[20 36][13 17|[14 28][15 23]

[13 17 20 36|[14 15 23 28]

[13 14 15 17 20 23 28 36]

Spring 2010 101/134
: CS 5114 Mergesort Implementation (1)
Mergesort Implementation (1) ‘%_': L Mergesort Implementation (1)

&

This implementation requires a second array.
Mergesort is tricky to implement.

voi d nmergesort (Elemx A, El em tenp,
int left, int right) {

int md= (left+right)/2;

if (left == right) return; /1 List of one
nergesort (A, tenp, left, md); // Sort half
nergesort (A, tenp, md+1, right);// Sort half
for (int i=left; i<=right; i++) // Copy to tenp

temp[i] = A[i];
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CSs 5114 Mergesort Implementation (2)

LMergesort Implementation (2)

2010-02-17

Mergesort Implementation (2)

oo o s ke s

// Do the nerge operation back to array Mergesort cost: ©(nlogn)
int il=1left; int i2 =md + 1;
for (int curr=left; curr<=right; curr++) { ) . - .
if (i1 == mid1) /] Left list exhausted Linked lists: Send records to alternating linked lists, mergesort
Alcurr] = temp[i2++: each, then merge.
else if (i2 >right) // R ght list exhausted
Alcurr] = tenp[il++];
else if (tenp[il].key < tenp[iZ2].key)
Alcurr] = tenp[il++];
else Alcurr] = tenp[i2++];
}}

Mergesort cost:
Mergesort is good for sorting linked lists.
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CSs 5114 Heaps

Heap: Complet binary e wihthe Heap Propery

» M-heap:a vaes e

L Heaps >t

The vlues i  heap ar partaly ortred

vl
"

Heaps

egresentaton: normaly th aray based complete
Binaryvee epreseraton.

2010-02-17

Heap: Complete binary tree with the Heap Property : no notes

@ Min-heap: all values less than child values.
@ Max-heap: all values greater than child values.

The values in a heap are partially ordered .

Heap representation: normally the array based complete
binary tree representation.
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Building the Heap
@ O,

(a) requires exchanges (4-2)5
(6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

ofloloffo
)(4'1)- (2-1), (5-2), (5-4), (6-3),

b
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Siftdown

voi d heap::siftdown(int pos) { // Sift ELEM down
assert((pos >= 0) && (pos < n));
while (!isLeaf(pos)) {
int j = leftchild(pos);
if ((j<(n-1)) &&
(Heap[j].key < Heap[j +1].key))
j++; // j now index of child with > val ue
if (Heap[pos].key >= Heap[j].key) return;
swap(Heap, pos, j);
pos = j; [/ Mve down
}
}
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BuildHeap

For fast heap construction:

@ Work from high end of array to low end.
@ Call si ft down for each item.
@ Don't need to call si f t down on leaf nodes.

voi d heap: : bui | dheap() /'l Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

Cost for heap construction:

logn

S 71)% ~n

i=1
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Heapsort

Heapsort uses a max-heap.

voi d heapsort(Elem A, int n) { // Heapsort
heap H(A, n, n); /] Build the heap

for (int i=0; i<n; i++) /1l Now sort
H. removenex(); // Value placed at end of heap

}

Cost of Heapsort:

Cost of finding k largest elements:
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CS 5114 Building the Heap
Q Q

g ®r g r
60380 [oRcYeRo]

L Building the Heap O B
D EvEd

@ oqures exchanges (42) (40,2, 52 64,63,
©9,09, 0
&) requres exctanges 52), 09,09 (63)

This is a Max Heap

How to get a good number of exchanges? By induction.
Heapify the root’s subtrees, then push the root to the correct
level.

CS 5114

L—siftdown

no notes

CSs 5114

BuildHeap

L BuildHeap

(i — 1) is number of steps down, n/2" is number of nodes at that
level.

The intuition for why this cost is ©(n) is important.
Fundamentally, the issue is that nearly all nodes in a tree are
close to the bottom, and we are (worst case) pushing all nodes
down to the bottom. So most nodes have nowhere to go,
leading to low cost.

CSs 5114

= Heapsort

Cost of Heapsort: ©(nlogn)
Cost of finding k largest elements: ©(k logn + n).

e Time to build heap: ©(n).

e Time to remove least element: ©(logn).

Compare Heapsort to sorting with BST:

e BST is expensive in space (overhead), potential bad balance,
BST does not take advantage of having all records available
in advance.

e Heap is space efficient, balanced, and building initial heap is
efficient.



':1, CS 5114 I»:EapsmnExamp\e(l)
by -
2 L
o Heapsort Example (1,
Heapsort Example (1) 2 P ple (@)
«
Original Numbers [£] no notes
/1_“-—-_
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G 48
Remeve 85 A
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~ CS5114 Binsort
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Binsort 2 einsort
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A simple, efficient sort:

for (i=0; i<n; i++) he simol ) | ks § ) "
Bl key(A[i])] = Alil; T e.s.lmpe version only works for a permutation of 0 ton — 1,

- but it is truly O(n)!

Ways to generallz.e. . Support duplicatesl.e., larger key spaceCost might look like
@ Make each bin the head of a list. o(n).

@ Allow more keys than records. Oops! Itis ctually, ©(n + Maxkeyvalue).

voi d binsort (ELEM *A, int n) { Maxkeyvalue could be O(n?) or worse.
l'i st B[ MaxKeyVal ue] ;
for (i=0; i<n; i++) Blkey(Ali])].append(Ali]);
for (i=0; i<MaxKeyVal ue; i++)
for (each elenment in order in B[i])
output (B[i].currValue());

Cost:
~ CS5114
i
]
Radix Sort o) L Radix Sort
—
o
N
Initial List: 27 91 1 97 17 23 84 28 72 5 67 25
First pass Second pass no notes

(on right digit) (on left digit)

O AW N e
G W N e

© © N o
© ® N o

Result of first pass: 91 1 72 23 84 5 25 27 97 17 67 28
Result of second pass: 1 5 17 23 25 27 28 67 72 84 91 97
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Radix Sort Algorithm (1)

void radi x(Elem A, Elem B, int n, int k, int r,
intx count) {
/1 Count[i] stores nunmber of records in bin[i]

for (int i=0, rtok=1; i<k; i++, rtok*=r) {
for (int j=0; j<r; j++) count[j] = 0; // Init

/'l Count # of records for each bin this pass
for (j=0; j<n; j++)
count [ (key(A[j])/rtok)%] ++;

//1ndex B: count[j] is index of j's |last slot
for (j=1; j<r; j++4)
count[j] = count[j-1]+count[j];

CS 5114: Theory of Algorithms Spring 2010 113/134

Radix Sort Algorithm (2)

/'l Put recs into bins working from bottom
//Bins fill frombottomso j counts downwards
for (j=n-1; j>=0; j--)
B[ --count[(key(Alj])/rtok)%]] = Alj];
for (j=0; j<n; j++) Alj] = B[j]; // Copy B->A
}
}

Cost: ©(nk + rk).

How do n, k and r relate?
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Radix Sort Example

Initial Input: Array A ‘27[91 | 1 [97 |17 |23 |84 |23 |72| 5 |s7|25|
0o 1 2 4 6 7 8 9
;i‘:_:(r:‘ssvalueslovcoumv |° |2 I 1 ‘ 1 | 1 ‘2 |0 |4 I 1 | 0 ‘

0 1 2 3 4 5 6 7 8 9

o sorarys, (0] 23 ][5 77 [1n]e]ie]

End of Pass 1: Array A. [o1] 1 [72]23]84 ] 5 [25 27 [07[17 67 [28]

0 1 2 3 4 5 6 7 8 9
:::c;nv:opassvalues!orCoum [2l1|4[0|0‘0|1|1|1|2‘

1.2 5 7 9
ﬁ\:::(;;?uyonmrArrayB. ‘ 2 l 3 I 7 \;7 l7 [ L | 8 I 9 |10I12l

End of Pass 2: Array A. l 1 l 5 |17‘23|25‘27|28]67|72|84191 |97|

Sorting Lower Bound

Want to prove a lower bound for all possible sorting
algorithms.

Sorting is O(nlogn).
Sorting 1/0 takes Q(n) time.
Will now prove Q(nlogn) lower bound.

Form of proof:
@ Comparison based sorting can be modeled by a binary
tree.
@ The tree must have Q(n!) leaves.
@ The tree must be Q(nlogn) levels deep.
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r can be viewed as a constant.
k > logn if there are n distinct keys.

CSs 5114

LRadix Sort Example
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no notes
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LSorting Lower Bound
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no notes

Radix Sort Algorithm (1)

Radix Sort Algorithm (2)

Sorting Lower Bound

T e ————
agorihms.

Sorting s Ofnlogn).

Soring 10 akes )i

Wil now prove (g over boun.

Formof proot

 Comparson based sorng can b madeld by a bnary
» Theree mus have () eaves.

= The e mustbe Dlniogn) keves deep.
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Decision Trees 2 Decision Trees
XYZ N
XYZ YZIX
XZY ZXY
YXZ ZYX no notes
Yes_a[]<Afo]? \Ne
@ There are n! permutations, and at least 1 node for each.
@ A tree with n nodes has at least log n levels.
@ Where is the worst case in the decision tree?
Spring 2010 117/134
: CS 5114 Lower Bound Analysis
I
. 2 L )
Lower Bound Analysis g et
logn— (1 or 2).
logn! <logn™ = nlogn.
n\: 1
logn! > log <7) > —(nlogn — n).
2 2
@ So, logn! = ©(nlogn).
@ Using the decision tree model, what is the average
depth of a node?
@ This is also ©(logn!).
Spring 2010 118/134
~ CS5114 mmem
—
I RO —
i OI L . ‘o Assume data stored on disk drive.
External Sorting g Sxemal Soring B
no notes
Problem: Sorting data sets too large to fit in main memory.
@ Assume data stored on disk drive.
To sort, portions of the data must be brought into main
memory, processed, and returned to disk.
An external sort should minimize disk accesses.
Spring 2010 119/134
~ CS5114 Modetof Extomal Computaton
—
g
Model of External Computation = '~ Mode of External Computation
o
N
@ Secondary memory is divided into equal-sized blocks Can efficiently read block sequentially when:

(512, 2048, 4096 or 8192 bytes are typical sizes).

@ The basic I/0 operation transfers the contents of one
disk block to/from main memory. 2. No competition for I/0O head.

@ Under certain circumstances, reading blocks of a file in
sequential order is more efficient. (When?)

@ Typically, the time to perform a single block 1/O operation
is sufficient to Quicksort the contents of the block.

@ Thus, our primary goal is to minimize the number fo
block I/O operations.

@ Most workstations today must do all sorting on a single
disk drive.
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1. Adjacent logical blocks of file are physically adjacent on disk

The algorithm presented here is geared toward these
conditions.



Key Sorting

@ Often records are large while keys are small.
» Ex: Payroll entries keyed on ID number.

@ Approach 1: Read in entire records, sort them, then
write them out again.

@ Approach 2: Read only the key values, store with each
key the location on disk of its associated record.

@ If necessary, after the keys are sorted the records can
be read and re-written in sorted order.
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Internal — External Sort

Why not just use an internal sort on a large virtual memory?

@ Quicksort requires random access to the entire set of
records.
@ Mergesort is more geared toward sequential processing
of records.
» Process n elements in ©(log n) passes.

@ Better: Modify Mergesort for the purpose.
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Try #1: Simple Mergesort

Split the file into two files.

Read in a block from each file.

Take first record from each block, output them in sorted
order.

Take next record from each block, output them to a
second file in sorted order.

Repeat until finished, alternating between output files.
Read new input blocks as needed.

Repeat steps 2-5, except this time the input files have
groups of two sorted records that are merged together.
Each pass through the files provides larger and larger
groups of sorted records.

© 06 0 60 6060

A group of sorted records is called a run .

CS 5114: Theory of Algorithms
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Problems with Simple Mergesort

‘36!17!28!23 20‘36!14‘28
‘20i13i14i 15 13 ‘17]15‘23 'l

Runs of length 1 Runs of length 2 Runs of length 4

@ Is each pass through input and output files sequential?
@ What happens if all work is done on a single disk drive?
@ How can we reduce the number of Mergesort passes?
@ In general, external sorting consists of two phases:

© Break the file into initial runs.

@ Merge the runs together into a single sorted run.
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LKey Sorting

But, this is not usually done.
1. Itis expensive (random access to all records).

2. If there are multiple keys, there is no “correct” order.

CS 5114

Internal — External Sort
Wi ot st e an s o g vl memory?

leernal — External Sort

no notes

CSs 5114 Try #1: Simple Mergesort

LTry #1: Simple Mergesort

no notes
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Problems with Simple Mergesort

e Cerr > Cor)

LProbIems with Simple Mergesort

Yes, each pass is sequentail.

But competition for I/0O head eliminates advantage of sequential
processing.

We could read in a block (or several blocks) and do an
in-memory sort to generate large initial runs.



Breaking a file into runs

General approach:

@ Read as much of the file into memory as possible.

@ Perform and in-memory sort.

@ Output this group of records as a single run.

CS 5114: Theory of Algorithms Spring 2010

@ Break available memory into an array for the heap, an
input buffer and an output buffer.

0000

Replacement Selection

Fill the array from disk.

Make a min-heap.

Send the smallest value (root) to the output buffer.
If the next key in the file is greater than the last value

output, then

Replace the root with this key.

else

Replace the root with the last key in the array.
Add the next record in the file to a new heap
(actually, stick it at the end of the array).

CS 5114: Theory of Algorithms

Spring 2010

Replacement Selection (cont)

Input Output
File Input Buffer RAM Output Buffer Run File
CS 5114: Theory of Algorithms Spring 2010

Example of Replacement Selection
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Input Memory Qutput
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no notes
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Breaking afile into runs

Replacement Selection

Replacement Selection (cont)

O -0
Example of Replacement Selection
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Benefit from Replacement Selection

@ Double buffer to overlap input, processing, output.
@ How many disk drives for greatest advantage?
@ Snowplow argument:
» A snowplow moves around a circular track onto which
snow falls at a steady rate.
» At any instant, there is amount S snow on the track.
Some snow falls in front of the plow, some behind.
» During the next revolution of the snowplow, all of this is
removed, plus 1/2 of what falls during that revolution.
» Thus, the plow removes 2S amount of snow.

@ Is this always true? Faling Snow

Existing snow gw

[E—
Snowplow Movement

Start time T
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Simple Mergesort may not be Best

@ Simple Mergesort: Place the runs into two files.
» Merge the first two runs to output file, then next two runs,
@ This process is repeated until only one run remains.
» How many passes for r initial runs?
@ Is there benefit from sequential reading?
@ |s working memory well used?
@ Need a way to reduce the number of passes.
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Multiway Merge

@ With replacement selection, each initial run is several
blocks long.

@ Assume that each run is placed in a separate disk file.

@ We could then read the first block from each file into
memory and perform an r-way merge.

@ When a buffer becomes empty, read a block from the
appropriate run file.

@ Each record is read only once from disk during the
merge process.

@ In practice, use only one file and seek to appropriate
block.
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Multiway Merge (cont)

Input Runs

Output Buffer

5 6 7 10 12
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LBenefit from Replacement Selection

Ideally, we would like four drives, one for each file.
How much gets removed depends on the assumption that the
snow falls equally.

e If the snow is always/tends to be in front of the plow
(ascending key values), more gets removed.

o If the snow is always/tends to be behind the plow (descending
key values), less gets removed.

CS 5114

Simple Mergesort may not be Best

« simpo e

LSimpIe Mergesort may not be Best

logr passes are required

There is no benefit from sequential reading if not all on one disk
drive.

Working memory is not well used— only 2 blocks are used.

We might be able to reduce passes if we use the memory
better.

CSs 5114

Multiway Merge

L Multiway Merge

no notes
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L Multiway Merge (cont)
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Limits to Single Pass Multiway Merge

Assume working memory is b blocks in size.

How many runs can be processed at one time?

The runs are 2b blocks long (on average).

How big a file can be merged in one pass?

Larger files will need more passes — but the run size
grows quickly!

This approach trades ©(log b) (possibly) sequential

passes for a single or a very few random (block) access
passes.
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General Principals of External Sorting

In summary, a good external sorting algorithm will seek to do
the following:

@ Make the initial runs as long as possible.

@ At all stages, overlap input, processing and output as
much as possible.

@ Use as much working memory as possible. Applying
more memory usually speeds processing.

@ If possible, use additional disk drives for more
overlapping of processing with 1/0, and allow for more
sequential file processing.
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Limits to Single Pass Multiway Merge

LLimits to Single Pass Multiway Merge

l0gb) posiy) secuenta
o very e random (lock) access

passes.

Runs are 2b blocks on average because of replacement
selection.

2b? blocks can be merged in one pass.

In K merge passes, process 2b(c*1) blocks.

Example: 128K — 32 4K blocks.

With replacement selection, get 256K-length runs.

One merge pass: 8MB. Two merge passes: 256MB.
Three merge passes: 8GB.
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General Principals of Exteral Sorting

I summry,  good exernal soring sigort wil sk o o

LGeneraI Principals of External Sorting

no notes



