Clifford A. Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, Virginia
Spring 2010

Copyright (C) 2010 by Clifford A. Shaffer

CS5114: Theory of Algorithms

- Emphasis: Creation of Algorithms
- Less important:
- Analysis of algorithms
- Problem statement
- Programming
- Central Paradigm: Mathematical Induction
- Find a way to solve a problem by solving one or more smaller problems

Review of Mathematical Induction

- The paradigm of Mathematical Induction can be used to solve an enormous range of problems.
- Purpose: To prove a parameterized theorem of the form:
Theorem: $\forall n \geq c, \mathbf{P}(n)$.
- Use only positive integers $\geq c$ for n.
- Sample $\mathbf{P}(n)$:
$n+1 \leq n^{2}$
- IF the following two statements are true:
(1) $\mathrm{P}(c)$ is true.
(2) For $n>c, \mathbf{P}(n-1)$ is true $\rightarrow \mathbf{P}(n)$ is true.
... THEN we may conclude: $\forall n \geq c, \mathbf{P}(n)$.
- The assumption "P(n-1) is true" is the induction hypothesis.
- Typical induction proof form:
(1) Base case
(2) State induction Hypothesis
(3) Prove the implication (induction step)
- What does this remind you of?

Creation of algorithms comes through exploration, discovery, techniques, intuition: largely by lots of examples and lots of practice (HW exercises).
We will use Analysis of Algorithms as a tool.
Problem statement (in the software eng. sense) is not important because our problems are easily described, if not easily solved. Smaller problems may or may not be the same as the original problem.
Divide and conquer is a way of solving a problem by solving one more more smaller problems.
Claim on induction: The processes of constructing proofs and
constructing algorithms are similar. constructing algorithms are similar.
$\mathbf{P}(n)$ is a statement containing n as a variable.

This sample $\mathbf{P}(n)$ is true for $n \geq 2$, but false for $n=1$.

Important: The goal is to prove the implication, not the theorem! That is, prove that $\mathbf{P}(n-1) \rightarrow \mathbf{P}(n)$. NOT to prove $P(n)$. This is much easier, because we can assume that $\mathbf{P}(n)$ is true.
Consider the truth table for implication to see this. Since $A \rightarrow B$ is (vacuously) true when A is false, we can just assume that A is true since the implication is true anyway A is false. That is, we only need to worry that the implication could be false if A is true.

The power of induction is that the induction hypothesis "comes for free." We often try to make the most of the extra information provided by the induction hypothesis.
This is like recursion! There you have a base case and a recursive call that must make progress toward the base case.

Theorem: Let

$$
S(n)=\sum_{i=1}^{n} i=1+2+\cdots+n .
$$

Then, $\forall n \geq 1, S(n)=\frac{n(n+1)}{2}$.

Induction Example 2

Theorem: $\forall n \geq 1, \forall$ real x such that $1+x>0$, $(1+x)^{n} \geq 1+n x$.

Induction Example 3

Theorem: $2 ¢$ and $5 ¢$ stamps can be used to form any denomination (for denominations ≥ 4).

Colorings

4-color problem: For any set of polygons, 4 colors are sufficient to guarentee that no two adjacent polygons share the same color.

Restrict the problem to regions formed by placing (infinite) lines in the plane. How many colors do we need? Candidates:

- 4: Certainly
- 3:?
- 2: ?
- 1: No!

Base Case: $\mathbf{P}(n)$ is true since $S(1)=1=1(1+1) / 2$.
Induction Hypothesis: $S(i)=\frac{i(i+1)}{2}$ for $i<n$.
Induction Step:

$$
\begin{aligned}
S(n) & =S(n-1)+n=(n-1) n / 2+n \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Therefore, $\mathbf{P}(n-1) \rightarrow \mathbf{P}(n)$.
By the principle of Mathematical Induction,
$\forall n \geq 1, S(n)=\frac{n(n+1)}{2}$.
MI is often an ideal tool for verification of a hypothesis.
Unfortunately it does not help to construct a hypothesis.

What do we do induction on? Can't be a real number, so must be n.
$\mathbf{P}(n):(1+x)^{n} \geq 1+n x$.
Base Case: $(1+x)^{1}=1+x \geq 1+1 x$
Induction Hypothesis: Assume $(1+x)^{n-1} \geq 1+(n-1) x$ Induction Step:

$$
\begin{aligned}
(1+x)^{n} & =(1+x)(1+x)^{n-1} \\
& \geq(1+x)(1+(n-1) x) \\
& =1+n x-x+x+n x^{2}-x^{2} \\
& =1+n x+(n-1) x^{2} \\
& \geq 1+n x .
\end{aligned}
$$

Base case: $4=2+2$.

Induction Hypothesis: Assume $\mathbf{P}(k)$ for $4 \leq k<n$.

Induction Step:

Case 1: $n-1$ is made up of all 2ϕ stamps. Then, replace 2 of these with a $5 ¢$ stamp.

Case 2: $n-1$ includes a $5 ¢$ stamp. Then, replace this with 32ϕ stamps.

Induction is useful for much more than checking equations!
If we accept the statement about the general 4-color problem, then of course 4 colors is enough for our restricted version.

If 2 is enough, then of course we can do it with 3 or more.

Two-coloring Problem

Picking what to do induction on can be a problem. Lines? Regions? How can we "add a region?" We can't, so try induction on lines.
Base Case: $n=1$. Any line divides the plane into two regions. Induction Hypothesis: It is possible to two-color the regions formed by $n-1$ lines.
Induction Step: Introduce the n 'th line.
This line cuts some colored regions in two.
Reverse the region colors on one side of the n 'th line.
A valid two-coloring results.

- Any boundary surviving the addition still has opposite colors.
- Any new boundary also has opposite colors after the switch.

Strong Induction

IF the following two statements are true:
(1) $\mathrm{P}(c)$
(2) $\mathbf{P}(i), i=1,2, \cdots, n-1 \rightarrow \mathbf{P}(n)$,
... THEN we may conclude: $\forall n \geq c, \mathbf{P}(n)$.
Advantage: We can use statements other than $\mathbf{P}(n-1)$ in proving $\mathbf{P}(n)$.

Graph Problem

An Independent Set of vertices is one for which no two vertices are adjacent.

Theorem: Let $G=(V, E)$ be a directed graph. Then, G contains some independent set $S(G)$ such that every vertex can be reached from a vertex in $S(G)$ by a path of length at most 2.

Example: a graph with 3 vertices in a cycle. Pick any one vertex as $S(G)$.

Graph Problem (cont)

Theorem: Let $G=(V, E)$ be a directed graph. Then, G contains some independent set $S(G)$ such that every vertex can be reached from a vertex in $S(G)$ by a path of length at most 2.
Base Case: Easy if $n \leq 3$ because there can be no path of length > 2.
Induction Hypothesis: The theorem is true if $|V|<n$.
Induction Step ($n>3$):
Pick any $v \in V$.
Define: $N(v)=\{v\} \cup\{w \in V \mid(v, w) \in E\}$.
$H=G-N(v)$.
Since the number of vertices in H is less than n, there is an independent set $S(H)$ that satisfies the theorem for H.

$N(v)$ is all vertices reachable (directly) from v. That is, the Neighbors of v.
H is the graph induced by $V-N(v)$.

OK, so why remove both v and $N(v)$ from the graph? If we only remove v , we have the same problem as before. If G is $1 \rightarrow 2 \rightarrow 3$, and we remove 1 , then the independent set for H must be vertex 2 . We can't just add back 1. But if we remove both 1 and 2 , then we'll be able to do something...

Graph Proof (cont)

```
\()^{\text {© CS } 5114}\)
```

Graph Proot (cont)
(1) $S(H) \cup\{v\}$ is independent.
Then $S(G)=S(H) \cup\{v\}$.
(2) $S(H) \cup\{v\}$ is not independent.

Let $w \in S(H)$ such that $(w, v) \in E$.
Every vertex in $N(v)$ can be reached by w with path of length ≤ 2.
So, set $S(G)=S(H)$.

By Strong Induction, the theorem holds for all G.

Fibonacci Numbers

Define Fibonacci numbers inductively as:

$$
\begin{aligned}
& F(1)=F(2)=1 \\
& F(n)=F(n-1)+F(n-2), n>2 .
\end{aligned}
$$

Theorem: $\forall n \geq 1, F(n)^{2}+F(n+1)^{2}=F(2 n+1)$.
Induction Hypothesis:
$F(n-1)^{2}+F(n)^{2}=F(2 n-1)$.
" $S(H) \cup\{v\}$ is not independent" means that there is an edge from something in $S(H)$ to v.
IMPORTANT: There cannot be an edge from v to $S(H)$
because whatever we can reach from v is in $N(v)$ and would have been removed in H .
We need strong induction for this proof because we don't know how many vertices are in $N(v)$.

