
CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer

CS 5114: Theory of Algorithms Spring 2010 1 / 16

CS 5114: Theory of Algorithms

Clifford A. Shaffer

Department of Computer Science
Virginia Tech

Blacksburg, Virginia

Spring 2010

Copyright c© 2010 by Clifford A. Shaffer20
10

-0
1-

20

CS 5114

Title page

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

◮ Analysis of algorithms
◮ Problem statement
◮ Programming

Central Paradigm: Mathematical Induction
◮ Find a way to solve a problem by solving one or more

smaller problems

CS 5114: Theory of Algorithms Spring 2010 2 / 16

CS5114: Theory of Algorithms

Emphasis: Creation of Algorithms
Less important:

◮ Analysis of algorithms
◮ Problem statement
◮ Programming

Central Paradigm: Mathematical Induction
◮ Find a way to solve a problem by solving one or more

smaller problems20
10

-0
1-

20

CS 5114

CS5114: Theory of Algorithms

Creation of algorithms comes through exploration, discovery,
techniques, intuition: largely by lots of examples and lots of
practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important
because our problems are easily described, if not easily solved.
Smaller problems may or may not be the same as the original
problem.
Divide and conquer is a way of solving a problem by solving
one more more smaller problems.
Claim on induction: The processes of constructing proofs and
constructing algorithms are similar.

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.

Purpose : To prove a parameterized theorem of the
form:
Theorem : ∀n ≥ c, P(n).

◮ Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2

CS 5114: Theory of Algorithms Spring 2010 3 / 16

Review of Mathematical Induction

The paradigm of Mathematical Induction can be used
to solve an enormous range of problems.

Purpose : To prove a parameterized theorem of the
form:
Theorem : ∀n ≥ c, P(n).

◮ Use only positive integers ≥ c for n.

Sample P(n):
n + 1 ≤ n2

20
10

-0
1-

20

CS 5114

Review of Mathematical Induction

P(n) is a statement containing n as a variable.

This sample P(n) is true for n ≥ 2, but false for n = 1.

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

CS 5114: Theory of Algorithms Spring 2010 4 / 16

Principle of Mathematical Induction

IF the following two statements are true:
1 P(c) is true.
2 For n > c, P(n − 1) is true → P(n) is true.

... THEN we may conclude: ∀n ≥ c, P(n).

The assumption “P(n − 1) is true” is the
induction hypothesis .

Typical induction proof form:
1 Base case
2 State induction Hypothesis
3 Prove the implication (induction step)

What does this remind you of?

20
10

-0
1-

20

CS 5114

Principle of Mathematical Induction

Important: The goal is to prove the implication , not the
theorem! That is, prove that P(n − 1) → P(n). NOT to prove
P(n). This is much easier, because we can assume that P(n) is
true.
Consider the truth table for implication to see this. Since A → B
is (vacuously) true when A is false, we can just assume that A is
true since the implication is true anyway A is false. That is, we
only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis “comes
for free.” We often try to make the most of the extra information
provided by the induction hypothesis.
This is like recursion! There you have a base case and a
recursive call that must make progress toward the base case.

Induction Example 1

Theorem : Let

S(n) =
n∑

i=1

i = 1 + 2 + · · · + n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .

CS 5114: Theory of Algorithms Spring 2010 5 / 16

Induction Example 1

Theorem : Let

S(n) =
n∑

i=1

i = 1 + 2 + · · · + n.

Then, ∀n ≥ 1, S(n) = n(n+1)
2 .

20
10

-0
1-

20

CS 5114

Induction Example 1

Base Case : P(n) is true since S(1) = 1 = 1(1 + 1)/2.
Induction Hypothesis : S(i) = i(i+1)

2 for i < n.
Induction Step :

S(n) = S(n − 1) + n = (n − 1)n/2 + n

=
n(n + 1)

2

Therefore, P(n − 1) → P(n).
By the principle of Mathematical Induction,
∀n ≥ 1, S(n) = n(n+1)

2 .
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

Induction Example 2

Theorem : ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

CS 5114: Theory of Algorithms Spring 2010 6 / 16

Induction Example 2

Theorem : ∀n ≥ 1,∀ real x such that 1 + x > 0,
(1 + x)n ≥ 1 + nx .

20
10

-0
1-

20

CS 5114

Induction Example 2

What do we do induction on? Can’t be a real number, so must
be n.
P(n) : (1 + x)n ≥ 1 + nx .

Base Case : (1 + x)1 = 1 + x ≥ 1 + 1x
Induction Hypothesis : Assume (1 + x)n−1 ≥ 1 + (n − 1)x
Induction Step :

(1 + x)n = (1 + x)(1 + x)n−1

≥ (1 + x)(1 + (n − 1)x)

= 1 + nx − x + x + nx2 − x2

= 1 + nx + (n − 1)x2

≥ 1 + nx .

Induction Example 3

Theorem : 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

CS 5114: Theory of Algorithms Spring 2010 7 / 16

Induction Example 3

Theorem : 2c/ and 5c/ stamps can be used to form any
denomination (for denominations ≥ 4).

20
10

-0
1-

20

CS 5114

Induction Example 3

Base case : 4 = 2 + 2.

Induction Hypothesis : Assume P(k) for 4 ≤ k < n.

Induction Step :
Case 1: n − 1 is made up of all 2c/ stamps. Then, replace 2 of
these with a 5c/ stamp.

Case 2: n − 1 includes a 5c/ stamp. Then, replace this with 3 2c/
stamps.

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...
CS 5114: Theory of Algorithms Spring 2010 8 / 16

Colorings

4-color problem: For any set of polygons, 4 colors are
sufficient to guarentee that no two adjacent polygons share
the same color.

Restrict the problem to regions formed by placing (infinite)
lines in the plane. How many colors do we need?
Candidates:

4: Certainly
3: ?
2: ?
1: No!

Let’s try it for 2...

20
10

-0
1-

20

CS 5114

Colorings

Induction is useful for much more than checking equations!

If we accept the statement about the general 4-color problem,
then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.

CS 5114: Theory of Algorithms Spring 2010 9 / 16

Two-coloring Problem

Given: Regions formed by a collection of (infinite) lines in the
plane.
Rule: Two regions that share an edge cannot be the same
color.

Theorem : It is possible to two-color the regions formed by n
lines.

20
10

-0
1-

20

CS 5114

Two-coloring Problem

Picking what to do induction on can be a problem. Lines?
Regions? How can we “add a region?” We can’t, so try
induction on lines.
Base Case : n = 1. Any line divides the plane into two regions.
Induction Hypothesis : It is possible to two-color the regions
formed by n − 1 lines.
Induction Step : Introduce the n’th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n’th line.
A valid two-coloring results.

• Any boundary surviving the addition still has opposite colors.

• Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
1 P(c)

2 P(i), i = 1, 2, · · · , n − 1 → P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

CS 5114: Theory of Algorithms Spring 2010 10 / 16

Strong Induction

IF the following two statements are true:
1 P(c)

2 P(i), i = 1, 2, · · · , n − 1 → P(n),

... THEN we may conclude: ∀n ≥ c, P(n).

Advantage: We can use statements other than P(n − 1) in
proving P(n).

20
10

-0
1-

20

CS 5114

Strong Induction

The previous examples were all very straightforward – simply
add in the n’th item and justify that the IH is maintained.
Now we will see examples where we must do more
sophisticated (creative!) maneuvers such as

• go backwards from n.

• prove a stronger IH.

to make the most of the IH.

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).

CS 5114: Theory of Algorithms Spring 2010 11 / 16

Graph Problem

An Independent Set of vertices is one for which no two
vertices are adjacent.

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.

Example: a graph with 3 vertices in a cycle. Pick any one
vertex as S(G).20

10
-0

1-
20

CS 5114

Graph Problem

It should be obvious that the theorem is true for an undirected
graph.
Naive approach: Assume the theorem is true for any graph of
n − 1 vertices. Now add the nth vertex and its edges. But this
won’t work for the graph 1 ← 2. Initially, vertex 1 is the
independent set. We can’t add 2 to the graph. Nor can we
reach it from 1.
Going forward is good for proving existance.
Going backward (from an arbitrary instance into the IH) is
usually necessary to prove that a property holds in all
instances. This is because going forward requires proving that
you reach all of the possible instances.

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

CS 5114: Theory of Algorithms Spring 2010 12 / 16

Graph Problem (cont)

Theorem : Let G = (V , E) be a directed graph. Then, G
contains some independent set S(G) such that every vertex
can be reached from a vertex in S(G) by a path of length at
most 2.
Base Case : Easy if n ≤ 3 because there can be no path of
length > 2.
Induction Hypothesis : The theorem is true if |V | < n.
Induction Step (n > 3):
Pick any v ∈ V .
Define: N(v) = {v} ∪ {w ∈ V |(v , w) ∈ E}.
H = G − N(v).
Since the number of vertices in H is less than n, there is an
independent set S(H) that satisfies the theorem for H.

20
10

-0
1-

20

CS 5114

Graph Problem (cont)

N(v) is all vertices reachable (directly) from v . That is, the
Neighbors of v .
H is the graph induced by V − N(v).

OK, so why remove both v and N(v) from the graph? If we only
remove v, we have the same problem as before. If G is
1 → 2 → 3, and we remove 1, then the independent set for H
must be vertex 2. We can’t just add back 1. But if we remove
both 1 and 2, then we’ll be able to do something...

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.

CS 5114: Theory of Algorithms Spring 2010 13 / 16

Graph Proof (cont)

There are two cases:
1 S(H) ∪ {v} is independent.

Then S(G) = S(H) ∪ {v}.
2 S(H) ∪ {v} is not independent.

Let w ∈ S(H) such that (w , v) ∈ E .
Every vertex in N(v) can be reached by w with path of
length ≤ 2.
So, set S(G) = S(H).

By Strong Induction, the theorem holds for all G.20
10

-0
1-

20

CS 5114

Graph Proof (cont)

“S(H) ∪ {v} is not independent” means that there is an edge
from something in S(H) to v .
IMPORTANT: There cannot be an edge from v to S(H)

because whatever we can reach from v is in N(v) and would
have been removed in H.
We need strong induction for this proof because we don’t know
how many vertices are in N(v).

Fibonacci Numbers

Define Fibonacci numbers inductively as:

F (1) = F (2) = 1

F (n) = F (n − 1) + F (n − 2), n > 2.

Theorem : ∀n ≥ 1, F (n)2 + F (n + 1)2 = F (2n + 1).

Induction Hypothesis:
F (n − 1)2 + F (n)2 = F (2n − 1).

CS 5114: Theory of Algorithms Spring 2010 14 / 16

