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CS5114: Theory of Algorithms

Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.
Divide and conquer is a way of solving a problem by solving
one more more smaller problems.
Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.

Purpose : To prove a parameterized theorem of the
form:
Theorem : ∀n ≥ c, P(n).

◮ Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2
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Review of Mathematical Induction

P(n) is a statement containing n as a variable.

This sample P(n) is true for n ≥ 2, but false for n = 1.

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

CS 5114: Theory of Algorithms Spring 2010 4 / 88

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

20
10

-0
2-

08

CS 5114

Principle of Mathematical Induction

Important: The goal is to prove the implication , not the
theorem! That is, prove that P(n − 1) → P(n). NOT to prove
P(n). This is much easier, because we can assume that P(n) is
true.
Consider the truth table for implication to see this. Since A → B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.
This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.



Induction Example 1

Theorem : Let

S(n) =
n

∑

i=1

i = 1 + 2 + · · · + n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .
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Induction Example 1

Base Case : P(n) is true since S(1) = 1 = 1(1 + 1)/2.
Induction Hypothesis : S(i) = i(i+1)

2 for i < n.
Induction Step :

S(n) = S(n − 1) + n = (n − 1)n/2 + n

=
n(n + 1)

2

Therefore, P(n − 1) → P(n).
By the principle of Mathematical Induction,
∀n ≥ 1, S(n) = n(n+1)

2 .
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

Induction Example 2

Theorem : ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .
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Induction Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n) : (1 + x)n ≥ 1 + nx .

Base Case : (1 + x)1 = 1 + x ≥ 1 + 1x
Induction Hypothesis : Assume (1 + x)n−1 ≥ 1 + (n − 1)x
Induction Step :

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n − 1)x)

= 1 + nx − x + x + nx2 − x2

= 1 + nx + (n − 1)x2

≥ 1 + nx .

Induction Example 3

Theorem : 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).
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Induction Example 3

Base case : 4 = 2 + 2.

Induction Hypothesis : Assume P(k) for 4 ≤ k < n.

Induction Step :
Case 1: n − 1 is made up of all 2c/ stamps. Then, replace 2 of
these with a 5c/ stamp.

Case 2: n − 1 includes a 5c/ stamp. Then, replace this with 3 2c/
stamps.

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...
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Colorings

Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.



Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.
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Two-coloring Problem

Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try
induction on lines.
Base Case : n = 1. Any line divides the plane into two regions.
Induction Hypothesis : It is possible to two-color the regions
formed by n − 1 lines.
Induction Step : Introduce the n’th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n’th line.
A valid two-coloring results.

• Any boundary surviving the addition still has opposite colors.

• Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
1 P(c)

2 P(i), i = 1, 2, · · · , n − 1 → P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).
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Strong Induction

The previous examples were all very straightforward – simply
add in the n’th item and justify that the IH is maintained.
Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

• go backwards from n.

• prove a stronger IH.

to make the most of the IH.

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).
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Graph Problem

It should be obvious that the theorem is true for an undirected
graph.
Naive approach: Assume the theorem is true for any graph of
n − 1 vertices. Now add the nth vertex and its edges. But this
won’t work for the graph 1 ← 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.
Going forward is good for proving existance.
Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

CS 5114: Theory of Algorithms Spring 2010 12 / 88

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

20
10

-0
2-

08

CS 5114

Graph Problem (cont)

N(v) is all vertices reachable (directly) from v . That is, the
Neighbors of v .
H is the graph induced by V − N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is
1 → 2 → 3, and we remove 1, then the independent set for H
must be vertex 2. We can’t just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...



Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.
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Graph Proof (cont)

“S(H) ∪ {v} is not independent” means that there is an edge
from something in S(H) to v .
IMPORTANT: There cannot be an edge from v to S(H)

because whatever we can reach from v is in N(v) and would
have been removed in H.
We need strong induction for this proof because we don’t know
how many vertices are in N(v).

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1

F (n) = F (n − 1) + F (n − 2), n > 2.

Theorem : ∀n ≥ 1, F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).
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Fibonacci Numbers

Expand both sides of the theorem, then cancel like terms:
F (2n + 1) = F (2n) + F (2n − 1) and,

F (n)2 + F (n + 1)2 = F (n)2 + (F (n) + F (n − 1))2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (n − 1)2 + F (n)2 + 2F (n)F (n − 1)

= F (2n − 1) + F (n)2 + 2F (n)F (n − 1).

Want: F (n)2 + F (n + 1)2 = F (2n + 1) = F (2n) + F (2n − 1)
Steps above gave:
F (2n) + F (2n − 1) = F (2n − 1) + F (n)2 + 2F (n)F (n − 1)
So we need to show that: F (n)2 + 2F (n)F (n − 1) = F (2n)
To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our IH!

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger IH!

Theorem :
F (n)2 + F (n + 1)2 = F (2n + 1) and
F (n)2 + 2F (n)F (n − 1) = F (2n).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1) and
F (n − 1)2 + 2F (n − 1)F (n − 2) = F (2n − 2).
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Fibonacci Numbers (cont)

F (n)2 + 2F (n)F (n − 1)

= F (n)2 + 2(F (n − 1) + F (n − 2))F (n − 1)

= F (n)2 + F (n − 1)2 + 2F (n − 1)F (n − 2) + F (n − 1)2

= F (2n − 1) + F (2n − 2)

= F (2n).

F (n)2 + F (n + 1)2 = F (n)2 + [F (n) + F (n − 1)]2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (2n) + F (n − 1)2

= F (2n − 1) + F (2n)

= F (2n + 1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.

Another Example

Theorem : All horses are the same color.

Proof : P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case : n = 1 is easy.
Induction Hypothesis : Assume P(i), i < n.
Induction Step :

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h, h′} have all the same color.

Therefore, P(n) holds.
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Another Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.



Algorithm Analysis

We want to “measure” algorithms.

What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.
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Algorithm Analysis

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.
Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

◮ Establish an (integer) size n for inputs
◮ n numbers in a list
◮ n edges in a graph

Consider time for all inputs of size n:
◮ Time varies widely with specific input
◮ Best case
◮ Average case
◮ Worst case

Time complexity T(n) counts steps in an algorithm.
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Time Complexity

Sometimes analyze in terms of more than one variable.
Best case usually not of interest.
Average case is usually what we want, but can be hard to
measure.
Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.
Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” – not
dependent on n.

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

◮ Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
◮ Ignore small cases:

⋆ Consider behavior approaching infinity
◮ Ignore constant factors, low order terms:

⋆ 2n2 looks the same as 5n2 + n to us.
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Asymptotic Analysis

Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

O Notation

O notation is a measure for “upper bound” of a growth rate.

pronounced “Big-oh”

Definition : For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:

5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)
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O Notation

Remember: The time equation is for some particular set of
inputs – best, worst, or average case.



O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n

n2 ∈ O(n2) while n2 log n /∈ O(n2)
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O Notation (cont)

A common misunderstanding:

• “The best case for my algorithm is n = 1 because that is the
fastest.” WRONG!

• Big-oh refers to a growth rate as n grows to ∞.

• Best case is defined for the input of size n that is cheapest
among all inputs of size n.

Growth Rate Graph
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Growth Rate Graph
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Growth Rate Graph

2n is an exponential algorithm. 10n and 20n differ only by a
constant.

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1, 000 10, 000 n′ = 10n 10
20n 500 5, 000 n′ = 10n 10
5n log n 250 1, 842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).
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Speedups

How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.
For n2, if n = 1000, then n′ would be 1003.
Compare T(n) = n2 to T(n) = n log n. For n > 58, it is faster to
have the Θ(n log n) algorithm than to have a computer that is
10 times faster.

Some Rules for Use
Definition : f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1 : Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2 : If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))
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Some Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.
Is O(2f (n)) ∈ O(3f (n))? Yes, but not vice versa.
3n = 1.5n × 2n so no constant could ever make 2n bigger than
3n for all n.functional composition



Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition : For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition : g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important! : It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)
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Other Asymptotic Notation

Ω is most userful to discuss cost of problems, not algorithms.
Once you have an equation, the bounds have met. So this is
more interesting when discussing your level of uncertainty
about the difference between the upper and lower bound.

You have Θ when you have the upper and the lower bounds
meeting. So Θ means that you know a lot more than just
Big-oh, and so is perferred when possible.

A common misunderstanding:

• Confusing worst case with upper bound.

• Upper bound refers to a growth rate.

• Worst case refers to the worst input from among the choices
for possible inputs of a given size.

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition : g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n)

= 0
Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition : g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition : T (n) = ∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.
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Other Asymptotic Notation (cont)

We won’t use these too much.

Aim of Algorithm Analysis

Typically want to find “simple” f (n) such that T (n) = Θ(f (n)).
Sometimes we settle for O(f (n)).

Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”

Appropriate step depends on the problem.
Ex: measure key comparisons for sorting

Summation : Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations : Used for counting steps in
recursion.
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Aim of Algorithm Analysis

We prefer Θ over Big-oh because Θ means that we understand
our bounds and they met. But if we just can’t find that the
bottom meets the top, then we are stuck with just Big-oh. Lower
bounds can be hard. For problems we are often interested in Ω

– but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

For the sorting example, key comparisons must be
constant-time to be used as a cost measure.

Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.
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Summation: Guess and Test

no notes



Summation Example

S(n) =
n

∑

i=0

i2.

Guess that S(n) is a polynomial ≤ n3.
Equivalently, guess that it has the form
S(n) = an3 + bn2 + cn + d .

For n = 0 we have S(n) = 0 so d = 0.
For n = 1 we have a + b + c + 0 = 1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.

Solving these equations yields a = 1
3 , b = 1

2 , c = 1
6

Now, prove the solution with induction.
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Summation Example

This is Manber Problem 2.5.

We need to prove by induction since we don’t know that the
guessed form is correct. All that we know without doing the
proof is that the form we guessed models some low-order
points on the equation properly.

Technique 2: Shifted Sums

Given a sum of many terms, shift and subtract to eliminate
intermediate terms.

G(n) =
n

∑

i=0

ar i = a + ar + ar 2 + · · · + ar n

Shift by multiplying by r .

rG(n) = ar + ar 2 + · · · + ar n + ar n+1

Subtract.

G(n) − rG(n) = G(n)(1 − r) = a − ar n+1

G(n) =
a − ar n+1

1 − r
r 6= 1
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Technique 2: Shifted Sums

We often solve summations in this way – by multiplying by
something or subtracting something. The big problem is that it
can be a bit like finding a needle in a haystack to decide what
“move” to make. We need to do something that gives us a new
sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
an easier summation.

Shift by multiplying by r is a reasonable guess in this example
since the terms differ by a factor of r .

Example 3.3

G(n) =
n

∑

i=1

i2i = 1 × 2 + 2 × 22 + 3 × 23 + · · · + n × 2n

Multiply by 2.

2G(n) = 1 × 22 + 2 × 23 + 3 × 24 + · · · + n × 2n+1

Subtract (Note:
∑n

i=1 2i = 2n+1 − 2)

2G(n) − G(n) = n2n+1 − 2n · · ·22 − 2

G(n) = n2n+1 − 2n+1 + 2

= (n − 1)2n+1 + 2
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Example 3.3

no notes

Recurrence Relations

A (math) function defined in terms of itself.
Example: Fibonacci numbers:
F (n) = F (n − 1) + F (n − 2) general case
F (1) = F (2) = 1 base cases

There are always one or more general cases and one or
more base cases.
We will use recurrences for time complexity of recursive
(computer) functions.
General format is T (n) = E(T , n) where E(T , n) is an
expression in T and n.

◮ T (n) = 2T (n/2) + n

Alternately, an upper bound: T (n) ≤ E(T , n).
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Recurrence Relations

We won’t spend a lot of time on techniques... just enough to be
able to use them.



Solving Recurrences

We would like to find a closed form solution for T (n) such
that:

T (n) = Θ(f (n))

Alternatively, find lower bound

Not possible for inequalities of form T (n) ≤ E(T , n).

Methods:

Guess (and test) a solution

Expand recurrence

Theorems
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Solving Recurrences

Note that “finding a closed form” means that we have f (n) that
doesn’t include T .

Can’t find lower bound for the inequality because you do not
know enough... you don’t know how much bigger E(T , n) is
than T (n), so the result might not be Ω(T (n)).

Guessing is useful for finding an asymptotic solution. Use
induction to prove the guess correct.

Guessing

T (n) = 2T (n/2) + 5n2 n ≥ 2
T (1) = 7

Note that T is defined only for powers of 2.

Guess a solution: T (n) ≤ c1n3 = f (n)
T (1) = 7 implies that c1 ≥ 7

Inductively, assume T (n/2) ≤ f (n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c1(n/2)3 + 5n2

≤ c1(n3/4) + 5n2

≤ c1n3 if c1 ≥ 20/3.
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Guessing

For Big-oh, not many choices in what to guess.

7 × 13 = 7

Because 20
4·3n3 + 5n2 = 20

3 n3 when n = 1, and as n grows, the
right side grows even faster.

Guessing (cont)

Therefore, if c1 = 7, a proof by induction yields:
T (n) ≤ 7n3

T (n) ∈ O(n3)

Is this the best possible solution?
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Guessing (cont)

No - try something tighter.

Guessing (cont)

Guess again.
T (n) ≤ c2n2 = g(n)

T (1) = 7 implies c2 ≥ 7.

Inductively, assume T (n/2) ≤ g(n/2).

T (n) = 2T (n/2) + 5n2

≤ 2c2(n/2)2 + 5n2

= c2(n2/2) + 5n2

≤ c2n2 if c2 ≥ 10

Therefore, if c2 = 10, T (n) ≤ 10n2. T (n) = O(n2).

Is this the best possible upper bound?
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Guessing (cont)

Because 10
2 n2 + 5n2 = 10n2 for n = 1, and the right hand side

grows faster.

Yes this is best, since T (n) can be as bad as 5n2.



Guessing (cont)

Now, reshape the recurrence so that T is defined for all
values of n.
T (n) ≤ 2T (⌊n/2⌋) + 5n2 n ≥ 2

For arbitrary n, let 2k−1 < n ≤ 2k .

We have already shown that T (2k) ≤ 10(2k)2.

T (n) ≤ T (2k) ≤ 10(2k)2

= 10(2k/n)2n2 ≤ 10(2)2n2

≤ 40n2

Hence, T (n) = O(n2) for all values of n.

Typically, the bound for powers of two generalizes to all n.
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Guessing (cont)

no notes

Expanding Recurrences

Usually, start with equality version of recurrence.

T (n) = 2T (n/2) + 5n2

T (1) = 7

Assume n is a power of 2; n = 2k .
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Expanding Recurrences

no notes

Expanding Recurrences (cont)

T (n) = 2T (n/2) + 5n2

= 2(2T (n/4) + 5(n/2)2) + 5n2

= 2(2(2T (n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT (1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · · + 2 · 5(n/2)2 + 5n2

= 7n + 5
k−1
∑

i=0

n2/2i = 7n + 5n2
k−1
∑

i=0

1/2i

= 7n + 5n2(2 − 1/2k−1)

= 7n + 5n2(2 − 2/n).

This it the exact solution for powers of 2. T (n) = Θ(n2).
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Expanding Recurrences (cont)

T (n) = 2T (n/2) + 5n2

= 2(2T (n/4) + 5(n/2)2) + 5n2

= 2(2(2T (n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT (1) + 2k−1 · 5(n/2k−1)2 + 2k−2 · 5(n/2k−2)2

+ · · · + 2 · 5(n/2)2 + 5n2

= 7n + 5
k−1
∑

i=0

n2/2i = 7n + 5n2
k−1
∑

i=0

1/2i

= 7n + 5n2(2 − 1/2k−1)

= 7n + 5n2(2 − 2/n).

This it the exact solution for powers of 2. T (n) = Θ(n2).

20
10

-0
2-

08

CS 5114

Expanding Recurrences (cont)

no notes

Divide and Conquer Recurrences

These have the form:

T (n) = aT (n/b) + cnk

T (1) = c

... where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.
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Divide and Conquer Recurrences

no notes



Divide and Conquer Recurrences
(cont)

Expand the sum; n = bm.

T (n) = a(aT (n/b2) + c(n/b)k ) + cnk

= amT (1) + am−1c(n/bm−1)k + · · · + ac(n/b)k + cnk

= cam
m

∑

i=0

(bk/a)i

am = alogb n = nlogb a

The summation is a geometric series whose sum depends
on the ratio

r = bk/a.

There are 3 cases.
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Divide and Conquer Recurrences (cont)

n = bm ⇒ m = logbn.

Set a = blogb a. Switch order of logs, giving
(blogb n)logb a = nlogb a.

D & C Recurrences (cont)

(1) r < 1.

m
∑

i=0

r i < 1/(1 − r), a constant.

T (n) = Θ(am) = Θ(nlogb a).

(2) r = 1.
m

∑

i=0

r i = m + 1 = logb n + 1

T (n) = Θ(nlogb a log n) = Θ(nk log n)
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D & C Recurrences (cont)
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D & C Recurrences (cont)

When r = 1, since r = bk/a = 1, we get a = bk .
Recall that k = logba.

D & C Recurrences (Case 3)

(3) r > 1.
m

∑

i=0

r i =
rm+1 − 1

r − 1
= Θ(rm)

So, from T (n) = cam
∑

r i ,

T (n) = Θ(amrm)

= Θ(am(bk/a)m)

= Θ(bkm)

= Θ(nk)
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D & C Recurrences (Case 3)

no notes

Summary

Theorem 3.4 :

T (n) =







Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk

Apply the theorem:
T (n) = 3T (n/5) + 8n2.
a = 3, b = 5, c = 8, k = 2.
bk/a = 25/3.

Case (3) holds: T (n) = Θ(n2).
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Summary

We simplify by approximating summations.



Examples

Mergesort: T (n) = 2T (n/2) + n.
21/2 = 1, so T (n) = Θ(n log n).

Binary search: T (n) = T (n/2) + 2.
20/1 = 1, so T (n) = Θ(log n).

Insertion sort: T (n) = T (n − 1) + n.
Can’t apply the theorem. Sorry!

Standard Matrix Multiply (recursively):
T (n) = 8T (n/2) + n2.
22/8 = 1/2 so T (n) = Θ(nlog2 8) = Θ(n3).
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Examples

[

c11 c12

c21 c22

]

=

[

a11 a12

a21 a22

] [

b11 b12

b21 b22

]

In the straightforward implementation, 2 × 2 case is:

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

So the recursion is 8 calls of half size, and the additions take
Θ(n2) work.

Useful log Notation

If you want to take the log of (log n), it is written log log n.

(log n)2 can be written log2 n.

Don’t get these confused!
log∗ n means “the number of times that the log of n must
be taken before n ≤ 1.

◮ For example, 65536 = 216 so log∗ 65536 = 4 since
log 65536 = 16, log 16 = 4, log 4 = 2, log 2 = 1.
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Useful log Notation

no notes

Amortized Analysis

Consider this variation on STACK:

void init(STACK S);
element examineTop(STACK S);
void push(element x, STACK S);
void pop(int k, STACK S);

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m1 calls to push, m2 calls to pop:
Naive worst case: m1 + m2 · n = m1 + m2 · m1.
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Amortized Analysis

no notes

Alternate Analysis

Use amortized analysis on multiple calls to push, pop:

Cannot pop more elements than get pushed onto the stack.

After many pushes, a single pop has high potential .

Once that potential has been expended, it is not available for
future pop operations.

The cost for m1 pushes and m2 pops:

m1 + (m2 + m1) = O(m1 + m2)
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Alternate Analysis

Actual number of (constant time) push calls + (Actual number
of pop calls + Total potential for the pops)

CLR has an entire chapter on this – we won’t go into this much,
but we use Amortized Analysis implicitly sometimes.



Creative Design of Algorithms by
Induction

Analogy: Induction ↔ Algorithms

Begin with a problem:

“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances .

Example: Sorting

Q contains all finite sequences of integers.

CS 5114: Theory of Algorithms Spring 2010 49 / 88

Creative Design of Algorithms by
Induction

Analogy: Induction ↔ Algorithms

Begin with a problem:

“Find a solution to problem Q.”

Think of Q as a set containing an infinite number of
problem instances .

Example: Sorting

Q contains all finite sequences of integers.

20
10

-0
2-

08

CS 5114

Creative Design of Algorithms by Induction

Now that we have completed the tool review, we will do two
things:

1. Survey algorithms in application areas

2. Try to understand how to create efficient algorithms

This chapter is about the second. The remaining chapters do
the second in the context of the first.

I ← A is reasonably obvious – we often use induction to prove
that an algorithm is correct. The intellectual claim of Manber is
that I → A gives insight into problem solving.

Solving Q

First step:

Parameterize problem by size: Q(n)

Example: Sorting

Q(n) contains all sequences of n integers.

Q is now an infinite sequence of problems:

Q(1), Q(2), ..., Q(n)

Algorithm : Solve for an instance in Q(n) by solving
instances in Q(i), i < n and combining as necessary.
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Solving Q

This is a “meta” algorithm – An algorithm for finding algorithms!

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem : ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

CS 5114: Theory of Algorithms Spring 2010 51 / 88

Induction
Goal: Prove that we can solve for an instance in Q(n) by
assuming we can solve instances in Q(i), i < n.

Don’t forget the base cases!

Theorem : ∀n ≥ 1, we can solve instances in Q(n).
This theorem embodies the correctness of the
algorithm.

Since an induction proof is mechanistic, this should lead
directly to an algorithm (recursive or iterative).

Just one (new) catch:
Different inductive proofs are possible.
We want the most efficient algorithm!

20
10

-0
2-

08

CS 5114

Induction

The goal is using Strong Induction.
Correctness is proved by induction.
Example: Sorting

• Sort n − 1 items, add nth item (insertion sort)

• Sort 2 sets of n/2, merge together (mergesort)

• Sort values < x and > x (quicksort)

Interval Containment

Start with a list of non-empty intervals with integer endpoints.

Example:
[6, 9], [5, 7], [0, 3], [4, 8], [6, 10], [7, 8], [0, 5], [1, 3], [6, 8]

100 1 2 3 4 5 6 7 8 9
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Interval Containment

no notes



Interval Containment (cont)

Problem: Identify and mark all intervals that are contained in
some other interval.

Example:

Mark [6, 9] since [6, 9] ⊆ [6, 10]
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Interval Containment (cont)

[5, 7] ⊆ [4, 8]
[0, 3] ⊆ [0, 5]
[7, 8] ⊆ [6, 10]
[1, 3] ⊆ [0, 5]
[6, 8] ⊆ [6, 10]

[6, 9] ⊆ [6, 10]

Interval Containment (cont)

Q(n): Instances of n intervals
Base case : Q(1) is easy.
Inductive Hypothesis : For n > 1, we know how to
solve an instance in Q(n − 1).
Induction step : Solve for Q(n).

◮ Solve for first n − 1 intervals, applying inductive
hypothesis.

◮ Check the nth interval against intervals i = 1, 2, · · ·
◮ If interval i contains interval n, mark interval n. (stop)
◮ If interval n contains interval i , mark interval i .

Analysis :
T (n) = T (n − 1) + cn
T (n) = Θ(n2)
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Interval Containment (cont)

Base case: Nothing is contained

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.
CS 5114: Theory of Algorithms Spring 2010 55 / 88

“Creative” Algorithm

Idea: Choose a special interval as the nth interval.

Choose the nth interval to have rightmost left endpoint, and
if there are ties, leftmost right endpoint.
(1) No need to check whether nth interval contains other
intervals.

(2) nth interval should be marked iff the rightmost endpoint
of the first n − 1 intervals exceeds or equals the right
endpoint of the nth interval.

Solution: Sort as above.

20
10

-0
2-

08

CS 5114

“Creative” Algorithm

In the example, the nth interval is [7, 8].
Every other interval has left endpoint to left, or right endpoint to
right.
We must keep track of the current right-most endpont.

“Creative” Solution Induction
Induction Hypothesis : Can solve for Q(n − 1) AND interval
n is the “rightmost” interval AND we know R (the rightmost
endpoint encountered so far) for the first n − 1 segments.

Induction Step : (to solve Q(n))
Solve for first n − 1 intervals recursively, and remember
R.
If the rightmost endpoint of nth interval is ≤ R, then
mark the nth interval.
Else R ← right endpoint of nth interval.

Analysis : Θ(n log n) + Θ(n).

Lesson : Preprocessing, often sorting, can help sometimes.
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“Creative” Solution Induction

We strengthened the induction hypothesis. In algorithms, this
does cost something.
We must sort.
Analysis: Time for sort + constant time per interval.



Maximal Induced Subgraph

Problem : Given a graph G = (V , E) and an integer k , find a
maximal induced subgraph H = (U, F ) such that all vertices
in H have degree ≥ k .
Example: Scientists interacting at a conference. Each one
will come only if k colleagues come, and they know in
advance if somebody won’t come.
Example: For k = 3.

5

1

3

6

2

7
4

Solution:
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Maximal Induced Subgraph

Induced subgraph: U is a subset of V , F is a subset of E such
that both ends of e ∈ E are members of U.
Solution is: U = {1, 3, 4, 5}

Max Induced Subgraph Solution

Q(s, k): Instances where |V | = s and k is a fixed integer.

Theorem : ∀s, k > 0, we can solve an instance in Q(s, k).

Analysis : Should be able to implement algorithm in time
Θ(|V | + |E |).
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Max Induced Subgraph Solution

Base Case : s = 1 H is the empty graph.
Induction Hypothesis : Assume s > 1. we can solve instances
of Q(s − 1, k).
Induction Step : Show that we can solve an instance of
G(V , E) in Q(s, k). Two cases:

(1) Every vertex in G has degree ≥ k . H = G is the only solution.

(2) Otherwise, let v ∈ V have degree < k . G − v is an instance
of Q(s − 1, k) which we know how to solve.

By induction, the theorem follows.
Visit all edges to generate degree counts for the vertices. Any
vertex with degree below k goes on a queue. Pull the vertices
off the queue one by one, and reduce the degree of their
neighbors. Add the neighbor to the queue if it drops below k .

Celebrity Problem

In a group of n people, a celebrity is somebody whom
everybody knows, but who knows no one else.

Problem : If we can ask questions of the form “does person i
know person j?” how many questions do we need to find a
celebrity, if one exists?

How should we structure the information?
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Celebrity Problem

no notes

Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:













1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1













A celebrity has all 0’s in his row and all 1’s in his column.

There can be at most one celebrity.

Clearly, O(n2) questions suffice. Can we do better?
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Celebrity Problem (cont)

Formulate as an n × n boolean matrix M.
Mij = 1 iff i knows j .

Example:
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Celebrity Problem (cont)

The celebrity in this example is 4.



Efficient Celebrity Algorithm

Appeal to induction:

If we have an n × n matrix, how can we reduce it to an
(n − 1) × (n − 1) matrix?

What are ways to select the n’th person?
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Efficient Celebrity Algorithm

This induction implies that we go backwards. Natural thing to
try: pick arbitrary n’th person.
Assume that we can solve for n − 1. What happens when we
add nth person?

• Celebrity candidate in n − 1 – just ask two questions.

• Celebrity is n – must check 2(n − 1) positions. O(n2).

• No celebrity. Again, O(n2).

So we will have to look for something special. Who can we
eliminate? There are only two choices: A celebrity or a
non-celebrity. It doesn’t make sense to eliminate a celebrity. Is
there an easy way to guarentee that we eliminate a
non-celeberity?

Efficient Celebrity Algorithm (cont)

Eliminate one person if he is a non-celebrity.

Strike one row and one column.












1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1













Does 1 know 3? No. 3 is a non-celebrity.
Does 2 know 5? Yes. 2 is a non-celebrity.
Observation: Each question eliminates one non-celebrity.
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Efficient Celebrity Algorithm (cont)
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Efficient Celebrity Algorithm (cont)

no notes

Celebrity Algorithm

Algorithm :
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis :
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.













1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1













CS 5114: Theory of Algorithms Spring 2010 63 / 88

Celebrity Algorithm

Algorithm :
1 Ask n − 1 questions to eliminate n − 1 non-celebrities.

This leaves one candidate who might be a celebrity.
2 Ask 2(n − 1) questions to check candidate.

Analysis :
Θ(n) questions are asked.

Example:

Does 1 know 2? No. Eliminate 2
Does 1 know 3? No. Eliminate 3
Does 1 know 4? Yes. Eliminate 1
Does 4 know 5? No. Eliminate 5

4 remains as candidate.













1 0 0 1 0
1 1 1 1 1
1 0 1 1 1
0 0 0 1 0
1 1 1 1 1













20
10

-0
2-

08

CS 5114

Celebrity Algorithm

no notes

Maximum Consecutive Subsequence

Given a sequence of integers, find a contiguous
subsequence whose sum is maximum.

The sum of an empty subsequence is 0.

It follows that the maximum subsequence of a sequence
of all negative numbers is the empty subsequence.

Example:
2, 11, -9, 3, 4, -6, -7, 7, -3, 5, 6, -2

Maximum subsequence:
7, -3, 5, 6 Sum: 15
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Maximum Consecutive Subsequence

no notes



Finding an Algorithm

Induction Hypothesis : We can find the maximum
subsequence sum for a sequence of < n numbers.

Note: We have changed the problem.

First, figure out how to compute the sum.

Then, figure out how to get the subsequence that
computes that sum.
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Finding an Algorithm

no notes

Finding an Algorithm (cont)

Induction Hypothesis : We can find the maximum
subsequence sum for a sequence of < n numbers.
Let S = x1, x2, · · · , xn be the sequence.
Base case : n = 1

Either x1 < 0 ⇒ sum = 0
Or sum = x1.

Induction Step :
We know the maximum subsequence SUM(n-1) for
x1, x2, · · · , xn−1.
Where does xn fit in?

◮ Either it is not in the maximum subsequence or it ends
the maximum subsequence.

If xn ends the maximum subsequence, it is appended to
trailing maximum subsequence of x1, · · · , xn−1.
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Finding an Algorithm (cont)
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Finding an Algorithm (cont)

That is, of the numbers seen so far .

Finding an Algorithm (cont)

Need: TRAILINGSUM(n-1) which is the maximum sum of a
subsequence that ends x1, · · · , xn−1.

To get this, we need a stronger induction hypothesis.
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Finding an Algorithm (cont)

no notes

Maximum Subsequence Solution

New Induction Hypothesis : We can find SUM(n-1) and
TRAILINGSUM(n-1) for any sequence of n − 1 integers.

Base case :
SUM(1) = TRAILINGSUM(1) = Max(0, x1).

Induction step :
SUM(n) = Max(SUM(n-1), TRAILINGSUM(n-1) +xn).
TRAILINGSUM(n) = Max(0, TRAILINGSUM(n-1) +xn).
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Maximum Subsequence Solution
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Maximum Subsequence Solution

no notes



Maximum Subsequence Solution
(cont)

Analysis :
Important Lesson: If we calculate and remember some
additional values as we go along, we are often able to obtain
a more efficient algorithm.

This corresponds to strengthening the induction hypothesis
so that we compute more than the original problem (appears
to) require.

How do we find sequence as opposed to sum?
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Maximum Subsequence Solution (cont)

O(n). T (n) = T (n − 1) + 2.
Remember position information as well.

The Knapsack Problem

Problem :
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1, 2, · · · , n} such that

∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4, 9, 15, 19, 27, 44, 54, 68, 73, 101

CS 5114: Theory of Algorithms Spring 2010 70 / 88

The Knapsack Problem

Problem :
Given an integer capacity K and n items such that item i
has an integer size ki , find a subset of the n items
whose sizes exactly sum to K , if possible.
That is, find S ⊆ {1, 2, · · · , n} such that

∑

i∈S

ki = K .

Example:
Knapsack capacity K = 163.
10 items with sizes

4, 9, 15, 19, 27, 44, 54, 68, 73, 101

20
10

-0
2-

08

CS 5114

The Knapsack Problem

This version of Knapsack is one of several variations.
Think about solving this for 163. An answer is:

S = {9, 27, 54, 73}

Now, try solving for K = 164. An answer is:

S = {19, 44, 101}.

There is no relationship between these solutions!

Knapsack Algorithm Approach

Instead of parameterizing the problem just by the number of
items n, we parameterize by both n and by K .

P(n, K ) is the problem with n items and capacity K .

First consider the decision problem: Is there a subset S?

Induction Hypothesis :
We know how to solve P(n − 1, K ).
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Knapsack Algorithm Approach

Is there a subset S such that
∑

Si = K ?

Knapsack Induction

Induction Hypothesis :
We know how to solve P(n − 1, K ).

Solving P(n, K ):

If P(n − 1, K ) has a solution, then it is also a solution for
P(n, K ).

Otherwise, P(n, K ) has a solution iff P(n − 1, K − kn)
has a solution.

So what should the induction hypothesis really be?
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Knapsack Induction

But... I don’t know how to solve P(n − 1, K − kn) since it is not
in my induction hypothesis! So, we must strengthen the
induction hypothesis.

New Induction Hypothesis :
We know how to solve P(n − 1, k), 0 ≤ k ≤ K .



Knapsack: New Induction

New Induction Hypothesis :
We know how to solve P(n − 1, k), 0 ≤ k ≤ K .

To solve P(n, K ):
If P(n − 1, K ) has a solution,

Then P(n, K ) has a solution.
Else If P(n − 1, K − kn) has a solution,

Then P(n, K ) has a solution.
Else P(n, K ) has no solution.
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Knapsack: New Induction

Need to solve two subproblems: P(n − 1, k) and
P(n − 1, k − kn).

Algorithm Complexity

Resulting algorithm complexity:
T (n) = 2T (n − 1) + c n ≥ 2
T (n) = Θ(2n) by expanding sum.

Alternate: change variable from n to m = 2n.
2T (m/2) + c1n0.
From Theorem 3.4, we get Θ(mlog2 2) = Θ(2n).

But, there are only n(K + 1) problems defined.
◮ It must be that problems are being re-solved many times

by this algorithm. Don’t do that.
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Algorithm Complexity

Problem: Can’t use Theorem 3.4 in this form.
This form uses n0 because we also need an exponent of n to fit
the form of the theorem.

Efficient Algorithm Implementation

The key is to avoid re-computing subproblems.

Implementation :

Store an n × (K + 1) matrix to contain solutions for all
the P(i , k).

Fill in the table row by row.

Alternately, fill in table using logic above.

Analysis :
T (n) = Θ(nK ).
Space needed is also Θ(nK ).
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Efficient Algorithm Implementation

To solve P(i , k) look at entry in the table.
If it is marked, then OK.
Otherwise solve recursively.
Initially, fill in all P(i , 0).

Example

K = 10, with 5 items having size 9, 2, 7, 4, 1.
0 1 2 3 4 5 6 7 8 9 10

k1 = 9 O − − − − − − − − I −
k2 = 2 O − I − − − − − − O −
k3 = 7 O − O − − − − I − I/O −
k4 = 4 O − O − I − I O − O −
k5 = 1 O I O I O I O I/O I O I

Key:
− No solution for P(i , k)
O Solution(s) for P(i , k) with i omitted.
I Solution(s) for P(i , k) with i included.
I/O Solutions for P(i , k) both with i included and with i

omitted.
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Example

Example: M(3, 9) contains O because P(2, 9) has a solution.
It contains I because P(2, 2) = P(2, 9 − 7) has a solution.
How can we find a solution to P(5, 10) from M?
How can we find all solutions for P(5, 10)?



Solution Graph

Find all solutions for P(5, 10).

M(5, 10)

M(4, 9)

M(3, 9)

M(2, 2)

M(1, 0)

M(2, 9)

M(1, 9)

The result is an n-level DAG.
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Solution Graph

Alternative approach:
Do not precompute matrix. Instead, solve subproblems as
necessary, marking in the array during backtracking.
To avoid storing the large array, use hashing for storing (and
retrieving) subproblem solutions.

Dynamic Programming

This approach of storing solutions to subproblems in a table
is called dynamic programming .

It is useful when the number of distinct subproblems is not
too large, but subproblems are executed repeatedly.

Implementation: Nested for loops with logic to fill in a single
entry.

Most useful for optimization problems .
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Dynamic Programming

no notes

Fibonacci Sequence

int Fibr(int n) {
if (n <= 1) return 1; // Base case
return Fibr(n-1) + Fibr(n-2); // Recursion

}

Cost is Exponential. Why?

If we could eliminate redundancy, cost would be greatly
reduced.
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Fibonacci Sequence

Essentially, we are making as many function calls as the value
of the Fibonacci sequence itself. It is roughly (though not quite)
two function calls of size n − 1 each.

Fibonacci Sequence (cont)

Keep a table

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and
// all slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] == 0) // Compute and store

Values[n] = Fibrt(n-1, Values) +
Fibrt(n-2, Values);

return Values[n];
}

Cost?
We don’t need table, only last 2 values.

◮ Key is working bottom up.
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Fibonacci Sequence (cont)

no notes



Chained Matrix Multiplication

Problem : Compute the product of n matrices

M = M1 × M2 × · · · × Mn

as efficiently as possible.

If A is r × s and B is s × t , then
COST(A × B) =
SIZE(A × B) =

If C is t × u then
COST((A × B) × C) =
COST((A × (B × C))) =
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Chained Matrix Multiplication

A × B:
rst
r × t

rst + (r × t)(t × u) = rst + rtu.
(r × s)[(s × t)(t × u)] = (r × s)(s × u).
rsu + stu.

Order Matters

Example:

A = 2 × 8; B = 8 × 5; C = 5 × 20

COST((A × B) × C) =
COST(A × (B × C)) =

View as binary trees:
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Order Matters

2 · 8 · 5 + 2 · 5 · 20 = 280.
8 · 5 · 20 + 2 · 8 · 20 = 1120.

Tree for ((A × B) × C) =: · · ABC
Tree for (A × (B × C) =: ·A · BC

We would like to find the optimal order for computation before
actually doing the matrix multiplications.

Chained Matrix Induction
Induction Hypothesis : We can find the optimal evaluation
tree for the multiplication of ≤ n − 1 matrices.

Induction Step : Suppose that we start with the tree for:

M1 × M2 × · · · × Mn−1

and try to add Mn.

Two obvious choices:
1 Multiply Mn−1 × Mn and replace Mn−1 in the tree with a

subtree.
2 Multiply Mn by the result of P(n − 1): make a new root.

Visually, adding Mn may radically order the (optimal) tree.
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Chained Matrix Induction

Problem: There is no reason to believe that either of these
yields the optimal ordering.

Alternate Induction
Induction Step : Pick some multiplication as the root, then
recursively process each subtree.

Which one? Try them all!
Choose the cheapest one as the answer.
How many choices?

Observation: If we know the i th multiplication is the root,
then the left subtree is the optimal tree for the first i − 1
multiplications and the right subtree is the optimal tree for
the last n − i − 1 multiplications.

Notation: for 1 ≤ i ≤ j ≤ n,
c[i , j ] = minimum cost to multiply Mi × Mi+1 × · · · × Mj .

So,c[1, n] = min
1≤i≤n−1

r0rirn + c[1, i ] + c[i + 1, n].
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Alternate Induction

n − 1 choices for root.



Analysis

Base Cases: For 1 ≤ k ≤ n, c[k , k ] = 0.
More generally:

c[i , j ] = min
1≤k≤j−1

ri−1rk rj + c[i , k ] + c[k + 1, j ]

Solving c[i , j ] requires 2(j − i) recursive calls.
Analysis :

T (n) =
n−1
∑

k=1

(T (k) + T (n − k)) = 2
n−1
∑

k=1

T (k)

T (1) = 1

T (n + 1) = T (n) + 2T (n) = 3T (n)

T (n) = Θ(3n) Ugh!

But there are only Θ(n2) values c[i , j ] to be calculated!
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Analysis

2 calls for each root choice, with (j − i) choices for root. But,
these don’t all have equal cost.

Actually, since j > i , only about half that needs to be done.

Dynamic Programming

Make an n × n table with entry (i , j) = c[i , j ].
c[1, 1] c[1, 2] · · · c[1, n]

c[2, 2] · · · c[2, n]
· · · · · ·
· · · · · ·

c[n, n]

Only upper triangle is used.
Fill in table diagonal by diagonal.
c[i , i ] = 0.
For 1 ≤ i < j ≤ n,

c[i , j ] = min
i≤k≤j−1

ri−1rk rj + c[i , k ] + c[k + 1, j ].
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Dynamic Programming

The array is processed starting with the middle diagonal (all
zeros), diagonal by diagonal toward the upper left corner.

Dynamic Programming Analysis

The time to calculate c[i , j ] is proportional to j − i .

There are Θ(n2) entries to fill.

T (n) = O(n3).

Also, T (n) = Ω(n3).

How do we actually find the best evaluation order?
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Dynamic Programming Analysis

For middle diagonal of size n/2, each costs n/2.

For each c[i , j], remember the k (the root of the tree) that
minimizes the expression.
So, store in the table the next place to go.

Summary

Dynamic programming can often be added to an
inductive proof to make the resulting algorithm as
efficient as possible.

Can be useful when divide and conquer fails to be
efficient.

Usually applies to optimization problems.
Requirements for dynamic programming:

1 Small number of subproblems, small amount of
information to store for each subproblem.

2 Base case easy to solve.
3 Easy to solve one subproblem given solutions to smaller

subproblems.
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Summary

no notes


