CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech
Blacksburg, Virginia

Spring 2010

Copyright © 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1/46

CS5114: Theory of Algorithms

@ Emphasis: Creation of Algorithms
@ Less important:
» Analysis of algorithms
> Problem statement
» Programming
@ Central Paradigm: Mathematical Induction

» Find a way to solve a problem by solving one or more
smaller problems
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Review of Mathematical Induction

@ The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.
@ Purpose : To prove a parameterized theorem of the
form:
Theorem: Vn > c,P(n).
» Use only positive integers > ¢ for n.
@ Sample P(n):
n+1<n?
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Principle of Mathematical Induction

@ |F the following two statements are true:
© P(c)is true.
© Forn >c,P(n—1)istrue — P(n) is true.
... THEN we may conclude: Vn > c, P(n).
@ The assumption “P(n — 1) is true” is the
induction hypothesis
@ Typical induction proof form:

© Base case
@ State induction Hypothesis
© Prove the implication (induction step)

@ What does this remind you of?
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Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).

We will use Analysis of Algorithms as a tool.

Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.

Divide and conquer is a way of solving a problem by solving
one more more smaller problems.

Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.
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Review of Mathematical Induction
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LReview of Mathematical Induction

P(n) is a statement containing n as a variable.

This sample P(n) is true for n > 2, but false for n = 1.
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LPrincipIe of Mathematical Induction

Important: The goal is to prove the implication , not the
theorem! That is, prove that P(n — 1) — P(n). NOT to prove
P(n). This is much easier, because we can assume that P(n) is
true.

Consider the truth table for implication to see this. Since A — B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.

This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.
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Base Case: P(n) is true since S(1) =1 =1(1+1)/2.
Theorem : Let Induction Hypothesis : S(i) = "X fori < n.
Induction Step :

n
S(nN)=)Y i=1+2+--+n.
i=1

S(n) S(n—1)4+n=(n—-1)n/2+n
n(n+1)

2

Therefore, P(n — 1) — P(n).

By the principle of Mathematical Induction,
vn>1,S(n) = w

Ml is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

Then, Vn > 1,S(n) = "0,
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Theorem ¥ > 1, el such hat 1+ 0,
(1,

Llnducxion Example 2

Induction Example 2
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What do we do induction on? Can'’t be a real number, so must
be n.
P(n): (1+x)" > 1+nx.

Theorem: Vn > 1,V real x such that 1 +x > 0,

(L+x)">1+nx. Base Case: (1 +x)'=1+x >1+1x
Induction Hypothesis : Assume (1 +x)""1 > 1+ (n — 1)x
Induction Step :

(1+x)"

(1+x)1+x)"1
(T+x)(1+(n—1)x)

= 14nX—X+X+nx?—x?
= 1+4nx+(n—1)x?

%

> 1+nx.
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Base case: 4 =2+ 2.
Induction Hypothesis : Assume P(k) for 4 <k < n.
Theorem : 2¢ and 5¢ stamps can be used to form any
denomination (for denominations > 4). . ]
Induction Step :
Case 1: n — 1 is made up of all 2¢ stamps. Then, replace 2 of
these with a 5¢ stamp.
Case 2: n — 1includes a 5¢ stamp. Then, replace this with 3 2¢
stamps.
~ CS5114 T
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4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share Induction is useful for much more than checking equations!
the same color.
If we accept the statement about the general 4-color problem,

Restrict the problem to regions formed by placing (infinite) then of course 4 colors is enough for our restricted version.
lines in the plane. How many colors do we need?
Candidates: If 2 is enough, then of course we can do it with 3 or more.

@ 4: Certainly

9 3:?

@ 2:7?

9@ 1: No!

Let's try it for 2...
Spring 2010 8/46



Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.

Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.
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Strong Induction

IF the following two statements are true:
O P(c)

Q P(i),i=12--- n—1—P(n),

... THEN we may conclude: Vn > ¢, P(n).

Advantage: We can use statements other than P(n — 1) in
proving P(n).
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Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem: Let G = (V,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).
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Graph Problem (cont)

Theorem: Let G = (V,E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Base Case: Easy if n < 3 because there can be no path of
length > 2.

Induction Hypothesis : The theorem is true if [V | < n.
Induction Step (n > 3):

Pick any v € V.

Define: N(v) = {v}U{w e V|(v,w) € E}.

H=G — N(v).

Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.
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Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can't, so try
induction on lines.

Base Case: n = 1. Any line divides the plane into two regions.
Induction Hypothesis : It is possible to two-color the regions
formed by n — 1 lines.

Induction Step : Introduce the n'th line.

This line cuts some colored regions in two.

Reverse the region colors on one side of the n’th line.

A valid two-coloring results.

e Any boundary surviving the addition still has opposite colors.

e Any new boundary also has opposite colors after the switch.

CS 5114

strong Induction

LStrong Induction

Adariage: We can se satements oher than P(n 1)
prowng P(n).

The previous examples were all very straightforward — simply
add in the n’th item and justify that the IH is maintained.

Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

e go backwards from n.

e prove a stronger IH.

to make the most of the IH.
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It should be obvious that the theorem is true for an undirected
graph.

Naive approach: Assume the theorem is true for any graph of
n — 1 vertices. Now add the nth vertex and its edges. But this
won't work for the graph 1 < 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.

Going forward is good for proving existance.

Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.
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Graph Problem (cont)

Theorem: Lot = (V. £) be a ected graph. Then, .
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N(v) is all vertices reachable (directly) from v. That is, the
Neighbors of v.
H is the graph induced by V — N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is

1 — 2 — 3, and we remove 1, then the independent set for H
must be vertex 2. We can't just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...



Graph Proof (cont)

There are two cases:

© S(H)u{v} isindependent.
Then S(G) = S(H) U {v}.

© S(H)u{v} is not independent.
Letw € S(H) such that (w,v) € E.
Every vertex in N(v) can be reached by w with path of
length < 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.
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Fibonacci Numbers

Define Fibonacci numbers inductively as:

F(1) = F(2)=1

F(n) = F(n—-1)+F(n—-2),n>2.
Theorem: Vn > 1,F(n)? + F(n +1)> = F(2n + 1).
Induction Hypothesis:
F(n—1)2+F(n)>=F(2n - 1).
Spring 2010 14/46

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger |H!

Theorem :
F(n)?+F(n+1)2=F(2n+1) and
F(n)?+ 2F(n)F(n — 1) = F(2n).

Induction Hypothesis:

F(n—1)>+F(n)>=F(2n—1) and

F(n—1)2+2F(n—1)F(n—2)=F(2n-2).
Spring 2010 1546

Another Example

Theorem : All horses are the same color.

Proof: P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case: n = 1is easy.
Induction Hypothesis : Assume P(i),i < n.
Induction Step :
@ Let S be a set of horses, |S| = n.
9 Let S’ be S — {h} for some horse h.
@ By IH, all horses in S’ have the same color.
@ Let h’ be some horse in S'.
IH implies {h, h’} have all the same color.
Therefore, P(n) holds.
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LGraph Proof (cont)

“S(H) U {v} is not independent” means that there is an edge
from something in S(H) to v.

IMPORTANT: There cannot be an edge from v to S(H)
because whatever we can reach from v is in N(v) and would
have been removed in H.

We need strong induction for this proof because we don’t know
how many vertices are in N(v).
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L Fibonacci Numbers

Expand both sides of the theorem, then cancel like terms:
F(2n+1)=F(2n)+F(2n—1) and,

F(N)>+F(n+1)” = F(n)*+(F(n)+F(n—1))>
= F(n)?+F(n)2+2F(N)F(n—1)+F(n—-1)2
= F(n)?+F(n—1)2+F(n)?+2F(n)F(n—1)
= F(2n—1)+F(n)? +2F(n)F(n —1).

Want: F(n)? + F(n+1)2 =
Steps above gave:
F(2n)+F(2n—1) =F(2n — 1) + F(n)? + 2F(n)F(n — 1)

So we need to show that: F(n)? + 2F (n)F(n — 1) = F(2n)

To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our IH!

F(2n+1) =F(2n) + F(2n - 1)
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Fibonacci Numbers (cont)

LFibonacci Numbers (cont)

F(n)? +2F(n)F(n — 1)

= F(n)?+2(F(n—1)+F(n-2)F(n-1)

= F(n)?+F(n—-1)2+4+2F(n—1)F(n—2)+F(n—1)?

= F(2n—-1)+F(2n-2)

= F(2n).
F(N?+F(n+1)?2 = F(n)?+[F(n)+F(n-1)?
= F(n)?+F(n)?+2F(n)F(n—1)+F(n—-1)2
= F(n)?2+F(2n)+F(n—1)>?
= F(2n-1)+F(2n)
F(2n +1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.
CS 5114 Avoer Example

LAnother Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.



Algorithm Analysis

@ We want to “measure” algorithms.
@ What do we measure?

@ What factors affect measurement?

@ Objective: Measures that are independent of all factors
except input.
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Time Complexity

@ Time and space are the most important computer
resources.
@ Function of input: T(input)
@ Growth of time with size of input:
» Establish an (integer) size n for inputs
» n numbers in a list
» n edges in a graph
@ Consider time for all inputs of size n:
» Time varies widely with specific input
» Best case
» Average case
» Worst case

@ Time complexity T(n) counts steps in an algorithm.
Spring 2010 18146

Asymptotic Analysis

@ It is undesirable/impossible to count the exact number of
steps in most algorithms.

» Instead, concentrate on main characteristics.

@ Solution: Asymptotic analysis
» Ignore small cases:
* Consider behavior approaching infinity
» Ignore constant factors, low order terms:
* 2n? looks the same as 5n? + n to us.
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O Notation

O notation is a measure for “upper bound” of a growth rate.
@ pronounced “Big-oh”

Definition : For T(n) a non-negatively valued function, T(n)
is in the set O(f(n)) if there exist two positive constants ¢
and ng such that T(n) < cf(n) for all n > ng.

Examples:
® 5n+8 € O(n)
@ 2n? +nlogn € O(n?) € O(n® + 5n?)
@ 2n? +nlogn € O(n?) € O(n® + n?)
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 Objctve: essures that e independent o afactors
exceptinput.

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?

Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.

Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

CS 5114 Time Complexity

LTime Complexity

2010-01-27

Sometimes analyze in terms of more than one variable.

Best case usually not of interest.

Average case is usually what we want, but can be hard to
measure.

Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.

Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” — not
dependent on n.
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Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

CSs 5114

LO Notation
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Remember: The time equation is for some particular set of
inputs — best, worst, or average case.
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O Notation (cont)

We seek the “simplest” and “strongest” f.

Big-O is somewhat like “<™:
n2 € O(n®) and n?logn € O(n®), but
@ n? #n?%logn
@ n2 € O(n?) while n?logn ¢ O(n?)
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Growth Rate Graph

La00 Snlogn
1200
1000

o -

600 -

]

Input size n

Spring 2010 22146
Speedups
What happens when we buy a computer 10 times faster?

Tn) | n | n | Change | n’/n
10n 1,000 | 10,000 | n" = 10n 10
20n 500 | 5,000 | n"=10n 10
5nlogn 250 | 1,842 |+10n<n'<10n | 7.37
2n? 70 223 | n’ = v10n 3.16
2" 13 16 |n"=n+3 ——

n: Size of input that can be processed in one hour (10,000
steps).

n’: Size of input that can be processed in one hour on the
new machine (100,000 steps).

Spring 2010 23/46

Some Rules for Use

Definition : f is monotonically growing  if ny > n, implies
f(nl) > f(nz).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1 : Suppose f is monotonically growing.

¥c > 0and Va > 1, (f(n))¢ € O(a'™)

In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2: If f(n) € O(s(n)) and g(n) € O(r(n)) then
@ f(n)+g(n) € O(s(n) + r(n)) = O(max(s(n),r(n)))
@ f(n)g(n) € O(s(n)r(n)).

@ If s(n) € O(h(n)) then f(n) € O(h(n))
@ For any constant k, f(n) € O(ks(n))
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O Notation (cont)
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LO Notation (cont)

A common misunderstanding:

e “The best case for my algorithm is n = 1 because that is the
fastest” WRONG!

e Big-oh refers to a growth rate as n grows to co.

e Best case is defined for the input of size n that is cheapest
among all inputs of size n.
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LGrowth Rate Graph

2" is an exponential algorithm. 10n and 20n differ only by a
constant.
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Speedups

LSpeedups

- Sie of s hatcan e processed i one owe (10000
sepe).
S0 of ot that canbe processed i one hout on e
ew machine (10000 stgs)

How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.

For n?, if n = 1000, then n’ would be 1003.

Compare T(n) = n? to T(n) = nlogn. For n > 58, it is faster to
have the ©(nlog n) algorithm than to have a computer that is
10 times faster.

CSs 5114 ‘Some Rules for Use

LSome Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.

Is O(2f(M) € 0(31(M)? Yes, but not vice versa.

3" =1.5" x 2" so no constant could ever make 2" bigger than
3" for all n.functional composition



Other Asymptotic Notation

Q(f(n)) — lower bound (>)

Definition : For T(n) a non-negatively valued function, T(n)
is in the set Q(g(n)) if there exist two positive constants ¢
and ng such that T(n) > cg(n) for all n > no.

Ex: n?logn € Q(n?).

©(f(n)) — Exact bound (=)

Definition : g(n) = ©(f(n)) if g(n) € O(f(n)) and
g(n) € Q(f(n)).

Important! : Itis © if it is both in big-Oh and in Q.
Ex: 5n% +4n% +9n + 7 = ©(n®)
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Other Asymptotic Notation (cont)

o(f(n)) — little o (<)
Definition : g(n) € o(f(n)) if limy_ % =0
Ex: n? € o(n3)

w(f(n)) — little omega (>)
Definition : g(n) € w(f(n)) if f(n) € o(g(n)).
Ex: n® € w(n?)

oo(f(n))
Definition : T(n) = oo(f(n)) if T(n) = O(f(n)) but the
constant in the O is so large that the algorithm is impractical.
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Aim of Algorithm Analysis

Typically want to find “simple” f(n) such that T (n) = ©(f(n)).
@ Sometimes we settle for O(f(n)).
Usually we measure T as “worst case” time complexity.
Sometimes we measure “average case” time complexity.
Approach: Estimate number of “steps”
@ Appropriate step depends on the problem.
@ Ex: measure key comparisons for sorting

Summation : Since we typically count steps in different parts
of an algorithm and sum the counts, techniques for
computing sums are important (loops).

Recurrence Relations : Used for counting steps in
recursion.
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Summation: Guess and Test

Technique 1: Guess the solution and use induction to test.

Technique 1a: Guess the form of the solution, and use
simultaneous equations to generate constants. Finally, use
induction to test.
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LOther Asymptotic Notation

Q is most userful to discuss cost of problems, not algorithms.
Once you have an equation, the bounds have met. So this is
more interesting when discussing your level of uncertainty
about the difference between the upper and lower bound.

You have © when you have the upper and the lower bounds
meeting. So © means that you know a lot more than just
Big-oh, and so is perferred when possible.

A common misunderstanding:
e Confusing worst case with upper bound.
e Upper bound refers to a growth rate.

e Worst case refers to the worst input from among the choices
for possible inputs of a given size.
CS 5114

Other Asymptotic Notation (cont)

LOther Asymptotic Notation (cont)

) = (1) T () = 1) b

s 50larg tha e agort s Impractea.

We won't use these too much.
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LAim of Algorithm Analysis

We prefer © over Big-oh because © means that we understand
our bounds and they met. But if we just can't find that the

bottom meets the top, then we are stuck with just Big-oh. Lower
bounds can be hard. For problems we are often interested in Q

— but this is often hard for non-trivial situations!

Often prefer average case (except for real-time programming),
but worst case is simpler to compute than average case since
we need not be concerned with distribution of input.

For the sorting example, key comparisons must be
constant-time to be used as a cost measure.
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Summation: Guess and Test
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no notes



~ CS5114 Summation Example
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Summat'on Exam ple g LSummation Example
2
n
S(n) = Z i2 This is Manber Problem 2.5.
i=0
Guess that S(n) is a polynomial < n®. We need to prove by induction since we don’t know that the
Equivalently, guess that it has the form guessed form is correct. All that we know without doing the
S(n) = an®+ bn? +cn +d. proof is that the form we guessed models some low-order
points on the equation properly.
Forn =0 we have S(n) =0sod = 0.
Forn=1wehavea+b+c+0=1.
For n = 2 we have 8a + 4b + 2c = 5.
For n = 3 we have 27a + 9b + 3c = 14.
7 7 7 _ 1 _ 1 _ 1
Solving these equations yields a = 3,b = 5,¢c = ¢
Now, prove the solution with induction.
~ CS5114 Technique 2: Shifted Sums
o
Technique 2: Shifted Sums 3 L —Technique 2: Shifted Sums
-
o
N
Given a sum of many terms, shift and subtract to eliminate
intermediate terms. We often solve summations in this way — by multiplying by
n , something or subtracting something. The big problem is that it
G(n) = Z ar'=a4ar+ar®+...+ar" can be a bit like finding a needle in a haystack to decide what
i=0 “move” to make. We need to do something that gives us a new
Shift by multiplying by r. sum that allows us either to cancel all but a constant number of
terms, or else converts all the terms into something that forms
rG(n) = ar + ar2 4 - +ar" 4+ ar"tt an easier summation.
Subtract. . L . R
Shift by multiplying by r is a reasonable guess in this example
G(n) —rG(n) = G(n)(L —r) = a — ar"** since the terms differ by a factor of r.
a—armt!
GnN)=———— r#1
il =
~ CS5114 Example 3.3
('I\I o
8 =3 = 1x2 42X E +ax B e
Example 33 ‘C_'>' LExample &g
8
no no notes
Gn) =) 12 =1x2+2x22+3x2%4---4nx2"
i=1
Multiply by 2.
2G(N) =1x22+2x234+3x2% ... 4 nx 2"t
Subtract (Note: S, 2" = 21 — 2)
2G(n) —G(n) = n2"t_2"...22 2
G(n) = n2"t_2n1 42
(n—1)2"t 42
~ CS5114 Recurrence Relations
5
—
. < L )
Recurrence Relations s Recunience Refatons
@ A (math) function defined in terms of itself. We won't spend a lot of time on techniques... just enough to be
@ Example: Fibonacci numbers: able to use them.
F(n) =F(n—1)+F(n—2) general case
F(1)=F(2)=1 base cases

@ There are always one or more general cases and one or
more base cases.

@ We will use recurrences for time complexity of recursive
(computer) functions.

@ General formatis T(n) = E(T,n) where E(T,n) is an
expression in T and n.

» T(n)=2T(n/2)+n
@ Alternately, an upper bound: T (n) < E(T,n).
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Solving Recurrences

We would like to find a closed form solution for T (n) such
that:
T(n) = ©(f(n))

Alternatively, find lower bound
@ Not possible for inequalities of form T (n) < E(T, n).

Methods:
@ Guess (and test) a solution
@ Expand recurrence
@ Theorems

CS 5114: Theory of Algorithms Spring 2010

Guessing
T(n)=2T(n/2)+5n* n>2
T()=7
Note that T is defined only for powers of 2.

Guess a solution: T(n) < ¢;n® = f(n)
T(1) =7 implies thatc, > 7

Inductively, assume T (n/2) < f(n/2).

T(n) = 2T(n/2)+5n?
< 2c¢1(n/2)% 4 5n?
< ¢y(n®/4) + 5n?
< cndifcy > 20/3.

Guessing (cont)

Therefore, if c; = 7, a proof by induction yields:
T(n) < 7n®
T(n) € O(n®)

Is this the best possible solution?

CS 5114: Theory of Algorithms Spring 2010

Guessing (cont)

Guess again.
T(n) < c.n” = g(n)

T(1) =7 implies ¢, > 7.

Inductively, assume T(n/2) < g(n/2).

T(n) = 2T(n/2)+ 5n?
2¢y(n/2)? + 5n?
cz(n?/2) + 5n?
con?if c, > 10

IA

INA

Therefore, if c, = 10, T(n) < 10n2. T(n) = O(n?).

Is this the best possible upper bound?
Spring 2010
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2010-01-27
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CS 5114

LSoIving Recurrences

Note that “finding a closed form” means that we have f(n) that
doesn'tinclude T.

Can't find lower bound for the inequality because you do not
know enough... you don’t know how much bigger E(T,n) is
than T (n), so the result might not be Q(T (n)).

Guessing is useful for finding an asymptotic solution. Use
induction to prove the guess correct.

CS 5114

LGuessing

For Big-oh, not many choices in what to guess.

7Tx18=7

Because 23n° +5n2 = 2n3 when n = 1, and as n grows, the
right side grows even faster.

CSs 5114

LGuessing (cont)

No - try something tighter.

CSs 5114

LGuessing (cont)

Because 32n? + 5n2 = 10n? for n = 1, and the right hand side
grows faster.

Yes this is best, since T(n) can be as bad as 5n?.



CS 5114

Guessing (cont)

LGuessing (cont)

2010-01-27

Now, reshape the recurrence so that T is defined for all
values of n. no notes
T(n) <2T(|n/2])+5n*> n>2

For arbitrary n, let 21 < n < 2%,
We have already shown that T (2K) < 10(2%)2.
T(n) < T(2)<10(2)?

10(2%/n)?n? < 10(2)%n?
< 40n?

Hence, T (n) = O(n?) for all values of n.
Typically, the bound for powers of two generalizes to all n.
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LExpanding Recurrences

Expanding Recurrences

2010-01-27

no notes
Usually, start with equality version of recurrence.

T(n) = 2T(n/2)+ 5n?
TA) = 7

Assume n is a power of 2; n = 2
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LExpanding Recurrences (cont)

Expanding Recurrences (cont)

2010-01-27

T(n) = 2T(n/2)+5n?
2(2T (n/4) +5(n/2)?) + 5n?
2(2(2T (n/8) + 5(n/4)?) + 5(n/2)?) + 5n?
= 2*T(1)+ 2t .5(n/2" 12 4 2472 . 5(n/2v"2)?
+---+2-5(n/2)? + 5n?
K—1 K—1
= 7Tn+5) n?/2'=7n+5n*) 1/2
i=0 i=0
= 7n+5n%(2 —1/21)
= 7n+5n%(2 - 2/n).

no notes

This it the exact solution for powers of 2. T (n) = ©(n?).
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Divide and Conguer Recurrences

Thesehavete o

LDivide and Conquer Recurrences

Divide and Conquer Recurrences

2010-01-27

no notes
These have the form:

T(n) = aT(n/b)+cn®
T(1) = c

... Where a, b, c, k are constants.

A problem of size n is divided into a subproblems of size
n/b, while cnk is the amount of work needed to combine the
solutions.
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LDivide and Conquer Recurrences (cont)

Divide and Conquer Recurrences
(cont)

2010-01-27

n=b" = m = logyn.
Expand the sum; n = b™. 9

T(n) = a(aT(n/bz) n C(n/b)k) 1 enk Set a = b'°% 2, Switch order of logs, giving
K K K (blogh n)logb a _ plog,a
amT (1) +a™ tc(n/b™ 1)K + ... + ac(n/b)* +cn '
m
= ca™) (b*/a)
i=0

am — a.Iogbn — nlogy @
The summation is a geometric series whose sum depends

on the ratio
r=b"/a
There are 3 cases.
Sping 2010 41/46
ry Cssi4 R
8‘ e
- L
D & C Recurrences (Cont) g D & C Recurrences (cont) o :
Mr<1 . Whenr =1, since r = b¥/a = 1, we get a = b¥.
Z i< 1/(1—r), a constant. Recall that k = logpa.
i=0
T(n) = ©(a™) = O(n°%2).
2)r=1
i .
r‘'=m+1=log,n+1
i=0
T(n) = ©(n°%?logn) = ©(n*log n)
Spring 2010 42/46
~ CS5114
&y
3
- L
D & C Recurrences (Case 3) g DEERELETE ()
B)r>1 no notes
(1) : pm+l g "
D == =G
i=0
So, from T(n) = ca™ >_r',
T(n) = ©@"M)
= ©(a"(b*/a)")
= ©(b™)
— @(nk)
Spring 2010 43/46
~ CS5114
&y
-
pg L
Summary g S
Theorem 3.4: We simplify by approximating summations.

O(n'°%?3) if a> bk
T(n) =< O©(nklogn) ifa= Db
o(n¥) if a< b

Apply the theorem:

T(n) = 3T(n/5) + 8n2.
a=3b=5c=8k=2.
bX/a = 25/3.

Case (3) holds: T (n) = ©(n?).
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LAmortized Analysis

Amortized Analysis

2010-01-27

Consider this variation on STACK:

void init(STACK S);

el ement exam neTop( STACK S);
voi d push(el ement x, STACK S);
voi d pop(int k, STACK S);

no notes

... where pop removes k entries from the stack.

“Local” worst case analysis for pop:
O(n) for n elements on the stack.

Given m; calls to push, m; calls to pop:
Naive worst case: m; +m, - N = my +m, - m;.
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LAIternate Analysis

Alternate Analysis

2010-01-27

Use amortized analysis on multiple calls to push, pop: Actual number of (constant time) push calls + (Actual number

of pop calls + Total potential for the pops)
Cannot pop more elements than get pushed onto the stack.

CLR has an entire chapter on this — we won't go into this much,
After many pushes, a single pop has high potential . but we use Amortized Analysis implicitly sometimes.

Once that potential has been expended, it is not available for
future pop operations.

The cost for m; pushes and m, pops:
m; + (M2 + my) = O(mMy + my)
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