
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 46

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer20
10

-0
1-

25

CS 5114

Title page

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

◮ Analysis of algorithms
◮ Problem statement
◮ Programming

Central Paradigm: Mathematical Induction
◮ Find a way to solve a problem by solving one or more

smaller problems

CS 5114: Theory of Algorithms Spring 2010 2 / 46

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

◮ Analysis of algorithms
◮ Problem statement
◮ Programming

Central Paradigm: Mathematical Induction
◮ Find a way to solve a problem by solving one or more

smaller problems20
10

-0
1-

25

CS 5114

CS5114: Theory of Algorithms

Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.
Divide and conquer is a way of solving a problem by solving
one more more smaller problems.
Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.

Purpose : To prove a parameterized theorem of the
form:
Theorem : ∀n ≥ c, P(n).

◮ Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2

CS 5114: Theory of Algorithms Spring 2010 3 / 46

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.

Purpose : To prove a parameterized theorem of the
form:
Theorem : ∀n ≥ c, P(n).

◮ Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2

20
10

-0
1-

25

CS 5114

Review of Mathematical Induction

P(n) is a statement containing n as a variable.

This sample P(n) is true for n ≥ 2, but false for n = 1.

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

CS 5114: Theory of Algorithms Spring 2010 4 / 46

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

20
10

-0
1-

25

CS 5114

Principle of Mathematical Induction

Important: The goal is to prove the implication , not the
theorem! That is, prove that P(n − 1) → P(n). NOT to prove
P(n). This is much easier, because we can assume that P(n) is
true.
Consider the truth table for implication to see this. Since A → B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.
This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.

Induction Example 1

Theorem : Let

S(n) =
n∑

i=1

i = 1 + 2 + · · · + n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .

CS 5114: Theory of Algorithms Spring 2010 5 / 46

Induction Example 1

Theorem : Let

S(n) =
n∑

i=1

i = 1 + 2 + · · · + n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .

20
10

-0
1-

25

CS 5114

Induction Example 1

Base Case : P(n) is true since S(1) = 1 = 1(1 + 1)/2.
Induction Hypothesis : S(i) = i(i+1)

2 for i < n.
Induction Step :

S(n) = S(n − 1) + n = (n − 1)n/2 + n

=
n(n + 1)

2

Therefore, P(n − 1) → P(n).
By the principle of Mathematical Induction,
∀n ≥ 1, S(n) = n(n+1)

2 .
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

Induction Example 2

Theorem : ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

CS 5114: Theory of Algorithms Spring 2010 6 / 46

Induction Example 2

Theorem : ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

20
10

-0
1-

25

CS 5114

Induction Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n) : (1 + x)n ≥ 1 + nx .

Base Case : (1 + x)1 = 1 + x ≥ 1 + 1x
Induction Hypothesis : Assume (1 + x)n−1 ≥ 1 + (n − 1)x
Induction Step :

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n − 1)x)

= 1 + nx − x + x + nx2 − x2

= 1 + nx + (n − 1)x2

≥ 1 + nx .

Induction Example 3

Theorem : 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

CS 5114: Theory of Algorithms Spring 2010 7 / 46

Induction Example 3

Theorem : 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

20
10

-0
1-

25

CS 5114

Induction Example 3

Base case : 4 = 2 + 2.

Induction Hypothesis : Assume P(k) for 4 ≤ k < n.

Induction Step :
Case 1: n − 1 is made up of all 2c/ stamps. Then, replace 2 of
these with a 5c/ stamp.

Case 2: n − 1 includes a 5c/ stamp. Then, replace this with 3 2c/
stamps.

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...
CS 5114: Theory of Algorithms Spring 2010 8 / 46

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...

20
10

-0
1-

25

CS 5114

Colorings

Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.

CS 5114: Theory of Algorithms Spring 2010 9 / 46

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.

20
10

-0
1-

25

CS 5114

Two-coloring Problem

Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try
induction on lines.
Base Case : n = 1. Any line divides the plane into two regions.
Induction Hypothesis : It is possible to two-color the regions
formed by n − 1 lines.
Induction Step : Introduce the n’th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n’th line.
A valid two-coloring results.

• Any boundary surviving the addition still has opposite colors.

• Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
1 P(c)

2 P(i), i = 1, 2, · · · , n − 1 → P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

CS 5114: Theory of Algorithms Spring 2010 10 / 46

Strong Induction

IF the following two statements are true:
1 P(c)

2 P(i), i = 1, 2, · · · , n − 1 → P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

20
10

-0
1-

25

CS 5114

Strong Induction

The previous examples were all very straightforward – simply
add in the n’th item and justify that the IH is maintained.
Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

• go backwards from n.

• prove a stronger IH.

to make the most of the IH.

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).

CS 5114: Theory of Algorithms Spring 2010 11 / 46

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).20

10
-0

1-
25

CS 5114

Graph Problem

It should be obvious that the theorem is true for an undirected
graph.
Naive approach: Assume the theorem is true for any graph of
n − 1 vertices. Now add the nth vertex and its edges. But this
won’t work for the graph 1 ← 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.
Going forward is good for proving existance.
Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

CS 5114: Theory of Algorithms Spring 2010 12 / 46

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

20
10

-0
1-

25

CS 5114

Graph Problem (cont)

N(v) is all vertices reachable (directly) from v . That is, the
Neighbors of v .
H is the graph induced by V − N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is
1 → 2 → 3, and we remove 1, then the independent set for H
must be vertex 2. We can’t just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.

CS 5114: Theory of Algorithms Spring 2010 13 / 46

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.20
10

-0
1-

25

CS 5114

Graph Proof (cont)

“S(H) ∪ {v} is not independent” means that there is an edge
from something in S(H) to v .
IMPORTANT: There cannot be an edge from v to S(H)

because whatever we can reach from v is in N(v) and would
have been removed in H.
We need strong induction for this proof because we don’t know
how many vertices are in N(v).

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1

F (n) = F (n − 1) + F (n − 2), n > 2.

Theorem : ∀n ≥ 1, F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).

CS 5114: Theory of Algorithms Spring 2010 14 / 46

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1

F (n) = F (n − 1) + F (n − 2), n > 2.

Theorem : ∀n ≥ 1, F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).20

10
-0

1-
25

CS 5114

Fibonacci Numbers

Expand both sides of the theorem, then cancel like terms:
F (2n + 1) = F (2n) + F (2n − 1) and,

F (n)2 + F (n + 1)2 = F (n)2 + (F (n) + F (n − 1))2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (n − 1)2 + F (n)2 + 2F (n)F (n − 1)

= F (2n − 1) + F (n)2 + 2F (n)F (n − 1).

Want: F (n)2 + F (n + 1)2 = F (2n + 1) = F (2n) + F (2n − 1)
Steps above gave:
F (2n) + F (2n − 1) = F (2n − 1) + F (n)2 + 2F (n)F (n − 1)
So we need to show that: F (n)2 + 2F (n)F (n − 1) = F (2n)
To prove the original theorem, we must prove this. Since we
must do it anyway, we should take advantage of this in our IH!

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger IH!

Theorem :
F (n)2 + F (n + 1)2 = F (2n + 1) and
F (n)2 + 2F (n)F (n − 1) = F (2n).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1) and
F (n − 1)2 + 2F (n − 1)F (n − 2) = F (2n − 2).

CS 5114: Theory of Algorithms Spring 2010 15 / 46

Fibonacci Numbers (cont)

With a stronger theorem comes a stronger IH!

Theorem :
F (n)2 + F (n + 1)2 = F (2n + 1) and
F (n)2 + 2F (n)F (n − 1) = F (2n).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1) and
F (n − 1)2 + 2F (n − 1)F (n − 2) = F (2n − 2).20

10
-0

1-
25

CS 5114

Fibonacci Numbers (cont)

F (n)2 + 2F (n)F (n − 1)

= F (n)2 + 2(F (n − 1) + F (n − 2))F (n − 1)

= F (n)2 + F (n − 1)2 + 2F (n − 1)F (n − 2) + F (n − 1)2

= F (2n − 1) + F (2n − 2)

= F (2n).

F (n)2 + F (n + 1)2 = F (n)2 + [F (n) + F (n − 1)]2

= F (n)2 + F (n)2 + 2F (n)F (n − 1) + F (n − 1)2

= F (n)2 + F (2n) + F (n − 1)2

= F (2n − 1) + F (2n)

= F (2n + 1).

... which proves the theorem. The original result could not have been
proved without the stronger induction hypothesis.

Another Example

Theorem : All horses are the same color.

Proof : P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case : n = 1 is easy.
Induction Hypothesis : Assume P(i), i < n.
Induction Step :

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h, h′} have all the same color.

Therefore, P(n) holds.

CS 5114: Theory of Algorithms Spring 2010 16 / 46

Another Example

Theorem : All horses are the same color.

Proof : P(n): If S is a set of n horses, then all horses in S
have the same color.
Base case : n = 1 is easy.
Induction Hypothesis : Assume P(i), i < n.
Induction Step :

Let S be a set of horses, |S| = n.
Let S′ be S − {h} for some horse h.
By IH, all horses in S′ have the same color.
Let h′ be some horse in S′.
IH implies {h, h′} have all the same color.

Therefore, P(n) holds.

20
10

-0
1-

25

CS 5114

Another Example

The problem is that the base case does not give enough
strength to give the particular instance of n = 2 used in the
last step.

Algorithm Analysis

We want to “measure” algorithms.

What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.

CS 5114: Theory of Algorithms Spring 2010 17 / 46

Algorithm Analysis

We want to “measure” algorithms.

What do we measure?

What factors affect measurement?

Objective: Measures that are independent of all factors
except input.20

10
-0

1-
25

CS 5114

Algorithm Analysis

What do we measure?
Time and space to run; ease of implementation (this changes
with language and tools); code size

What affects measurement?
Computer speed and architecture; Programming language and
compiler; System load; Programmer skill; Specifics of input
(size, arrangement)

If you compare two programs running on the same computer
under the same conditions, all the other factors (should) cancel
out.
Want to measure the relative efficiency of two algorithms
without needing to implement them on a real computer.

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

◮ Establish an (integer) size n for inputs
◮ n numbers in a list
◮ n edges in a graph

Consider time for all inputs of size n:
◮ Time varies widely with specific input
◮ Best case
◮ Average case
◮ Worst case

Time complexity T(n) counts steps in an algorithm.

CS 5114: Theory of Algorithms Spring 2010 18 / 46

Time Complexity

Time and space are the most important computer
resources.
Function of input: T(input)
Growth of time with size of input:

◮ Establish an (integer) size n for inputs
◮ n numbers in a list
◮ n edges in a graph

Consider time for all inputs of size n:
◮ Time varies widely with specific input
◮ Best case
◮ Average case
◮ Worst case

Time complexity T(n) counts steps in an algorithm.

20
10

-0
1-

25

CS 5114

Time Complexity

Sometimes analyze in terms of more than one variable.
Best case usually not of interest.
Average case is usually what we want, but can be hard to
measure.
Worst case appropriate for “real-time” applications, often best
we can do in terms of measurement.
Examples of “steps:” comparisons, assignments,
arithmetic/logical operations. What we choose for “step”
depends on the algorithm. Step cost must be “constant” – not
dependent on n.

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

◮ Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
◮ Ignore small cases:

⋆ Consider behavior approaching infinity
◮ Ignore constant factors, low order terms:

⋆ 2n2 looks the same as 5n2 + n to us.

CS 5114: Theory of Algorithms Spring 2010 19 / 46

Asymptotic Analysis

It is undesirable/impossible to count the exact number of
steps in most algorithms.

◮ Instead, concentrate on main characteristics.

Solution: Asymptotic analysis
◮ Ignore small cases:

⋆ Consider behavior approaching infinity
◮ Ignore constant factors, low order terms:

⋆ 2n2 looks the same as 5n2 + n to us.20
10

-0
1-

25

CS 5114

Asymptotic Analysis

Undesirable to count number of machine instructions or steps
because issues like processor speed muddy the waters.

O Notation

O notation is a measure for “upper bound” of a growth rate.

pronounced “Big-oh”

Definition : For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:

5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)

CS 5114: Theory of Algorithms Spring 2010 20 / 46

O Notation

O notation is a measure for “upper bound” of a growth rate.

pronounced “Big-oh”

Definition : For T(n) a non-negatively valued function, T(n)
is in the set O(f (n)) if there exist two positive constants c
and n0 such that T(n) ≤ cf (n) for all n > n0.

Examples:

5n + 8 ∈ O(n)

2n2 + n log n ∈ O(n2) ∈ O(n3 + 5n2)

2n2 + n log n ∈ O(n2) ∈ O(n3 + n2)

20
10

-0
1-

25

CS 5114

O Notation

Remember: The time equation is for some particular set of
inputs – best, worst, or average case.

O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n

n2 ∈ O(n2) while n2 log n /∈ O(n2)

CS 5114: Theory of Algorithms Spring 2010 21 / 46

O Notation (cont)

We seek the “simplest” and “strongest” f .

Big-O is somewhat like “≤”:
n2 ∈ O(n3) and n2 log n ∈ O(n3), but

n2 6= n2 log n

n2 ∈ O(n2) while n2 log n /∈ O(n2)

20
10

-0
1-

25

CS 5114

O Notation (cont)

A common misunderstanding:

• “The best case for my algorithm is n = 1 because that is the
fastest.” WRONG!

• Big-oh refers to a growth rate as n grows to ∞.

• Best case is defined for the input of size n that is cheapest
among all inputs of size n.

Growth Rate Graph

CS 5114: Theory of Algorithms Spring 2010 22 / 46

Growth Rate Graph

20
10

-0
1-

25

CS 5114

Growth Rate Graph

2n is an exponential algorithm. 10n and 20n differ only by a
constant.

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1, 000 10, 000 n′ = 10n 10
20n 500 5, 000 n′ = 10n 10
5n log n 250 1, 842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).

CS 5114: Theory of Algorithms Spring 2010 23 / 46

Speedups

What happens when we buy a computer 10 times faster?

T(n) n n′ Change n′/n
10n 1, 000 10, 000 n′ = 10n 10
20n 500 5, 000 n′ = 10n 10
5n log n 250 1, 842

√
10n<n′<10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

n: Size of input that can be processed in one hour (10,000
steps).

n′: Size of input that can be processed in one hour on the
new machine (100,000 steps).

20
10

-0
1-

25

CS 5114

Speedups

How much speedup? 10 times. More important: How much
increase in problem size for same time? Depends on growth
rate.
For n2, if n = 1000, then n′ would be 1003.
Compare T(n) = n2 to T(n) = n log n. For n > 58, it is faster to
have the Θ(n log n) algorithm than to have a computer that is
10 times faster.

Some Rules for Use
Definition : f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1 : Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2 : If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))

CS 5114: Theory of Algorithms Spring 2010 24 / 46

Some Rules for Use
Definition : f is monotonically growing if n1 ≥ n2 implies
f (n1) ≥ f (n2).
We typically assume our time complexity function is
monotonically growing.

Theorem 3.1 : Suppose f is monotonically growing.
∀c > 0 and ∀a > 1, (f (n))c ∈ O(af (n))
In other words, an exponential function grows faster than a
polynomial function.

Lemma 3.2 : If f (n) ∈ O(s(n)) and g(n) ∈ O(r(n)) then
f (n) + g(n) ∈ O(s(n) + r(n)) ≡ O(max(s(n), r(n)))
f (n)g(n) ∈ O(s(n)r(n)).
If s(n) ∈ O(h(n)) then f (n) ∈ O(h(n))
For any constant k , f (n) ∈ O(ks(n))

20
10

-0
1-

25

CS 5114

Some Rules for Use

Assume monitonic growth because larger problems should take
longer to solve. However, many real problems have “cyclically
growing” behavior.
Is O(2f (n)) ∈ O(3f (n))? Yes, but not vice versa.
3n = 1.5n × 2n so no constant could ever make 2n bigger than
3n for all n.functional composition

Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition : For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition : g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important! : It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

CS 5114: Theory of Algorithms Spring 2010 25 / 46

Other Asymptotic Notation

Ω(f (n)) – lower bound (≥)
Definition : For T(n) a non-negatively valued function, T(n)
is in the set Ω(g(n)) if there exist two positive constants c
and n0 such that T(n) ≥ cg(n) for all n > n0.
Ex: n2 log n ∈ Ω(n2).

Θ(f (n)) – Exact bound (=)
Definition : g(n) = Θ(f (n)) if g(n) ∈ O(f (n)) and
g(n) ∈ Ω(f (n)).
Important! : It is Θ if it is both in big-Oh and in Ω.
Ex: 5n3 + 4n2 + 9n + 7 = Θ(n3)

20
10

-0
1-

25

CS 5114

Other Asymptotic Notation

A common misunderstanding:

• Confusing worst case with upper bound.

• Upper bound refers to a growth rate.

• Worst case refers to the worst input from among the choices
for possible inputs of a given size.

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition : g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n)

= 0
Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition : g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition : T (n) = ∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.

CS 5114: Theory of Algorithms Spring 2010 26 / 46

Other Asymptotic Notation (cont)

o(f (n)) – little o (<)
Definition : g(n) ∈ o(f (n)) if limn→∞

g(n)
f (n)

= 0
Ex: n2 ∈ o(n3)

ω(f (n)) – little omega (>)
Definition : g(n) ∈ w(f (n)) if f (n) ∈ o(g(n)).
Ex: n5 ∈ w(n2)

∞(f (n))
Definition : T (n) = ∞(f (n)) if T (n) = O(f (n)) but the
constant in the O is so large that the algorithm is impractical.

20
10

-0
1-

25

CS 5114

Other Asymptotic Notation (cont)

We won’t use these too much.

