Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2010

Copyright (C) 2010 by Clifford A. Shaffer

CS5114: Theory of Algorithms

- Emphasis: Creation of Algorithms
- Less important:
- Analysis of algorithms
- Problem statement
- Programming
- Central Paradigm: Mathematical Induction
- Find a way to solve a problem by solving one or more smaller problems

Review of Mathematical Induction

- The paradigm of Mathematical Induction can be used to solve an enormous range of problems.
- Purpose: To prove a parameterized theorem of the form:
Theorem: $\forall n \geq c, \mathbf{P}(n)$.
- Use only positive integers $\geq c$ for n.
- Sample $\mathbf{P}(n)$:
$n+1 \leq n^{2}$
- IF the following two statements are true:
(1) $\mathrm{P}(c)$ is true.
(2) For $n>c, \mathbf{P}(n-1)$ is true $\rightarrow \mathbf{P}(n)$ is true.
. THEN we may conclude: $\forall n \geq c, \mathbf{P}(n)$.
- The assumption "P(n-1) is true" is the induction hypothesis.
- Typical induction proof form:
(1) Base case
(2) State induction Hypothesis
(3) Prove the implication (induction step)
- What does this remind you of?

Creation of algorithms comes through exploration, discovery, techniques, intuition: largely by lots of examples and lots of practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important because our problems are easily described, if not easily solved. Smaller problems may or may not be the same as the original problem.
Divide and conquer is a way of solving a problem by solving one more more smaller problems.
Claim on induction: The processes of constructing proofs and constructing algorithms are similar.

$\mathbf{P}(n)$ is a statement containing n as a variable.

This sample $\mathbf{P}(n)$ is true for $n \geq 2$, but false for $n=1$.

Important: The goal is to prove the implication, not the theorem! That is, prove that $\mathbf{P}(n-1) \rightarrow \mathbf{P}(n)$. NOT to prove $P(n)$. This is much easier, because we can assume that $\mathbf{P}(n)$ is true.
Consider the truth table for implication to see this. Since $A \rightarrow B$ is (vacuously) true when A is false, we can just assume that A is true since the implication is true anyway A is false. That is, we only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis "comes for free." We often try to make the most of the extra information provided by the induction hypothesis.
This is like recursion! There you have a base case and a recursive call that must make progress toward the base case.

Theorem: Let

$$
S(n)=\sum_{i=1}^{n} i=1+2+\cdots+n
$$

Then, $\forall n \geq 1, S(n)=\frac{n(n+1)}{2}$.

Induction Example 2

Theorem: $\forall n \geq 1, \forall$ real x such that $1+x>0$, $(1+x)^{n} \geq 1+n x$.

Induction Example 3

Theorem: $2 ¢$ and $5 ¢$ stamps can be used to form any denomination (for denominations ≥ 4).

Colorings

4-color problem: For any set of polygons, 4 colors are sufficient to guarentee that no two adjacent polygons share the same color.

Restrict the problem to regions formed by placing (infinite) lines in the plane. How many colors do we need? Candidates:

- 4: Certainly
- 3: ?
- 2: ?
- 1: No!

Base Case: $\mathbf{P}(n)$ is true since $S(1)=1=1(1+1) / 2$.
Induction Hypothesis: $S(i)=\frac{i(i+1)}{2}$ for $i<n$.
Induction Step:

$$
\begin{aligned}
S(n) & =S(n-1)+n=(n-1) n / 2+n \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Therefore, $\mathbf{P}(n-1) \rightarrow \mathbf{P}(n)$.
By the principle of Mathematical Induction,
$\forall n \geq 1, S(n)=\frac{n(n+1)}{2}$.
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

What do we do induction on? Can't be a real number, so must be n.
$\mathbf{P}(n):(1+x)^{n} \geq 1+n x$.
Base Case: $(1+x)^{1}=1+x \geq 1+1 x$
Induction Hypothesis: Assume $(1+x)^{n-1} \geq 1+(n-1) x$ Induction Step:

$$
\begin{aligned}
(1+x)^{n} & =(1+x)(1+x)^{n-1} \\
& \geq(1+x)(1+(n-1) x) \\
& =1+n x-x+x+n x^{2}-x^{2} \\
& =1+n x+(n-1) x^{2} \\
& \geq 1+n x .
\end{aligned}
$$

Base case: $4=2+2$.

Induction Hypothesis: Assume $\mathbf{P}(k)$ for $4 \leq k<n$.

Induction Step:

Case 1: $n-1$ is made up of all $2 ¢$ stamps. Then, replace 2 of these with a $5 ¢$ stamp.

Case 2: $n-1$ includes a $5 ¢$ stamp. Then, replace this with 32ϕ stamps.

Induction is useful for much more than checking equations!
If we accept the statement about the general 4-color problem, then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.

Two-coloring Problem

$\stackrel{\sim}{\top}$
CS 5114

Picking what to do induction on can be a problem. Lines?
Regions? How can we "add a region?" We can't, so try induction on lines.
Base Case: $n=1$. Any line divides the plane into two regions.
Induction Hypothesis: It is possible to two-color the regions
formed by $n-1$ lines.
Induction Step: Introduce the n 'th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n 'th line.
A valid two-coloring results.

- Any boundary surviving the addition still has opposite colors.
- Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
(1) $\mathrm{P}(c)$
(2) $\mathbf{P}(i), i=1,2, \cdots, n-1 \rightarrow \mathbf{P}(n)$,
... THEN we may conclude: $\forall n \geq c, \mathbf{P}(n)$.
Advantage: We can use statements other than $\mathbf{P}(n-1)$ in proving $\mathbf{P}(n)$.

Graph Problem

An Independent Set of vertices is one for which no two vertices are adjacent.

Theorem: Let $G=(V, E)$ be a directed graph. Then, G contains some independent set $S(G)$ such that every vertex can be reached from a vertex in $S(G)$ by a path of length at most 2.

Example: a graph with 3 vertices in a cycle. Pick any one vertex as $S(G)$.

Graph Problem (cont)

Theorem: Let $G=(V, E)$ be a directed graph. Then, G contains some independent set $S(G)$ such that every vertex can be reached from a vertex in $S(G)$ by a path of length at most 2.
Base Case: Easy if $n \leq 3$ because there can be no path of length >2.
Induction Hypothesis: The theorem is true if $|V|<n$.
Induction Step ($n>3$):
Pick any $v \in V$.
Define: $N(v)=\{v\} \cup\{w \in V \mid(v, w) \in E\}$.
$H=G-N(v)$.
Since the number of vertices in H is less than n, there is an independent set $S(H)$ that satisfies the theorem for H.

The previous examples were all very straightforward - simply add in the n^{\prime} th item and justify that the IH is maintained.
Now we will see examples where we must do more sophisticated (creative!) maneuvers such as

- go backwards from n.
- prove a stronger IH.
to make the most of the IH .

$\stackrel{\wedge}{\grave{\Sigma}}^{\text {cs }} 5114$		Gapep posiem
		\%
을	$\left\llcorner_{\text {Graph Problem }}\right.$	

It should be obvious that the theorem is true for an undirected graph.
Naive approach: Assume the theorem is true for any graph of $n-1$ vertices. Now add the nth vertex and its edges. But this won't work for the graph $1 \leftarrow 2$. Initially, vertex 1 is the independent set. We can't add 2 to the graph. Nor can we reach it from 1.
Going forward is good for proving existance.
Going backward (from an arbitrary instance into the IH) is usually necessary to prove that a property holds in all instances. This is because going forward requires proving that you reach all of the possible instances.

$N(v)$ is all vertices reachable (directly) from v. That is, the Neighbors of v.
H is the graph induced by $V-N(v)$.

OK, so why remove both v and $N(v)$ from the graph? If we only remove v , we have the same problem as before. If G is $1 \rightarrow 2 \rightarrow 3$, and we remove 1 , then the independent set for H must be vertex 2 . We can't just add back 1 . But if we remove both 1 and 2 , then we'll be able to do something...

Graph Proof (cont)

There are two cases:
(1) $S(H) \cup\{v\}$ is independent.

Then $S(G)=S(H) \cup\{v\}$.
(2) $S(H) \cup\{v\}$ is not independent.

Let $w \in S(H)$ such that $(w, v) \in E$.
Every vertex in $N(v)$ can be reached by w with path of length ≤ 2.
So, set $S(G)=S(H)$.

By Strong Induction, the theorem holds for all G.

Fibonacci Numbers

Define Fibonacci numbers inductively as:

$$
\begin{aligned}
& F(1)=F(2)=1 \\
& F(n)=F(n-1)+F(n-2), n>2 .
\end{aligned}
$$

Theorem: $\forall n \geq 1, F(n)^{2}+F(n+1)^{2}=F(2 n+1)$.

Induction Hypothesis:
$F(n-1)^{2}+F(n)^{2}=F(2 n-1)$.

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger IH!

Theorem:

$F(n)^{2}+F(n+1)^{2}=F(2 n+1)$ and
$F(n)^{2}+2 F(n) F(n-1)=F(2 n)$.

Induction Hypothesis:
$F(n-1)^{2}+F(n)^{2}=F(2 n-1)$ and
$F(n-1)^{2}+2 F(n-1) F(n-2)=F(2 n-2)$.

Another Example

Theorem: All horses are the same color.

Proof: $\mathbf{P}(n)$: If S is a set of n horses, then all horses in S have the same color.
Base case: $n=1$ is easy.
Induction Hypothesis: Assume $\mathbf{P}(i), i<n$. Induction Step:

- Let S be a set of horses, $|S|=n$.
- Let S^{\prime} be S - $\{h\}$ for some horse h.
- By IH, all horses in S^{\prime} have the same color.
- Let h^{\prime} be some horse in S^{\prime}.
- IH implies $\left\{h, h^{\prime}\right\}$ have all the same color.

Therefore, $\mathbf{P}(n)$ holds.

Expand both sides of the theorem, then cancel like terms:
$F(2 n+1)=F(2 n)+F(2 n-1)$ and,

$$
\begin{aligned}
F(n)^{2}+F(n+1)^{2} & =F(n)^{2}+(F(n)+F(n-1))^{2} \\
& =F(n)^{2}+F(n)^{2}+2 F(n) F(n-1)+F(n-1)^{2} \\
& =F(n)^{2}+F(n-1)^{2}+F(n)^{2}+2 F(n) F(n-1) \\
& =F(2 n-1)+F(n)^{2}+2 F(n) F(n-1) .
\end{aligned}
$$

Want: $F(n)^{2}+F(n+1)^{2}=F(2 n+1)=F(2 n)+F(2 n-1)$
Steps above gave:
$F(2 n)+F(2 n-1)=F(2 n-1)+F(n)^{2}+2 F(n) F(n-1)$
So we need to show that: $F(n)^{2}+2 F(n) F(n-1)=F(2 n)$
To prove the original theorem, we must prove this. Since we must do it anyway, we should take advantage of this in our IH!

$F(n)^{2}+2 F(n) F(n-1)$
$=F(n)^{2}+2(F(n-1)+F(n-2)) F(n-1)$
$=F(n)^{2}+F(n-1)^{2}+2 F(n-1) F(n-2)+F(n-1)^{2}$
$=F(2 n-1)+F(2 n-2)$
$=F(2 n)$.

$$
\begin{aligned}
F(n)^{2}+F(n+1)^{2} & =F(n)^{2}+[F(n)+F(n-1)]^{2} \\
& =F(n)^{2}+F(n)^{2}+2 F(n) F(n-1)+F(n-1)^{2} \\
& =F(n)^{2}+F(2 n)+F(n-1)^{2} \\
& =F(2 n-1)+F(2 n) \\
& =F(2 n+1) .
\end{aligned}
$$

.. which proves the theorem. The original result could not have been proved without the stronger induction hypothesis.
\square Another Example

The problem is that the base case does not give enough strength to give the particular instance of $n=2$ used in the last step.

Algorithm Analysis

What do we measure?

Time and space to run; ease of implementation (this changes with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and compiler; System load; Programmer skill; Specifics of input (size, arrangement)

If you compare two programs running on the same computer under the same conditions, all the other factors (should) cancel out.
Want to measure the relative efficiency of two algorithms without needing to implement them on a real computer.

Time Complexity

- Time and space are the most important computer resources.
- Function of input: T(input)
- Growth of time with size of input:
- Establish an (integer) size n for inputs
- n numbers in a list
- n edges in a graph
- Consider time for all inputs of size n :
- Time varies widely with specific input
- Best case
- Average case
- Worst case
- Time complexity $\mathbf{T}(n)$ counts steps in an algorithm.

Asymptotic Analysis

- It is undesirable/impossible to count the exact number of steps in most algorithms.
- Instead, concentrate on main characteristics.
- Solution: Asymptotic analysis
- Ignore small cases:
* Consider behavior approaching infinity
- Ignore constant factors, low order terms:
* $2 n^{2}$ looks the same as $5 n^{2}+n$ to us.

O Notation

O notation is a measure for "upper bound" of a growth rate

- pronounced "Big-oh"

Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\mathrm{O}(f(n))$ if there exist two positive constants c and n_{0} such that $\mathbf{T}(n) \leq \operatorname{cf}(n)$ for all $n>n_{0}$.

Examples:

- $5 n+8 \in \mathrm{O}(n)$
- $2 n^{2}+n \log n \in \mathrm{O}\left(n^{2}\right) \in \mathrm{O}\left(n^{3}+5 n^{2}\right)$
- $2 n^{2}+n \log n \in \mathrm{O}\left(n^{2}\right) \in \mathrm{O}\left(n^{3}+n^{2}\right)$

Sometimes analyze in terms of more than one variable. Best case usually not of interest.
Average case is usually what we want, but can be hard to measure.
Worst case appropriate for "real-time" applications, often best we can do in terms of measurement.
Examples of "steps:" comparisons, assignments, arithmetic/logical operations. What we choose for "step" depends on the algorithm. Step cost must be "constant" - not dependent on n.

Undesirable to count number of machine instructions or steps because issues like processor speed muddy the waters.

Remember: The time equation is for some particular set of inputs - best, worst, or average case.

O Notation (cont)

We seek the "simplest" and "strongest" f.

Big-O is somewhat like " \leq ":
$n^{2} \in \mathrm{O}\left(n^{3}\right)$ and $n^{2} \log n \in O\left(n^{3}\right)$, but

- $n^{2} \neq n^{2} \log n$
- $n^{2} \in \mathrm{O}\left(n^{2}\right)$ while $n^{2} \log n \notin \mathrm{O}\left(n^{2}\right)$

Growth Rate Graph

Speedups

What happens when we buy a computer 10 times faster?

$\mathbf{T}(n)$	n	n^{\prime}	Change	n^{\prime} / n
$10 n$	1,000	10,000	$n^{\prime}=10 n$	10
$20 n$	500	5,000	$n^{\prime}=10 n$	10
$5 n \log n$	250	1,842	$\sqrt{10} n<n^{\prime}<10 n$	7.37
$2 n^{2}$	70	223	$n^{\prime}=\sqrt{10} n$	3.16
2^{n}	13	16	$n^{\prime}=n+3$	--

n : Size of input that can be processed in one hour $(10,000$ steps).
n^{\prime} : Size of input that can be processed in one hour on the new machine (100,000 steps).

Some Rules for Use

Definition: f is monotonically growing if $n_{1} \geq n_{2}$ implies $f\left(n_{1}\right) \geq f\left(n_{2}\right)$.
We typically assume our time complexity function is monotonically growing.

Theorem 3.1: Suppose f is monotonically growing.
$\forall c>0$ and $\forall a>1,(f(n))^{c} \in O\left(a^{f(n)}\right)$
In other words, an exponential function grows faster than a polynomial function.
Lemma 3.2: If $f(n) \in O(s(n))$ and $g(n) \in O(r(n))$ then

- $f(n)+g(n) \in O(s(n)+r(n)) \equiv O(\max (s(n), r(n)))$
- $f(n) g(n) \in O(s(n) r(n))$.
- If $s(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- For any constant $k, f(n) \in O(k s(n))$

\wedge CS5114		1
O	- Growth Rate Graph	
¢		

2^{n} is an exponential algorithm. $10 n$ and $20 n$ differ only by a constant.

How much speedup? 10 times. More important: How much increase in problem size for same time? Depends on growth rate.
For n^{2}, if $n=1000$, then n^{\prime} would be 1003.
Compare $\mathbf{T}(n)=n^{2}$ to $\mathbf{T}(n)=n \log n$. For $n>58$, it is faster to have the $\Theta(n \log n)$ algorithm than to have a computer that is 10 times faster.

Assume monitonic growth because larger problems should take longer to solve. However, many real problems have "cyclically growing" behavior.
Is $O\left(2^{f(n)}\right) \in O\left(3^{f(n)}\right)$? Yes, but not vice versa.
$3^{n}=1.5^{n} \times 2^{n}$ so no constant could ever make 2^{n} bigger than 3^{n} for all n.functional composition

Other Asymptotic Notation

Other Asymptotic Notation
$\Omega(f(n))$ - lower bound (\geq)
Definition: For $\mathbf{T}(n)$ a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\Omega(g(n))$ if there exist two positive constants c and n_{0} such that $\mathbf{T}(n) \geq c g(n)$ for all $n>n_{0}$.
Ex: $n^{2} \log n \in \Omega\left(n^{2}\right)$.
$\Theta(f(n))$ - Exact bound (=)
Definition: $g(n)=\Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.
Important!: It is Θ if it is both in big-Oh and in Ω.
Ex: $5 n^{3}+4 n^{2}+9 n+7=\Theta\left(n^{3}\right)$

Other Asymptotic Notation (cont)

o(f(n)) - little o (<)
Definition: $g(n) \in o(f(n))$ if $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$
Ex: $n^{2} \in o\left(n^{3}\right)$
$\omega(f(n))$ - little omega (>)
Definition: $g(n) \in w(f(n))$ if $f(n) \in O(g(n))$.
Ex: $n^{5} \in w\left(n^{2}\right)$
$\infty(f(n))$
Definition: $T(n)=\infty(f(n))$ if $T(n)=O(f(n))$ but the constant in the O is so large that the algorithm is impractical.

Aim of Algorithm Analysis

Typically want to find "simple" $f(n)$ such that $T(n)=\Theta(f(n))$.

- Sometimes we settle for $O(f(n))$.

Usually we measure T as "worst case" time complexity.
Sometimes we measure "average case" time complexity.
Approach: Estimate number of "steps"

- Appropriate step depends on the problem.
- Ex: measure key comparisons for sorting

Summation: Since we typically count steps in different parts of an algorithm and sum the counts, techniques for computing sums are important (loops).
Recurrence Relations: Used for counting steps in recursion.

Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.
Technique 1a: Guess the form of the solution, and use simultaneous equations to generate constants. Finally, use induction to test.
Ω is most userful to discuss cost of problems, not algorithms. Once you have an equation, the bounds have met. So this is more interesting when discussing your level of uncertainty about the difference between the upper and lower bound.

You have Θ when you have the upper and the lower bounds meeting. So Θ means that you know a lot more than just Big-oh, and so is perferred when possible.

A common misunderstanding:

- Confusing worst case with upper bound.
- Upper bound refers to a growth rate.
- Worst case refers to the worst input from among the choices for possible inputs of a given size.

We won't use these too much.

We prefer Θ over Big-oh because Θ means that we understand our bounds and they met. But if we just can't find that the bottom meets the top, then we are stuck with just Big-oh. Lower bounds can be hard. For problems we are often interested in Ω

- but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming), but worst case is simpler to compute than average case since we need not be concerned with distribution of input.

For the sorting example, key comparisons must be constant-time to be used as a cost measure.

Summation Example

$$
S(n)=\sum_{i=0}^{n} i^{2} .
$$

Guess that $S(n)$ is a polynomial $\leq n^{3}$.
Equivalently, guess that it has the form $S(n)=a n^{3}+b n^{2}+c n+d$.

For $n=0$ we have $S(n)=0$ so $d=0$.
For $n=1$ we have $a+b+c+0=1$.
For $n=2$ we have $8 a+4 b+2 c=5$.
For $n=3$ we have $27 a+9 b+3 c=14$.
Solving these equations yields $a=\frac{1}{3}, b=\frac{1}{2}, c=\frac{1}{6}$
Now, prove the solution with induction.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate intermediate terms.

$$
G(n)=\sum_{i=0}^{n} a r^{i}=a+a r+a r^{2}+\cdots+a r^{n}
$$

Shift by multiplying by r.

$$
r G(n)=a r+a r^{2}+\cdots+a r^{n}+a r^{n+1}
$$

Subtract.

$$
\begin{aligned}
G(n)-r G(n) & =G(n)(1-r)=a-a r^{n+1} \\
G(n) & =\frac{a-a r^{n+1}}{1-r} \quad r \neq 1
\end{aligned}
$$

Example 3.3

$$
G(n)=\sum_{i=1}^{n} i 2^{i}=1 \times 2+2 \times 2^{2}+3 \times 2^{3}+\cdots+n \times 2^{n}
$$

Multiply by 2.

$$
2 G(n)=1 \times 2^{2}+2 \times 2^{3}+3 \times 2^{4}+\cdots+n \times 2^{n+1}
$$

Subtract (Note: $\sum_{i=1}^{n} 2^{i}=2^{n+1}-2$)

$$
\begin{aligned}
2 G(n)-G(n) & =n 2^{n+1}-2^{n} \cdots 2^{2}-2 \\
G(n) & =n 2^{n+1}-2^{n+1}+2 \\
& =(n-1) 2^{n+1}+2
\end{aligned}
$$

Recurrence Relations

- A (math) function defined in terms of itself.
- Example: Fibonacci numbers:
$\begin{array}{ll}F(n)=F(n-1)+F(n-2) & \text { general case } \\ F(1)=F(2)=1 & \text { base cases }\end{array}$
$F(1)=F(2)=1 \quad$ base cases
- There are always one or more general cases and one or more base cases.
- We will use recurrences for time complexity of recursive (computer) functions.
- General format is $T(n)=E(T, n)$ where $E(T, n)$ is an expression in T and n.
- $T(n)=2 T(n / 2)+n$
- Alternately, an upper bound: $T(n) \leq E(T, n)$.

We often solve summations in this way - by multiplying by something or subtracting something. The big problem is that it can be a bit like finding a needle in a haystack to decide what "move" to make. We need to do something that gives us a new sum that allows us either to cancel all but a constant number of terms, or else converts all the terms into something that forms an easier summation.

Shift by multiplying by r is a reasonable guess in this example since the terms differ by a factor of r.

no notes

We won't spend a lot of time on techniques... just enough to be able to use them.

Solving Recurrences

We would like to find a closed form solution for $T(n)$ such that:

$$
T(n)=\Theta(f(n))
$$

Alternatively, find lower bound

- Not possible for inequalities of form $T(n) \leq E(T, n)$.

Methods:

- Guess (and test) a solution
- Expand recurrence
- Theorems

Guessing

$T(n)=2 T(n / 2)+5 n^{2} \quad n \geq 2$
$T(1)=7$
Note that T is defined only for powers of 2 .
Guess a solution: $T(n) \leq c_{1} n^{3}=f(n)$
$T(1)=7$ implies that $c_{1} \geq 7$
Inductively, assume $T(n / 2) \leq f(n / 2)$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+5 n^{2} \\
& \leq 2 c_{1}(n / 2)^{3}+5 n^{2} \\
& \leq c_{1}\left(n^{3} / 4\right)+5 n^{2} \\
& \leq c_{1} n^{3} \text { if } c_{1} \geq 20 / 3 .
\end{aligned}
$$

Guessing (cont)

Therefore, if $c_{1}=7$, a proof by induction yields:
$T(n) \leq 7 n^{3}$
$T(n) \in O\left(n^{3}\right)$
Is this the best possible solution?

Guessing (cont)

Guess again.

$$
T(n) \leq c_{2} n^{2}=g(n)
$$

$T(1)=7$ implies $c_{2} \geq 7$.
Inductively, assume $T(n / 2) \leq g(n / 2)$.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+5 n^{2} \\
& \leq 2 c_{2}(n / 2)^{2}+5 n^{2} \\
& =c_{2}\left(n^{2} / 2\right)+5 n^{2} \\
& \leq c_{2} n^{2} \text { if } c_{2} \geq 10
\end{aligned}
$$

Therefore, if $c_{2}=10, \quad T(n) \leq 10 n^{2} . \quad T(n)=O\left(n^{2}\right)$.
Is this the best possible upper bound?

For Big-oh, not many choices in what to guess.
$7 \times 1^{3}=7$

Because $\frac{20}{4.3} n^{3}+5 n^{2}=\frac{20}{3} n^{3}$ when $n=1$, and as n grows, the right side grows even faster.

No - try something tighter.

Because $\frac{10}{2} n^{2}+5 n^{2}=10 n^{2}$ for $n=1$, and the right hand side grows faster.

Yes this is best, since $T(n)$ can be as bad as $5 n^{2}$.

Guessing (cont)

Now, reshape the recurrence so that T is defined for all values of n.
$T(n) \leq 2 T(\lfloor n / 2\rfloor)+5 n^{2} \quad n \geq 2$
For arbitrary n, let $2^{k-1}<n \leq 2^{k}$.
We have already shown that $T\left(2^{k}\right) \leq 10\left(2^{k}\right)^{2}$.

$$
\begin{aligned}
T(n) & \leq T\left(2^{k}\right) \leq 10\left(2^{k}\right)^{2} \\
& =10\left(2^{k} / n\right)^{2} n^{2} \leq 10(2)^{2} n^{2} \\
& \leq 40 n^{2}
\end{aligned}
$$

Hence, $T(n)=\mathrm{O}\left(n^{2}\right)$ for all values of n.
Typically, the bound for powers of two generalizes to all n.

Expanding Recurrences

Usually, start with equality version of recurrence.

$$
\begin{aligned}
& T(n)=2 T(n / 2)+5 n^{2} \\
& T(1)=7
\end{aligned}
$$

Assume n is a power of $2 ; n=2^{k}$.

Expanding Recurrences (cont)

$$
\begin{aligned}
T(n)= & 2 T(n / 2)+5 n^{2} \\
= & 2\left(2 T(n / 4)+5(n / 2)^{2}\right)+5 n^{2} \\
= & 2\left(2\left(2 T(n / 8)+5(n / 4)^{2}\right)+5(n / 2)^{2}\right)+5 n^{2} \\
= & 2^{k} T(1)+2^{k-1} \cdot 5\left(n / 2^{k-1}\right)^{2}+2^{k-2} \cdot 5\left(n / 2^{k-2}\right)^{2} \\
& +\cdots+2 \cdot 5(n / 2)^{2}+5 n^{2} \\
= & 7 n+5 \sum_{i=0}^{k-1} n^{2} / 2^{i}=7 n+5 n^{2} \sum_{i=0}^{k-1} 1 / 2^{i} \\
= & 7 n+5 n^{2}\left(2-1 / 2^{k-1}\right) \\
= & 7 n+5 n^{2}(2-2 / n) .
\end{aligned}
$$

This it the exact solution for powers of 2. $T(n)=\Theta\left(n^{2}\right)$.

Divide and Conquer Recurrences

These have the form:

$$
\begin{aligned}
& T(n)=a T(n / b)+c n^{k} \\
& T(1)=c
\end{aligned}
$$

... where a, b, c, k are constants.
A problem of size n is divided into a subproblems of size n / b, while $c n^{k}$ is the amount of work needed to combine the solutions.

no notes

no notes

Divide and Conquer Recurrences (cont)

Expand the sum; $n=b^{m}$.

$$
\begin{aligned}
T(n) & =a\left(a T\left(n / b^{2}\right)+c(n / b)^{k}\right)+c n^{k} \\
& =a^{m} T(1)+a^{m-1} c\left(n / b^{m-1}\right)^{k}+\cdots+a c(n / b)^{k}+c n^{k} \\
& =c a^{m} \sum_{i=0}^{m}\left(b^{k} / a\right)^{i}
\end{aligned}
$$

$a^{m}=a^{\log _{b} n}=n^{\log _{b} a}$
The summation is a geometric series whose sum depends on the ratio

$$
r=b^{k} / a
$$

There are 3 cases.

D \& C Recurrences (cont)

(1) $r<1$.

$$
\begin{gathered}
\sum_{i=0}^{m} r^{i}<1 /(1-r), \quad \text { a constant. } \\
T(n)=\Theta\left(a^{m}\right)=\Theta\left(n^{\log _{b} a}\right) .
\end{gathered}
$$

(2) $r=1$.

$$
\begin{gathered}
\sum_{i=0}^{m} r^{i}=m+1=\log _{b} n+1 \\
T(n)=\Theta\left(n^{\log _{b} a} \log n\right)=\Theta\left(n^{k} \log n\right)
\end{gathered}
$$

D \& C Recurrences (Case 3)

(3) $r>1$.

$$
\sum_{i=0}^{m} r^{i}=\frac{r^{m+1}-1}{r-1}=\Theta\left(r^{m}\right)
$$

So, from $T(n)=c a^{m} \sum r^{i}$,

$$
\begin{aligned}
T(n) & =\Theta\left(a^{m} r^{m}\right) \\
& =\Theta\left(a^{m}\left(b^{k} / a\right)^{m}\right) \\
& =\Theta\left(b^{k m}\right) \\
& =\Theta\left(n^{k}\right)
\end{aligned}
$$

Summary

Theorem 3.4:

$$
T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } \mathrm{a}>\mathrm{b}^{\mathrm{k}} \\ \Theta\left(n^{k} \log n\right) & \text { if } \mathrm{a}=\mathrm{b}^{k} \\ \Theta\left(n^{k}\right) & \text { if } \mathrm{a}<\mathrm{b}^{\mathrm{k}}\end{cases}
$$

Apply the theorem:
$T(n)=3 T(n / 5)+8 n^{2}$.
$a=3, b=5, c=8, k=2$.
$b^{k} / a=25 / 3$.
Case (3) holds: $T(n)=\Theta\left(n^{2}\right)$.

Examples

Mergesort: $T(n)=2 T(n / 2)+n$.
$2^{1} / 2=1$, so $T(n)=\Theta(n \log n)$.

- Binary search: $T(n)=T(n / 2)+2$.
$2^{0} / 1=1$, so $T(n)=\Theta(\log n)$.
- Insertion sort: $T(n)=T(n-1)+n$.

Can't apply the theorem. Sorry!

- Standard Matrix Multiply (recursively):
$T(n)=8 T(n / 2)+n^{2}$.
$2^{2} / 8=1 / 2$ so $T(n)=\Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)$.

Useful log Notation

- If you want to take the \log of $(\log n)$, it is written $\log \log n$.
- $(\log n)^{2}$ can be written $\log ^{2} n$.
- Don't get these confused!
- $\log ^{*} n$ means "the number of times that the log of n must be taken before $n \leq 1$.
- For example, $65536=2^{16}$ so $\log ^{*} 65536=4$ since $\log 65536=16, \log 16=4, \log 4=2, \log 2=1$.

Amortized Analysis

Consider this variation on STACK:
void init(STACK S);
element examineTop(STACK S);
void push (element x, STACK S);
void pop(int k, STACK S);
... where pop removes k entries from the stack.
"Local" worst case analysis for pop:
$\mathrm{O}(n)$ for n elements on the stack.
Given m_{1} calls to push, m_{2} calls to pop:
Naive worst case: $m_{1}+m_{2} \cdot n=m_{1}+m_{2} \cdot m_{1}$.

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:
Cannot pop more elements than get pushed onto the stack.
After many pushes, a single pop has high potential.

Once that potential has been expended, it is not available for future pop operations.

The cost for m_{1} pushes and m_{2} pops:

$$
m_{1}+\left(m_{2}+m_{1}\right)=O\left(m_{1}+m_{2}\right)
$$

no notes

So the recursion is 8 calls of half size, and the additions take $\Theta\left(n^{2}\right)$ work.

$$
-2
$$

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

In the straightforward implementation, 2×2 case is:

$$
\begin{aligned}
& c_{11}=a_{11} b_{11}+a_{12} b_{21} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

no notes

Actual number of (constant time) push calls + (Actual number of pop calls + Total potential for the pops)

CLR has an entire chapter on this - we won't go into this much, but we use Amortized Analysis implicitly sometimes.

Creative Design of Algorithms by Induction

Analogy: Induction \leftrightarrow Algorithms

Begin with a problem:

- "Find a solution to problem Q."

Think of Q as a set containing an infinite number of problem instances.

Example: Sorting

- Q contains all finite sequences of integers.

Solving Q

First step:

- Parameterize problem by size: $Q(n)$

Example: Sorting

- $Q(n)$ contains all sequences of n integers.
Q is now an infinite sequence of problems:
- $Q(1), Q(2), \ldots, Q(n)$

Algorithm: Solve for an instance in $Q(n)$ by solving instances in $Q(i), i<n$ and combining as necessary.

Induction

Goal: Prove that we can solve for an instance in $Q(n)$ by assuming we can solve instances in $Q(i), i<n$.

Don't forget the base cases!
Theorem: $\forall n \geq 1$, we can solve instances in $Q(n)$.

- This theorem embodies the correctness of the algorithm.

Since an induction proof is mechanistic, this should lead directly to an algorithm (recursive or iterative).

Just one (new) catch:

- Different inductive proofs are possible.
- We want the most efficient algorithm!

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6, 9], [5, 7], [0, 3], [4, 8], [6, 10], [7, 8], [0, 5], [1, 3], [6, 8]

$\stackrel{\sim}{\top}^{\text {CS } 5114}$	Induct
O Linduction	Tomme memmememan
$\stackrel{\square}{\circ}$	
슷	边
	:immem

The goal is using Strong Induction.
Correctness is proved by induction.
Example: Sorting

- Sort $n-1$ items, add nth item (insertion sort)
- Sort 2 sets of $n / 2$, merge together (mergesort)
- Sort values $<x$ and $>x$ (quicksort)

no notes

Problem: Identify and mark all intervals that are contained in some other interval.

Example:

- Mark $[6,9]$ since $[6,9] \subseteq[6,10]$

Interval Containment (cont)

- $Q(n)$: Instances of n intervals
- Base case: $Q(1)$ is easy.
- Inductive Hypothesis: For $n>1$, we know how to solve an instance in $Q(n-1)$.
- Induction step: Solve for $Q(n)$.
- Solve for first $n-1$ intervals, applying inductive hypothesis.
- Check the nth interval against intervals $i=1,2, \ldots$
- If interval i contains interval n, mark interval n. (stop)
- If interval n contains interval i, mark interval i.
- Analysis:
$T(n)=T(n-1)+c n$
$T(n)=\Theta\left(n^{2}\right)$

"Creative" Algorithm

Idea: Choose a special interval as the nth interval.
Choose the nth interval to have rightmost left endpoint, and if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other intervals.
(2) nth interval should be marked iff the rightmost endpoint of the first $n-1$ intervals exceeds or equals the right endpoint of the nth interval.

Solution: Sort as above.

"Creative" Solution Induction

Induction Hypothesis: Can solve for $Q(n-1)$ AND interval n is the "rightmost" interval AND we know R (the rightmost endpoint encountered so far) for the first $n-1$ segments.

Induction Step: (to solve $Q(n)$)

- Solve for first $n-1$ intervals recursively, and remember R.
- If the rightmost endpoint of nth interval is $\leq R$, then mark the nth interval.
- Else $\mathrm{R} \leftarrow$ right endpoint of nth interval.

Analysis: $\Theta(n \log n)+\Theta(n)$.
Lesson: Preprocessing, often sorting, can help sometimes.

$$
\begin{aligned}
& {[5,7] \subseteq[4,8]} \\
& {[0,3] \subseteq[0,5]} \\
& {[7,8] \subseteq[6,10]} \\
& {[1,3] \subseteq[0,5]} \\
& {[6,8] \subseteq[6,0]} \\
& {[6,9] \subseteq[6,10]}
\end{aligned}
$$

Base case: Nothing is contained

In the example, the nth interval is $[7,8]$.
Every other interval has left endpoint to left, or right endpoint to right.
We must keep track of the current right-most endpont.

We strengthened the induction hypothesis. In algorithms, this does cost something.
We must sort.
Analysis: Time for sort + constant time per interval.

Maximal Induced Subgraph

$\wedge \operatorname{CS} 5114$
$\stackrel{\wedge}{\dot{N}}^{\cos }$
Maximal Induced Subgraph

 —Maximal Induced Subgraph

Problem: Given a graph $G=(V, E)$ and an integer k, find a maximal induced subgraph $H=(U, F)$ such that all vertices in H have degree $\geq k$.
Example: Scientists interacting at a conference. Each one will come only if k colleagues come, and they know in advance if somebody won't come.
Example: For $k=3$.

Solution:

Max Induced Subgraph Solution

$Q(s, k)$: Instances where $|V|=s$ and k is a fixed integer.
Theorem: $\forall s, k>0$, we can solve an instance in $Q(s, k)$.
Analysis: Should be able to implement algorithm in time $\Theta(|V|+|E|)$.

Celebrity Problem

In a group of n people, a celebrity is somebody whom everybody knows, but who knows no one else.

Problem: If we can ask questions of the form "does person i know person j ?" how many questions do we need to find a celebrity, if one exists?

How should we structure the information?

Celebrity Problem (cont)

Formulate as an $n \times n$ boolean matrix M. $M_{i j}=1$ iff i knows j.
Example: $\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$
A celebrity has all 0's in his row and all 1's in his column.
There can be at most one celebrity.
Clearly, $\mathrm{O}\left(n^{2}\right)$ questions suffice. Can we do better?

Induced subgraph: U is a subset of V, F is a subset of E such that both ends of $e \in E$ are members of U.
Solution is: $U=\{1,3,4,5\}$

Base Case: $s=1 \mathrm{H}$ is the empty graph. Induction Hypothesis: Assume $s>1$. we can solve instances of $Q(s-1, k)$.
Induction Step: Show that we can solve an instance of $G(V, E)$ in $Q(s, k)$. Two cases:
(1) Every vertex in G has degree $\geq k . H=G$ is the only solution.
(2) Otherwise, let $v \in V$ have degree $<k . G-v$ is an instance of $Q(s-1, k)$ which we know how to solve.

By induction, the theorem follows.
Visit all edges to generate degree counts for the vertices. Any vertex with degree below k goes on a queue. Pull the vertices off the queue one by one, and reduce the degree of their
neinhbors. Add the neinhbor to the aueue if it drons helow k
-Celebrity Problem

Colbority Problem

no notes

The celebrity in this example is 4.

Appeal to induction:

- If we have an $n \times n$ matrix, how can we reduce it to an $(n-1) \times(n-1)$ matrix?

What are ways to select the n 'th person?

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

- Strike one row and one column.
$\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$

Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5 ? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.

Celebrity Algorithm

Algorithm:

(1) Ask $n-1$ questions to eliminate $n-1$ non-celebrities. This leaves one candidate who might be a celebrity.
(2) Ask 2($n-1$) questions to check candidate.

Analysis:

- $\Theta(n)$ questions are asked.

Example:

- Does 1 know 2? No. Eliminate 2
- Does 1 know 3? No. Eliminate 3
- Does 1 know 4? Yes. Eliminate 1
- Does 4 know 5 ? No. Eliminate 5
$\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$

4 remains as candidate.

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous subsequence whose sum is maximum.

The sum of an empty subsequence is 0 .

- It follows that the maximum subsequence of a sequence of all negative numbers is the empty subsequence.

Example:

$2,11,-9,3,4,-6,-7,7,-3,5,6,-2$
Maximum subsequence:
$7,-3,5,6 \quad$ Sum: 15

This induction implies that we go backwards. Natural thing to try: pick arbitrary n'th person.
Assume that we can solve for $n-1$. What happens when we add nth person?

- Celebrity candidate in $n-1$ - just ask two questions.
- Celebrity is n-must check $2(n-1)$ positions. $\mathrm{O}\left(n^{2}\right)$.
- No celebrity. Again, $\mathrm{O}\left(n^{2}\right)$.

So we will have to look for something special. Who can we eliminate? There are only two choices: A celebrity or a non-celebrity. It doesn't make sense to eliminate a celebrity. Is there an easy way to guarentee that we eliminate a non-celeberity?

[^0]
no notes

no notes

Finding an Algorithm

Induction Hypothesis: We can find the maximum subsequence sum for a sequence of $<n$ numbers.

Note: We have changed the problem.

- First, figure out how to compute the sum.
- Then, figure out how to get the subsequence that computes that sum.

Finding an Algorithm (cont)

Induction Hypothesis: We can find the maximum subsequence sum for a sequence of $<n$ numbers.
Let $S=x_{1}, x_{2}, \cdots, x_{n}$ be the sequence.
Base case: $n=1$
Either $x_{1}<0 \Rightarrow$ sum $=0$
Or sum $=x_{1}$.
Induction Step:

- We know the maximum subsequence $\operatorname{SUM}(\mathrm{n}-1)$ for $x_{1}, x_{2}, \cdots, x_{n-1}$.
- Where does x_{n} fit in?
- Either it is not in the maximum subsequence or it ends the maximum subsequence.
- If x_{n} ends the maximum subsequence, it is appended to trailing maximum subsequence of x_{1}, \cdots, x_{n-1}.

Finding an Algorithm (cont)

Need: TRAILINGSUM($\mathrm{n}-1$) which is the maximum sum of a subsequence that ends x_{1}, \cdots, x_{n-1}.

To get this, we need a stronger induction hypothesis.

Maximum Subsequence Solution

New Induction Hypothesis: We can find SUM(n-1) and TRAILINGSUM($\mathrm{n}-1$) for any sequence of $n-1$ integers.

Base case:

$\operatorname{SUM}(1)=\operatorname{TRAILINGSUM}(1)=\operatorname{Max}\left(0, x_{1}\right)$.
Induction step:
$\operatorname{SUM}(\mathrm{n})=\operatorname{Max}\left(\right.$ SUM $(\mathrm{n}-1)$, TRAILINGSUM $\left.(\mathrm{n}-1)+x_{n}\right)$.
TRAILINGSUM $(\mathrm{n})=\operatorname{Max}\left(0, \operatorname{TRAILINGSUM}(\mathrm{n}-1)+x_{n}\right)$.

That is, of the numbers seen so far.

no notes

Maximum Subsequence Solution (cont)

Analysis:

Important Lesson: If we calculate and remember some additional values as we go along, we are often able to obtain a more efficient algorithm.
This corresponds to strengthening the induction hypothesis so that we compute more than the original problem (appears to) require.
How do we find sequence as opposed to sum?

The Knapsack Problem

Problem:

- Given an integer capacity K and n items such that item i has an integer size k_{i}, find a subset of the n items whose sizes exactly sum to K, if possible.
- That is, find $S \subseteq\{1,2, \cdots, n\}$ such that

$$
\sum_{i \in S} k_{i}=K
$$

Example:
Knapsack capacity $K=163$.
10 items with sizes

$$
4,9,15,19,27,44,54,68,73,101
$$

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of items n, we parameterize by both n and by K.
$P(n, K)$ is the problem with n items and capacity K.
First consider the decision problem: Is there a subset S ?
Induction Hypothesis:
We know how to solve $P(n-1, K)$.

Knapsack Induction

Induction Hypothesis:

We know how to solve $P(n-1, K)$.
Solving $P(n, K)$:

- If $P(n-1, K)$ has a solution, then it is also a solution for $P(n, K)$.
- Otherwise, $P(n, K)$ has a solution iff $P\left(n-1, K-k_{n}\right)$ has a solution.

So what should the induction hypothesis really be?

This version of Knapsack is one of several variations. Think about solving this for 163. An answer is:

$$
S=\{9,27,54,73\}
$$

Now, try solving for $K=164$. An answer is:

$$
S=\{19,44,101\} .
$$

There is no relationship between these solutions!

Is there a subset S such that $\sum S_{i}=K$?

But... I don't know how to solve $P\left(n-1, K-k_{n}\right)$ since it is not in my induction hypothesis! So, we must strengthen the induction hypothesis.

New Induction Hypothesis:

We know how to solve $P(n-1, k), 0 \leq k \leq K$.

Knapsack: New Induction

Need to solve two subproblems: $P(n-1, k)$ and $P\left(n-1, k-k_{n}\right)$.

Algorithm Complexity

- Resulting algorithm complexity:
$T(n)=2 T(n-1)+c \quad n \geq 2$
$T(n)=\Theta\left(2^{n}\right) \quad$ by expanding sum.
- Alternate: change variable from n to $m=2^{n}$.
$2 T(m / 2)+c_{1} n^{0}$.
From Theorem 3.4, we get $\Theta\left(m^{\log _{2} 2}\right)=\Theta\left(2^{n}\right)$.
- But, there are only $n(K+1)$ problems defined.
- It must be that problems are being re-solved many times by this algorithm. Don't do that.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation:

- Store an $n \times(K+1)$ matrix to contain solutions for all the $P(i, k)$.
- Fill in the table row by row.
- Alternately, fill in table using logic above.

Analysis:

$T(n)=\Theta(n K)$.
Space needed is also $\Theta(n K)$.

Example

$K=10$, with 5 items having size $9,2,7,4,1$.

	0	1	2	3	4	5	6	7	8	9	10
$k_{1}=9$	0	-	-	-	-	-	-	-	-	1	-
$k_{2}=2$	0	-	1	-	-	-	-	-	-	0	-
$k_{3}=7$	0	-	0	-	-	-	-	1	-	$1 / O$	-
$k_{4}=4$	0	-	0	-	1	-	1	0	-	0	-
$k_{5}=1$	0	1	0	1	O	1	0	$1 / O$	1	0	1

Key:

- No solution for $P(i, k)$
O Solution(s) for $P(i, k)$ with i omitted.
I Solution(s) for $P(i, k)$ with i included.
I/O Solutions for $P(i, k)$ both with i included and with i omitted.

Solution Graph

Find all solutions for $P(5,10)$.

The result is an n-level DAG.

Dynamic Programming

This approach of storing solutions to subproblems in a table is called dynamic programming.

It is useful when the number of distinct subproblems is not too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single entry.

Most useful for optimization problems.

Fibonacci Sequence

```
int Fibr(int n) {
    if (n <= 1) return 1; // Base case
    return Fibr(n-1) + Fibr(n-2); // Recursion
    }
```

- Cost is Exponential. Why?
- If we could eliminate redundancy, cost would be greatly reduced.

Fibonacci Sequence (cont)

- Keep a table

```
int Fibrt(int n, int* Values) {
    // Assume Values has at least n slots, and
    // all slots are initialized to 0
    if (n <= 1) return 1; // Base case
    if (Values[n] == 0) // Compute and store
        Values[n] = Fibrt(n-1, Values) +
            Fibrt(n-2, Values);
        return Values[n];
}
- Cost?
```

- We don't need table, only last 2 values.
- Key is working bottom up.

Alternative approach:

Do not precompute matrix. Instead, solve subproblems as necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and retrieving) subproblem solutions.
no notes

Essentially, we are making as many function calls as the value of the Fibonacci sequence itself. It is roughly (though not quite) two function calls of size $n-1$ each.

no notes

Chained Matrix Multiplication

Problem: Compute the product of n matrices

$$
M=M_{1} \times M_{2} \times \cdots \times M_{n}
$$

as efficiently as possible.
If A is $r \times s$ and B is $s \times t$, then $\operatorname{cost}(A \times B)=$
$\operatorname{SIZE}(A \times B)=$
If C is $t \times u$ then $\operatorname{COST}((A \times B) \times C)=$ $\operatorname{cost}((A \times(B \times C)))=$

Order Matters

Example:

$$
A=2 \times 8 ; B=8 \times 5 ; C=5 \times 20
$$

$\operatorname{cost}((A \times B) \times C)=$
$\operatorname{cost}(A \times(B \times C))=$
View as binary trees:

Chained Matrix Induction

Induction Hypothesis: We can find the optimal evaluation tree for the multiplication of $\leq n-1$ matrices.

Induction Step: Suppose that we start with the tree for:

$$
M_{1} \times M_{2} \times \cdots \times M_{n-1}
$$

and try to add M_{n}.
Two obvious choices:
(1) Multiply $M_{n-1} \times M_{n}$ and replace M_{n-1} in the tree with a subtree.
(2) Multiply M_{n} by the result of $P(n-1)$: make a new root.

Visually, adding M_{n} may radically order the (optimal) tree.

Alternate Induction

Induction Step: Pick some multiplication as the root, then recursively process each subtree.

- Which one? Try them all!
- Choose the cheapest one as the answer.
- How many choices?

Observation: If we know the ith multiplication is the root, then the left subtree is the optimal tree for the first $i-1$ multiplications and the right subtree is the optimal tree for the last $n-i-1$ multiplications.

Notation: for $1 \leq i \leq j \leq n$,
$c[i, j]=$ minimum cost to multiply $M_{i} \times M_{i+1} \times \cdots \times M_{j}$.

$$
\text { So }, c[1, n]=\min _{1 \leq i \leq n-1} r_{0} r_{i} r_{n}+c[1, i]+c[i+1, n] .
$$

$$
\begin{aligned}
& A \times B: \\
& r s t \\
& r \times t \\
& \\
& r s t+(r \times t)(t \times u)=r s t+r t u . \\
& (r \times s)[(s \times t)(t \times u)]=(r \times s)(s \times u) . \\
& r s u+s t u .
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cdot 8 \cdot 5+2 \cdot 5 \cdot 20=280 \\
& 8 \cdot 5 \cdot 20+2 \cdot 8 \cdot 20=1120 .
\end{aligned}
$$

Tree for $((A \times B) \times C)=: \cdot A B C$
Tree for $(A \times(B \times C)=: \cdot A \cdot B C$
We would like to find the optimal order for computation before actually doing the matrix multiplications.

$\stackrel{\wedge}{\grave{\Sigma}}^{\text {CS } 5114}$		Chamed hankrx mouction
		-
을	$\left\llcorner_{\text {Chained Matrix }}\right.$ Induction	bese ${ }^{*}$
		\%

Problem: There is no reason to believe that either of these yields the optimal ordering.

Analysis

Base Cases: For $1 \leq k \leq n, c[k, k]=0$.
More generally:

$$
c[i, j]=\min _{1 \leq k \leq j-1} r_{i-1} r_{k} r_{j}+c[i, k]+c[k+1, j]
$$

Solving $c[i, j]$ requires $2(j-i)$ recursive calls.
Analysis:

$$
\begin{aligned}
T(n) & =\sum_{k=1}^{n-1}(T(k)+T(n-k))=2 \sum_{k=1}^{n-1} T(k) \\
T(1) & =1 \\
T(n+1) & =T(n)+2 T(n)=3 T(n) \\
T(n) & =\Theta\left(3^{n}\right) \quad \text { Ugh! }
\end{aligned}
$$

But there are only $\Theta\left(n^{2}\right)$ values $c[i, j]$ to be calculated!

Dynamic Programming

Make an $n \times n$ table with entry $(i, j)=c[i, j]$.

$c[1,1]$	$c[1,2]$	\cdots	$c[1, n]$
	$c[2,2]$	\cdots	$c[2, n]$
		\cdots	\cdots
		\cdots	\cdots
			$c[n, n]$

Only upper triangle is used.
Fill in table diagonal by diagonal.
$c[i, i]=0$.
For $1 \leq i<j \leq n$,
$c[i, j]=\min _{i \leq k \leq j-1} r_{i-1} r_{k} r_{j}+c[i, k]+c[k+1, j]$.

Dynamic Programming Analysis

- The time to calculate $c[i, j]$ is proportional to $j-i$.
- There are $\Theta\left(n^{2}\right)$ entries to fill.
- $T(n)=O\left(n^{3}\right)$.
- Also, $T(n)=\Omega\left(n^{3}\right)$.
- How do we actually find the best evaluation order?

Summary

- Dynamic programming can often be added to an inductive proof to make the resulting algorithm as efficient as possible.
- Can be useful when divide and conquer fails to be efficient.
- Usually applies to optimization problems.
- Requirements for dynamic programming:
(1) Small number of subproblems, small amount of information to store for each subproblem.
(2) Base case easy to solve.
(3) Easy to solve one subproblem given solutions to smaller subproblems.

2 calls for each root choice, with $(j-i)$ choices for root. But, these don't all have equal cost.

Actually, since $j>i$, only about half that needs to be done.

The array is processed starting with the middle diagonal (all zeros), diagonal by diagonal toward the upper left corner.

For middle diagonal of size $n / 2$, each costs $n / 2$.

For each $c[i, j]$, remember the k (the root of the tree) that minimizes the expression.
So, store in the table the next place to go.

no notes

Sorting

Each record contains a field called the key. Linear order: comparison.

The Sorting Problem

Given a sequence of records $R_{1}, R_{2}, \ldots, R_{n}$ with key values $k_{1}, k_{2}, \ldots, k_{n}$, respectively, arrange the records into any order s such that records $R_{s_{1}}, R_{s_{2}}, \ldots, R_{s_{n}}$ have keys obeying the property $k_{s_{1}} \leq k_{s_{2}} \leq \ldots \leq k_{s_{n}}$.

Measures of cost:

- Comparisons
- Swaps

Insertion Sort

Best Case:
Worst Case:
Average Case:

Exchange Sorting

- Theorem: Any sort restricted to swapping adjacent records must be $\Omega\left(n^{2}\right)$ in the worst and average cases.
- Proof:
- For any permutation P, and any pair of positions i and j, the relative order of i and j must be wrong in either P or the inverse of P.
- Thus, the total number of swaps required by P and the inverse of P MUST be

$$
\sum_{i=1}^{n-1} i=\frac{n(n-1)}{2} .
$$

Quicksort

Divide and Conquer: divide list into values less than pivot and values greater than pivot.

```
void qsort(Elem* A, int i, int j) { // Quicksort
    int pivotindex = findpivot(A, i, j);
    swap(A, pivotindex, j); // Swap to end
    // k will be first position in right subarray
    int k = partition(A, i-1, j, A[j].key;
    swap(A, k, j); // Put pivot in place
    if ((k-i) > 1) qsort(A, i, k-1); // Sort left
    if ((j-k) > 1) qsort(A, k+1, j); // Sort right
}
int findpivot(Elem* A, int i, int j)
    { return (i+j)/2; }
```


Best case is 0 swaps, $n-1$ comparisons.
Worst case is $n^{2} / 2$ swaps and compares.
Average case is $n^{2} / 4$ swaps and compares.

Insertion sort has great best-case performance.

$n^{2} / 4$ is the average distance from a record to its position in the sorted output.

Initial call: qsort (array, 0, n-1);

Quicksort Partition

```
int partition(Elem* A, int l, int r, int pivot) {
    do { // Move bounds inward until they meet
        while (A[++l].key < pivot); // Move right
        while (r && (A[--r].key > pivot));// Left
        swap(A, l, r); // Swap out-of-place vals
    } while (l < r); // Stop when they cross
    swap(A, l, r); // Reverse wasted swap
    return l; // Return first position in right
}
```

The cost for Partition is $\Theta(n)$.

Partition Example

$$
\begin{aligned}
& \begin{array}{llllllllllll}
\text { Initial } & 72 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 48 & 60
\end{array} \\
& \begin{array}{llllllllllll}
\text { Pass } 1 & 72 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 48 & 60
\end{array} \\
& \begin{array}{llllllllllll}
\text { Swap } 1 & 48 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 72 & 60
\end{array} \\
& 1 \\
& \begin{array}{lllllllllll}
\text { Pass } 2 & 48 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 72 & 60
\end{array} \\
& \begin{array}{lllllllllll}
\text { Swap 2 } & 48 & 6 & 57 & 42 & 85 & 88 & 83 & 73 & 72 & 60
\end{array} \\
& \begin{array}{llllllllllll}
\text { Pass } 3 & 48 & 6 & 57 & 42 & 85 & 88 & 83 & 73 & 72 & 60
\end{array} \\
& \text { r } 1 \\
& \begin{array}{lllllllllll}
\text { Swap } 3 & 48 & 6 & 57 & 85 & 42 & 88 & 83 & 73 & 72 & 60
\end{array} \\
& \begin{array}{lllll|llllll}
\text { Reverse Swap } & 48 & 6 & 57 & 42 & 85 & 88 & 83 & 73 & 72 & 60
\end{array}
\end{aligned}
$$

Partition Example													
Initial 72 6 57 88 85 42 83 73 48 60													
$\begin{array}{llllllllllll}\text { Pass } 1 & 72 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 48 & 60\end{array}$													
$\begin{array}{lllllllllllll}\text { Swap } 1 & 48 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 72 & 60\end{array}$													
$\begin{array}{llllllllllll}\text { Pass } 2 & 48 & 6 & 57 & 88 & 85 & 42 & 83 & 73 & 72 & 60\end{array}$													
Swap 2 $\quad 4 \begin{array}{lllllllllll}48 & 6 & 57 & 42 & 85 & 88 & 83 & 73 & 72 & 60\end{array}$													
$\begin{array}{llllllllllll}\text { Swap } 3 & 48 & 6 & 57 & 85 & 42 & 88 & 83 & 73 & 72 & 60\end{array}$													
Reverse Swap48 6 57 42 85 88 83 73 72 60													
CS 514: Theory of Algorithms Spring 2010													
Quicksort Example													
72 6 57 88 60 42 83 73 48 85													
Pivot $=60$													
48 6 57 42 60 88 83 73 72 85													
Pivot $=6 \quad$ Pivot $=73$													
Pivot $=57 \quad$ Pivot $=88$													
42 48													
6 42 48 57 60 72 73 83 85 88													

no notes

no notes

Cost for Quicksort

Best Case: Always partition in half.
Worst Case: Bad partition.
Average Case:

$$
f(n)=n-1+\frac{1}{n} \sum_{i=0}^{n-1}(f(i)+f(n-i-1))
$$

Optimizations for Quicksort:

- Better pivot.
- Use better algorithm for small sublists.
- Eliminate recursion.
- Best: Don't sort small lists and just use insertion sort at the end.
$\left\llcorner_{\text {Cost for Quicksort }}\right.$

Think about when the partition is bad. Note the FindPivot function that we used is pretty good, especially compared to taking the first (or last) value.
Also, think about the distribution of costs: Line up all the permuations from most expensive to cheapest. How many can be expensive? The area under this curve must be low, since the average cost is $\Theta(n \log n)$, but some of the values cost $\Theta\left(n^{2}\right)$. So there can be VERY few of the expensive ones.

This optimization means, for list threshold T , that no element is more than T positions from its destination. Thus, insertion sort's best case is nearly realized. Cost is at worst $n T$.

Quicksort Average Cost

$\wedge \operatorname{CS5114}$

$$
f(n)= \begin{cases}0 & n \leq 1 \\ n-1+\frac{1}{n} \sum_{i=0}^{n-1}(f(i)+f(n-i-1)) & n>1\end{cases}
$$

Since the two halves of the summation are identical,

$$
f(n)= \begin{cases}0 & n \leq 1 \\ n-1+\frac{2}{n} \sum_{i=0}^{n-1} f(i) & n>1\end{cases}
$$

Multiplying both sides by n yields

$$
n f(n)=n(n-1)+2 \sum_{i=0}^{n-1} f(i) .
$$

Average Cost (cont.)

Get rid of the full history by subtracting $n f(n)$ from $(n+1) f(n+1)$

$$
\begin{aligned}
n f(n) & =n(n-1)+2 \sum_{i=1}^{n-1} f(i) \\
(n+1) f(n+1) & =(n+1) n+2 \sum_{i=1}^{n} f(i) \\
(n+1) f(n+1)-n f(n) & =2 n+2 f(n) \\
(n+1) f(n+1) & =2 n+(n+2) f(n) \\
f(n+1) & =\frac{2 n}{n+1}+\frac{n+2}{n+1} f(n) .
\end{aligned}
$$

Average Cost (cont.)

Note that $\frac{2 n}{n+1} \leq 2$ for $n \geq 1$.
Expand the recurrence to get:

$$
\begin{aligned}
f(n+1) & \leq 2+\frac{n+2}{n+1} f(n) \\
& =2+\frac{n+2}{n+1}\left(2+\frac{n+1}{n} f(n-1)\right) \\
& =2+\frac{n+2}{n+1}\left(2+\frac{n+1}{n}\left(2+\frac{n}{n-1} f(n-2)\right)\right) \\
& =2+\frac{n+2}{n+1}\left(2+\cdots+\frac{4}{3}\left(2+\frac{3}{2} f(1)\right)\right)
\end{aligned}
$$

Average Cost (cont.)

$$
\begin{aligned}
f(n+1) \leq & 2\left(1+\frac{n+2}{n+1}+\frac{n+2}{n+1} \frac{n+1}{n}+\cdots\right. \\
& \left.\quad+\frac{n+2}{n+1} \frac{n+1}{n} \cdots \frac{3}{2}\right) \\
= & 2\left(1+(n+2)\left(\frac{1}{n+1}+\frac{1}{n}+\cdots+\frac{1}{2}\right)\right) \\
= & 2+2(n+2)\left(\mathcal{H}_{n+1}-1\right) \\
= & \Theta(n \log n) .
\end{aligned}
$$

no notes

no notes

$$
\mathcal{H}_{n+1}=\Theta(\log n)
$$

Mergesort

```
List mergesort(List inlist) {
    if (inlist.length() <= 1) return inlist;;
    List l1 = half of the items from inlist;
    List l2 = other half of the items from inlist;
    return merge(mergesort(l1), mergesort(l2));
}
36
|20
|\begin{array}{lllllllll}{13}&{17}&{20}&{36}&{14}&{15}&{23}&{28}\\{\hline}\end{array})
|13
```


Mergesort Implementation (1)

Mergesort is tricky to implement.

```
void mergesort(Elem* A, Elem* temp,
    int left, int right) {
    int mid = (left+right)/2;
    if (left == right) return; // List of one
    mergesort(A, temp, left, mid); // Sort half
    mergesort(A, temp, mid+1, right);// Sort half
    for (int i=left; i<=right; i++) // Copy to temp
        temp[i] = A[i];
```


Mergesort Implementation (2)

// Do the merge operation back to array
int i1 = left; int $i 2=$ mid +1 ;
for (int curr=left; curr<=right; curr++) \{
if (i1 == mid+1) // Left list exhausted
$\mathrm{A}[$ curr $]=$ temp [i2 $2+$ +];
else if (i2 > right) // Right list exhausted
$\mathrm{A}[$ curr] $=$ temp $[i 1++]$;
else if (temp[i1].key < temp[i2].key)
A[curr] = temp[i1++];
else A[curr] = temp[i2++];
\} \}
Mergesort cost:
Mergesort is good for sorting linked lists.

Heaps

Heap: Complete binary tree with the Heap Property:

- Min-heap: all values less than child values.
- Max-heap: all values greater than child values.

The values in a heap are partially ordered.
Heap representation: normally the array based complete binary tree representation.

This implementation requires a second array.

Mergesort cost: $\Theta(n \log n)$

Linked lists: Send records to alternating linked lists, mergesort each, then merge.

no notes

Building the Heap

S 5114

Building the Heap
a)
(b)
(a) requires exchanges (4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6).
(b) requires exchanges (5-2), (7-3), (7-1), (6-1).

Siftdown

```
void heap::siftdown(int pos) { // Sift ELEM down
    assert((pos >= 0) && (pos < n));
    while (!isLeaf(pos)) {
        int j = leftchild(pos);
        if ((j<(n-1)) &&
            (Heap[j].key < Heap[j+1].key))
            j++; // j now index of child with > value
        if (Heap[pos].key >= Heap[j].key) return;
        swap(Heap, pos, j);
        pos = j; // Move down
    }
}
```


BuildHeap

For fast heap construction:

- Work from high end of array to low end.
- Call siftdown for each item.
- Don't need to call siftdown on leaf nodes.

```
void heap::buildheap() // Heapify contents
    { for (int i=n/2-1; i>=0; i--) siftdown(i); }
```

Cost for heap construction:

$$
\sum_{i=1}^{\log n}(i-1) \frac{n}{2^{i}} \approx n
$$

Heapsort

Heapsort uses a max-heap.

```
void heapsort(Elem* A, int n) { // Heapsort
    heap H(A, n, n); // Build the heap
    for (int i=0; i<n; i++) // Now sort
        H.removemax(); // Value placed at end of heap
}
```

Cost of Heapsort:

Cost of finding k largest elements:

no notes

$(i-1)$ is number of steps down, $n / 2^{i}$ is number of nodes at that level.

The intuition for why this cost is $\Theta(n)$ is important. Fundamentally, the issue is that nearly all nodes in a tree are close to the bottom, and we are (worst case) pushing all nodes down to the bottom. So most nodes have nowhere to go, leading to low cost.

\wedge CS 5114	Heaport
ஸ்	

Cost of Heapsort: $\Theta(n \log n)$
Cost of finding k largest elements: $\Theta(k \log n+n)$.

- Time to build heap: $\Theta(n)$.
- Time to remove least element: $\Theta(\log n)$.

Compare Heapsort to sorting with BST:

- BST is expensive in space (overhead), potential bad balance, BST does not take advantage of having all records available in advance.
- Heap is space efficient, balanced, and building initial heap is efficient.

Heapsort Example（2）

Binsort

A simple，efficient sort：
for（ $i=0$ ；$i<n$ ；$i++$ ）

$$
\mathrm{B}[\operatorname{key}(\mathrm{~A}[\mathrm{i}])]=\mathrm{A}[\mathrm{i}] ;
$$

Ways to generalize：
－Make each bin the head of a list．
－Allow more keys than records．

```
void binsort(ELEM *A, int n) {
    list B[MaxKeyValue];
    for (i=0; i<n; i++) B[key(A[i])].append(A[i]);
    for (i=0; i<MaxKeyValue; i++)
            for (each element in order in B[i])
            output(B[i].currValue());
    }
    Cost:
```


Radix Sort

Radix Sort Algorithm (1)

```
void radix(Elem* A, Elem* B, int n, int k, int r,
            int* count) {
// Count[i] stores number of records in bin[i]
for (int i=0, rtok=1; i<k; i++, rtok*=r) {
        for (int j=0; j<r; j++) count[j] = 0; // Init
        // Count # of records for each bin this pass
        for (j=0; j<n; j++)
            count[(key(A[j])/rtok)%r]++;
        //Index B: count[j] is index of j's last slot
        for (j=1; j<r; j++)
            count[j] = count[j-1]+count[j];
```


CS 5114: Theory of Algorithms

Spring 2010 114/134

Sorting Lower Bound

Want to prove a lower bound for all possible sorting algorithms.

Sorting is $\mathrm{O}(n \log n)$.
Sorting I/O takes $\Omega(n)$ time.
Will now prove $\Omega(n \log n)$ lower bound.
Form of proof:

- Comparison based sorting can be modeled by a binary tree.
- The tree must have $\Omega(n!)$ leaves.
- The tree must be $\Omega(n \log n)$ levels deep.

Radix Sort Algorithm (2)

Cost: $\Theta(n k+r k)$.

```
        // Put recs into bins working from bottom
```

 // Put recs into bins working from bottom
 //Bins fill from bottom so j counts downwards
 //Bins fill from bottom so j counts downwards
 for (j=n-1; j>=0; j--)
 for (j=n-1; j>=0; j--)
 B[--count[(key(A[j])/rtok)%r]] = A[j];
 B[--count[(key(A[j])/rtok)%r]] = A[j];
 for (j=0; j<n; j++) A[j] = B[j]; // Copy B->A
 for (j=0; j<n; j++) A[j] = B[j]; // Copy B->A
 }
 }
 }
 }
 How do n, k and r relate?
Radix Sort Algorithm (2)
Oost: Ө(nk+rk)
Oost: Ө(nk+rk)
How do n, k and r relate?

```

\section*{Radix Sort Example}

\(r\) can be viewed as a constant. \(k \geq \log n\) if there are \(n\) distinct keys.

no notes

Radix Sort Algorithm (1)
 Comen and



Theory of Alogitims

\title{
Decision Trees
}

- There are \(n\) ! permutations, and at least 1 node for each.
- A tree with \(n\) nodes has at least \(\log n\) levels.
- Where is the worst case in the decision tree?

\section*{Lower Bound Analysis}
\[
\begin{gathered}
\log n!\leq \log n^{n}=n \log n \\
\log n!\geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}} \geq \frac{1}{2}(n \log n-n)
\end{gathered}
\]
- So, \(\log n!=\Theta(n \log n)\).
- Using the decision tree model, what is the average depth of a node?
- This is also \(\Theta(\log n!)\).

\section*{External Sorting}

Problem: Sorting data sets too large to fit in main memory.
- Assume data stored on disk drive.

To sort, portions of the data must be brought into main memory, processed, and returned to disk.

An external sort should minimize disk accesses.

\section*{Model of External Computation}
- Secondary memory is divided into equal-sized blocks (512, 2048, 4096 or 8192 bytes are typical sizes).
- The basic I/O operation transfers the contents of one disk block to/from main memory.
- Under certain circumstances, reading blocks of a file in sequential order is more efficient. (When?)
- Typically, the time to perform a single block I/O operation is sufficient to Quicksort the contents of the block.
- Thus, our primary goal is to minimize the number fo block I/O operations.
- Most workstations today must do all sorting on a single disk drive.

\section*{Key Sorting}
- Often records are large while keys are small.
- Ex: Payroll entries keyed on ID number.
- Approach 1: Read in entire records, sort them, then write them out again.
- Approach 2: Read only the key values, store with each key the location on disk of its associated record.
- If necessary, after the keys are sorted the records can be read and re-written in sorted order.

\section*{Internal \(\rightarrow\) External Sort}

Why not just use an internal sort on a large virtual memory?
- Quicksort requires random access to the entire set of records.
- Mergesort is more geared toward sequential processing of records.
- Process \(n\) elements in \(\Theta(\log n)\) passes.
- Better: Modify Mergesort for the purpose.

\section*{Try \#1: Simple Mergesort}
(1) Split the file into two files.
(2) Read in a block from each file.
(3) Take first record from each block, output them in sorted order.
(9) Take next record from each block, output them to a second file in sorted order.
(5) Repeat until finished, alternating between output files. Read new input blocks as needed.
(6) Repeat steps 2-5, except this time the input files have groups of two sorted records that are merged together.
- Each pass through the files provides larger and larger groups of sorted records.

A group of sorted records is called a run.

\section*{Problems with Simple Mergesort}


Runs of length 1
Runs of length 2
Runs of length 4
- Is each pass through input and output files sequential?
- What happens if all work is done on a single disk drive?
- How can we reduce the number of Mergesort passes?
- In general, external sorting consists of two phases:
(1) Break the file into initial runs.
(2) Merge the runs together into a single sorted run.

But, this is not usually done.
1. It is expensive (random access to all records).
2. If there are multiple keys, there is no "correct" order.

no notes
no notes


Yes, each pass is sequentail.
But competition for I/O head eliminates advantage of sequential processing.
We could read in a block (or several blocks) and do an in-memory sort to generate large initial runs.

\section*{Breaking a file into runs}

General approach:
- Read as much of the file into memory as possible.
- Perform and in-memory sort.
- Output this group of records as a single run.

\section*{Replacement Selection}
(1) Break available memory into an array for the heap, an input buffer and an output buffer.
(2) Fill the array from disk.
(3) Make a min-heap.
(4) Send the smallest value (root) to the output buffer.
(5) If the next key in the file is greater than the last value output, then

Replace the root with this key.

\section*{else}

Replace the root with the last key in the array. Add the next record in the file to a new heap (actually, stick it at the end of the array).

\section*{Replacement Selection (cont)}

\section*{Example of Replacement Selection}


\section*{no notes}

no notes


\section*{Benefit from Replacement Selection}
- Double buffer to overlap input, processing, output.
- How many disk drives for greatest advantage?
- Snowplow argument:
- A snowplow moves around a circular track onto which snow falls at a steady rate.
- At any instant, there is amount \(S\) snow on the track. Some snow falls in front of the plow, some behind.
- During the next revolution of the snowplow, all of this is removed, plus \(1 / 2\) of what falls during that revolution.
- Thus, the plow removes \(2 S\) amount of snow.
- Is this always true?


CS 5114: Theory of Algorithms

\section*{Simple Mergesort may not be Best}
- Simple Mergesort: Place the runs into two files.
- Merge the first two runs to output file, then next two runs,
- This process is repeated until only one run remains.
- How many passes for \(r\) initial runs?
- Is there benefit from sequential reading?
- Is working memory well used?
- Need a way to reduce the number of passes.

\section*{Multiway Merge}
- With replacement selection, each initial run is several blocks long.
- Assume that each run is placed in a separate disk file.
- We could then read the first block from each file into memory and perform an \(r\)-way merge.
- When a buffer becomes empty, read a block from the appropriate run file.
- Each record is read only once from disk during the merge process.
- In practice, use only one file and seek to appropriate block.

\section*{Multiway Merge (cont)}

\(\log r\) passes are required
There is no benefit from sequential reading if not all on one disk drive.
Working memory is not well used-only 2 blocks are used.
We might be able to reduce passes if we use the memory better.


How much gets removed depends on the assumption that the snow falls equally.
- If the snow is always/tends to be in front of the plow (ascending key values), more gets removed.
- If the snow is always/tends to be behind the plow (descending key values), less gets removed.
no notes

no notes

Runs are \(2 b\) blocks on average because of replacement selection.
\(2 b^{2}\) blocks can be merged in one pass.
In K merge passes, process \(2 b^{(k+1)}\) blocks.
Example: \(128 \mathrm{~K} \rightarrow 32\) 4K blocks.
With replacement selection, get 256 K-length runs.
One merge pass: 8 MB . Two merge passes: 256 MB .
Three merge passes: 8GB.

no notes

In summary, a good external sorting algorithm will seek to do the following:
- Make the initial runs as long as possible.
- At all stages, overlap input, processing and output as much as possible.
- Use as much working memory as possible. Applying more memory usually speeds processing.
- If possible, use additional disk drives for more overlapping of processing with I/O, and allow for more sequential file processing.```


[^0]:    no notes

